CN106980753B - 一种用于神经疾病的基于体素分析的数据驱动机器学习方法 - Google Patents
一种用于神经疾病的基于体素分析的数据驱动机器学习方法 Download PDFInfo
- Publication number
- CN106980753B CN106980753B CN201710111168.3A CN201710111168A CN106980753B CN 106980753 B CN106980753 B CN 106980753B CN 201710111168 A CN201710111168 A CN 201710111168A CN 106980753 B CN106980753 B CN 106980753B
- Authority
- CN
- China
- Prior art keywords
- data
- sample
- principal component
- feature
- new
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710111168.3A CN106980753B (zh) | 2017-02-28 | 2017-02-28 | 一种用于神经疾病的基于体素分析的数据驱动机器学习方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710111168.3A CN106980753B (zh) | 2017-02-28 | 2017-02-28 | 一种用于神经疾病的基于体素分析的数据驱动机器学习方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106980753A CN106980753A (zh) | 2017-07-25 |
CN106980753B true CN106980753B (zh) | 2019-05-31 |
Family
ID=59338234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710111168.3A Active CN106980753B (zh) | 2017-02-28 | 2017-02-28 | 一种用于神经疾病的基于体素分析的数据驱动机器学习方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106980753B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108520781A (zh) * | 2018-03-28 | 2018-09-11 | 北京大学人民医院 | 一种计算试管婴儿成功结局几率的方法 |
CN110888668B (zh) * | 2018-09-07 | 2024-04-16 | 腾讯科技(北京)有限公司 | 一种模型更新的系统、方法、装置、终端设备和介质 |
CN111178391B (zh) * | 2019-12-10 | 2023-06-30 | 网络通信与安全紫金山实验室 | 一种使用增量奇异值分解法进行产品行业平行数据集构建的方法 |
CN114386486A (zh) * | 2021-12-21 | 2022-04-22 | 北京科技大学 | 一种基于加权和策略分布式算法的adhd病例分类方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5887074A (en) * | 1996-12-13 | 1999-03-23 | Siemens Corporate Research, Inc. | Local principal component based method for detecting activation signals in functional MR images |
WO2012120467A1 (en) * | 2011-03-09 | 2012-09-13 | Universita' Degli Studi Di Genova | A method for extracting information of interest from multi-dimensional, multi -parametric and/or multi -temporal datasets |
CN103116764A (zh) * | 2013-03-02 | 2013-05-22 | 西安电子科技大学 | 一种基于多线性主元分析的大脑认知状态判定方法 |
CN103646183A (zh) * | 2013-12-24 | 2014-03-19 | 张擎 | 一种基于人工神经网络和多模态mri的阿尔茨海默病智能判别分析方法 |
CN104921727A (zh) * | 2015-06-24 | 2015-09-23 | 上海海事大学 | 基于自适应先验信息指导的脑功能连通性检测系统和方法 |
CN106097359A (zh) * | 2016-06-16 | 2016-11-09 | 浙江工业大学 | 一种基于磁共振成像的自适应局部特征提取方法 |
-
2017
- 2017-02-28 CN CN201710111168.3A patent/CN106980753B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5887074A (en) * | 1996-12-13 | 1999-03-23 | Siemens Corporate Research, Inc. | Local principal component based method for detecting activation signals in functional MR images |
WO2012120467A1 (en) * | 2011-03-09 | 2012-09-13 | Universita' Degli Studi Di Genova | A method for extracting information of interest from multi-dimensional, multi -parametric and/or multi -temporal datasets |
CN103116764A (zh) * | 2013-03-02 | 2013-05-22 | 西安电子科技大学 | 一种基于多线性主元分析的大脑认知状态判定方法 |
CN103646183A (zh) * | 2013-12-24 | 2014-03-19 | 张擎 | 一种基于人工神经网络和多模态mri的阿尔茨海默病智能判别分析方法 |
CN104921727A (zh) * | 2015-06-24 | 2015-09-23 | 上海海事大学 | 基于自适应先验信息指导的脑功能连通性检测系统和方法 |
CN106097359A (zh) * | 2016-06-16 | 2016-11-09 | 浙江工业大学 | 一种基于磁共振成像的自适应局部特征提取方法 |
Non-Patent Citations (3)
Title |
---|
《A Self-adaptive Local Feature Extraction Based Magnetic Resonance Imaging 》;Jun Zhang et al;;《2016 Chinese Control and Decision Conference》;20160808;第6563-6567页; * |
《基于压缩感知高阶张量扩散磁共振稀疏成像方法》;冯远静;《模式识别与人工智能》;20150831;第28卷(第8期);第710-719页; * |
《基于统计特性随机森林算法的特征选择》;宋源 等;;《计算机应用》;20150510;第35卷(第5期);第1459 - 1461页; * |
Also Published As
Publication number | Publication date |
---|---|
CN106980753A (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arunkumar et al. | Fully automatic model‐based segmentation and classification approach for MRI brain tumor using artificial neural networks | |
Soltaninejad et al. | Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI | |
Zhou et al. | Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method | |
CN106980753B (zh) | 一种用于神经疾病的基于体素分析的数据驱动机器学习方法 | |
CN109528197B (zh) | 基于脑功能图谱进行精神疾病的个体化预测方法和系统 | |
Achterberg et al. | Hippocampal shape is predictive for the development of dementia in a normal, elderly population | |
US20180260954A1 (en) | Method and apparatus for providing medical information service on basis of disease model | |
Hong et al. | Classification of cerebral microbleeds based on fully-optimized convolutional neural network | |
CN104881631B (zh) | 多特征整合的宫颈细胞图像特征提取与识别方法及其装置 | |
Jin et al. | Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods | |
Galimzianova et al. | Stratified mixture modeling for segmentation of white-matter lesions in brain MR images | |
Bahadure et al. | Feature extraction and selection with optimization technique for brain tumor detection from MR images | |
Nagarathinam et al. | Image registration‐based brain tumor detection and segmentation using ANFIS classification approach | |
CN116823767A (zh) | 一种基于图像分析的肺移植活性等级判断方法 | |
CN117315379B (zh) | 面向深度学习的医学影像分类模型公平性评估方法及装置 | |
Kim et al. | Learning to compare longitudinal images | |
CN117174257B (zh) | 医疗影像的处理装置、电子设备及计算机可读存储介质 | |
CN116229176A (zh) | 结合影像组学特征和临床特征的医学图像分类方法及设备 | |
CN108446740A (zh) | 一种用于脑影像病历特征提取的多层一致协同方法 | |
Dai et al. | Network-based classification using cortical thickness of AD patients | |
Røge et al. | Unsupervised segmentation of task activated regions in fMRI | |
Öziç et al. | T-test feature ranking based 3D MR classification with VBM mask | |
CN113793324A (zh) | 一种鼻咽癌诱导化疗疗效预测方法及系统 | |
Adar et al. | Feature selection on MR images using genetic algorithm with SVM and naive Bayes classifiers | |
Li et al. | Semi-supervised clustering for neuro-subtyping of autism spectrum disorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zeng Qingrun Inventor after: Feng Yuanjing Inventor after: Zhou Siqi Inventor after: Jin Liling Inventor after: He Jianzhong Inventor after: Wu Ye Inventor before: Feng Yuanjing Inventor before: Zhou Siqi Inventor before: Jin Liling Inventor before: He Jianzhong Inventor before: Zeng Qingrun Inventor before: Wu Ye |