CN106975163A - 用于图像引导治疗规划的自动解剖结构描绘 - Google Patents

用于图像引导治疗规划的自动解剖结构描绘 Download PDF

Info

Publication number
CN106975163A
CN106975163A CN201710067635.7A CN201710067635A CN106975163A CN 106975163 A CN106975163 A CN 106975163A CN 201710067635 A CN201710067635 A CN 201710067635A CN 106975163 A CN106975163 A CN 106975163A
Authority
CN
China
Prior art keywords
boundary mark
adjusted
image
patient
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710067635.7A
Other languages
English (en)
Other versions
CN106975163B (zh
Inventor
V·佩卡尔
D·贝斯特罗夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN106975163A publication Critical patent/CN106975163A/zh
Application granted granted Critical
Publication of CN106975163B publication Critical patent/CN106975163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2021Shape modification

Abstract

在描绘用于放射治疗规划的患者的医学图像中的解剖结构时,处理器(18)检测低分辨率图像(例如,MRI或低剂量CT)中的界标(24),并将所检测到的界标映射至所述解剖结构的参考轮廓中的参考界标(28)。经映射的界标促进了对参考轮廓的调整,以拟合所述解剖结构。对经调整的参考轮廓数据进行转换,并使用薄板样条将其应用于第二图像,并且将经调整的高分辨率图像用于放射治疗规划。

Description

用于图像引导治疗规划的自动解剖结构描绘
本申请是2010年03月02日提交的申请号为201080015576.5、名称为“用于图像引导治疗规划的自动解剖结构描绘”的发明专利申请的分案申请。
技术领域
本申请在医学成像系统方面尤其具有实用性。但是,要认识到,所描述的技术也可以应用到其他类型的成像系统、其他治疗规划系统和/或其他医学应用中。
背景技术
对解剖结构的描绘是诸如放射治疗规划(RTP)等的治疗规划中的先决条件。RTP中通常使用的主要成像模态是计算机断层摄影(CT)。最近,将磁共振成像(MRI)用于RTP得到了关注,因为与CT相比这一模态提供了更好的软组织对比度。
当前可以在市面上得到用于MR检查的自动扫描规划系统。这样的系统的一个示例是Philips SmartExamTM,其中,采集低分辨率侦察图像,执行患者特异性解剖界标的自动识别,基于所识别的界标以及由先前的采集记录的界标和取向信息估计诊断扫描中的切片的取向。
无论是在CT还是在MRI中,自动解剖结构描绘都是一项具有挑战性的任务。CT图像一般不提供良好的软组织对比度,从而难以得到可靠的器官边界判别。与CT相比,MR数据显示出了好得多的软组织分化,并且,在治疗规划中,MR数据的使用有利于实现对目标以及某些应用中的关键结构的更加精确的描绘。但是,由于所使用的各种不同的对比度导致了不可复现的灰度值分布,MRI数据的自动分割也很困难。
在本领域中存在未满足的对这样的系统和方法的需求,即,其促进图像引导治疗规划中的解剖结构的描绘、使用解剖界标来传递用于治疗规划的描绘等,从而克服了上述缺陷。
发明内容
根据一个方面,一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的系统包括处理器,所述处理器从成像设备接收患者体内的解剖结构的初始图像,并检测初始图像中的解剖界标。此外,所述处理器还将所检测到的解剖界标的位置与参考轮廓中对应于解剖结构的参考界标进行比较,将所检测到的解剖界标映射至参考界标,并基于经映射的界标对将参考轮廓调整成患者空间内的经调整的轮廓。所述处理器还使用所述经调整的轮廓调整所述患者图像中的解剖结构的轮廓,将经调整的患者图像存储至存储器,并向治疗规划部件提供所述经调整的患者图像。
根据另一方面,一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的方法包括检测初始图像中的解剖界标,将所检测到的解剖界标的位置与参考轮廓中对应于解剖结构的参考界标进行比较。所述方法还包括将所检测到的解剖界标映射至参考界标,并基于经映射的界标对将所述参考轮廓调整成患者空间内的经调整的轮廓。此外,所述方法还包括使用所述经调整的轮廓调整所述患者图像中的解剖结构的轮廓,以及至少部分基于经调整的患者图像生成治疗计划。
根据另一方面,一种为患者生成放射治疗计划的方法包括使用磁共振成像(MRI)设备和计算机断层摄影(CT)扫描器中的至少一个生成低分辨率图像以及检测低分辨率图像中的解剖结构上的界标。所述方法还包括将所检测到界标映射至存储器中存储的参考轮廓中的参考界标,并利用样条内插或近似来调整参考轮廓,以利用经映射的界标拟合解剖结构的轮廓。此外,所述方法包括将经调整的参考轮廓应用至解剖结构的高分辨率图像,以调整所述高分辨率图像,并至少部分基于经调整的高分辨率图像生成放射治疗计划。
根据另一方面,一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的装置,其包括:用于检测初始图像中的解剖界标的模块;用于将所检测到的解剖界标的位置与参考轮廓中对应于所述解剖结构的参考界标进行比较的模块;用于将所检测到的解剖界标映射至所述参考界标的模块;用于基于经映射的界标对将所述参考轮廓调整成患者空间内的经调整的轮廓的模块;用于使用所述经调整的轮廓调整所述患者图像中的所述解剖结构的轮廓的模块;以及用于至少部分基于经调整的患者图像生成治疗计划的模块。
一个优点在于提高用于治疗规划的图像质量。
另一个优点在于缩短了图像适配时间。
在阅读并理解了下述详细说明的情况下,本领域技术人员将认识到本创新的更多优点。
附图说明
附图的作用仅在于对各个方面进行图示,而不应被解释为构成限制。
图1示出了促进将轮廓或描绘从医学图像传播至用于治疗规划的高分辨率图像的系统;
图2示出了使用MRI设备生成的脑部图像的自动描绘的屏幕快照,可以在显示器上将其显示给用户;
图3示出了使用MRI设备生成的脑部图像的自动描绘的另一屏幕快照,可以在显示器上将其显示给用户;
图4示出了根据本文描述的一个或多个方面对患者解剖结构进行描绘以限定用于图像引导患者治疗的患者图像中的轮廓的方法;
图5示出了示例性医院系统,其包括多个成像设备,例如MR成像设备、CT扫描器、核(例如PET或SPECT)扫描器等,所述成像设备生成成像数据,由独立的或共享的重建处理器重建所述成像数据以生成3D图像表示。
具体实施方式
根据本文介绍的各种特征,描述了促进图像引导治疗规划中的解剖结构的描绘的系统和方法。所描述的框架基于由扫描规划软件(例如Philips SmartExamTM MR扫描规划系统)自动识别的患者特异性界标。使用这些界标以支持自动解剖结构描绘以及自适应治疗规划背景下的描绘的传播。
类似地,通过检测低剂量侦察扫描中的可复现界标来执行自动CT扫描规划。使用所检测到的侦察图像中的界标以通过产生接近的初始化来对自动分割算法加以引导,并且还通过基于界标的非刚性配准来将描绘传播至后续图像。
本文描述的系统和方法解决了为治疗规划提供可复现的解剖点界标的问题。例如,诸如Philips SmartExamTM的自动扫描规划算法通常对3D标准化低分辨率侦察图像进行操作,并且能够可靠地识别具有可复现的解剖点界标的形式的目标解剖结构。因而,不管对比度如何,由侦察图像获得的有关下层解剖结构的空间信息被传递到了全分辨率扫描,并被用于支持自动描绘。
图1示出了促进将轮廓或描绘从医学图像传播至用于治疗规划的高分辨率图像的系统10。例如,可以结合SmartExamTM启用的MR扫描器将系统10与一个或多个放射治疗规划工作站一起采用。而且,可以将传播轮廓或治疗计划的方法与在3D低剂量CT侦察图像中具有对应界标的CT图像一起使用。根据其他特征,系统10采用了多模态系统(例如,组合的CT-MR以及与诸如正电子发射断层摄影(PET)扫描器、单光子发射计算机断层摄影(SPECT扫描器)等的核成像系统组合的MR和/或CT。
系统10包括耦合至工作站16、处理器18和存储器20的MRI设备12和CT扫描器14中的一者和两者。所述处理器可以是工作站16的部分,或者可以是与多个工作站共享的资源。所述存储器存储用于执行各种任务以及执行本文描述的各种方法的计算机可执行指令,而所述处理器执行所述指令。
在一个实施例中,CT扫描器14生成3D低剂量侦察图像22,处理器18自动检测低剂量侦察图像中的可复现界标组24。将所检测到的界标输出(例如,使用医学数字成像通信(DICOM)数据交换协议26等)至处理器,从而与存储在存储器内的用于一个或多个轮廓的已知界标28进行比较。所述处理器执行比较算法30,以对所检测到的界标和已知界标进行比较,并从存储在存储器内的图表集32中检索一个或多个体轮廓。所述处理器使用所检测到的界标对所述轮廓进行转换,由此通过将所检测到的界标映射至用于所述轮廓的已知界标而对一个或多个预生成的轮廓进行调整。例如,所述处理器确定将引航图像界标24转换至覆盖图表集界标28的位置的转换。可以对图表集轮廓应用所确定的这一转换的反演,以将其转换为患者空间内的经调整的轮廓34。
在另一实施例中,MRI设备12生成低分辨率侦察图像22,处理器18自动检测低分辨率侦察图像中的可复现的界标组24。将所检测到的界标输出(例如,使用DICOM数据交换协议26等)至处理器,从而与存储在存储器内的用于一个或多个轮廓的已知软组织界标33进行比较。所述处理器执行比较算法30,以对所检测到的界标24和已知界标28进行比较,并从存储在存储器内的图表集32中检索一个或多个体轮廓。所述处理器使用所检测到的界标24对所述图表集轮廓进行转换,由此通过将所检测到的界标映射至用于所述轮廓的已知界标而将一个或多个预生成的图表集轮廓调整成经调整的轮廓34。
在任一方案(例如,CT或MRI)中,将图表集转换至从低剂量侦察图像导出的新的患者特异性数据集。也就是说,处理器执行转换,以将经调整的轮廓34移动到用于RTP的高分辨率图像36。此外,在同一患者的后续图像中使用经调整的轮廓和描绘,以便监测治疗进展并促进自适应治疗规划。
在一个实施例中,处理器18采用一个或多个薄板样条38以对轮廓进行转换,但是所描述的系统和方法不限于此。在F.L.Bookstein:Principal warps:Thin-plate splinesand the decomposition of deformations.IEEE Trans.Pattern.Anal.Mach Intell.11:567-586,1989中描述了薄板样条技术的示例。
在另一实施例中,工作站16包括显示器40,在所描述的方法和过程的各个阶段,在所述显示器上将低分辨率图像22、高分辨率图像36、所检测到的界标24、已知界标28、图表集32中的轮廓和/或经调整的轮廓34中的一个或多个呈现给用户。此外,所述工作站还包括输入设备42(例如,鼠标、键盘、方向触控板、指示笔等),用户通过所述输入设备将数据和/或指令输入至工作站,对界标进行调整,等等。
继续参考图1,图2和图3分别示出了使用MRI设备生成的脑部图像的自动描绘的屏幕快照60和70,可以在显示器40上将其显示给用户。图2示出了多个已知或参考界标28,图3示出了多个检测到的界标24。例如,采用图1的系统10以支持对有风险的结构的描绘,以及自动将来自原始数据集的完整描绘传播至后续图像。
如在Young等人:Automated Planning of MRI Neuro Scans.Proc.of SPIEMedical Imaging,San Diego,CA,USA(2006)61441M–1–61441M–8中讨论的,可将诸如SmartExamTM的解剖结构识别软件用于很多型号的Philips MR扫描器中的脑部检查。作为所述解剖结构识别软件的输出,识别或检测可复现的解剖界标组24。可以使用标准的DICOM数据交换协议26输出所述界标的位置,并且所述界标的位置可以被放射治疗规划工作站16的解剖结构描绘模块(未示出)或者任何独立的自动描绘软件所使用。
根据一个实施例,用户手动描绘参考数据集中的感兴趣结构,对于所述感兴趣结构而言,可以得到界标位置。之后,例如,使用薄板样条等将这些已知界标28与特定患者数据集中的检测界标24进行配准。将所得到的转换应用于参考数据集中的解剖结构,从而将其传递至患者数据集(例如,高分辨率患者图像等当中的)。用户可以使用其他的自动方法获得提高的精确度,或者对所传递的描绘进行手动微调以将其拟合至患者图像。
在相关实施例中,在自适应放射治疗规划的背景下将所述描绘传播至同一患者的后续图像。再一次,将原始数据集中的检测界标24与参考数据集中的已知界标28进行配准,并将所得到的转换应用于原始患者图像中的可用描绘。由于在这种情况下存在少得多的解剖结构可变性,因而在通过界标给定感兴趣区域的最佳覆盖范围的情况下所述方法只需要最少的手动调整。
图4示出了根据本文描述的一个或多个方面对患者解剖结构进行描绘以限定用于图像引导患者治疗的患者图像中的轮廓的方法。在80中,生成患者或患者局部的低分辨率图像。在一个实施例中,所述图像是低剂量CT图像。在另一实施例中,所述图像是低分辨率MR图像。在82中,检测患者图像中的界标。在84中,输出检测界标24(例如,使用DICOM数据传输协议26等),并将其与解剖结构的预生成图表集32中的用于轮廓的已知界标26进行比较。如果初始患者图像是低剂量CT图像,那么将所检测到的界标与已知的硬结构(例如,骨骼等)界标进行比较。如果初始患者图像是低分辨率MR图像,那么将所检测到的界标与软组织参考界标进行比较。
在86中,从参考轮廓的图表集检索包括参考界标的参考轮廓,并通过将参考界标28映射至检测界标24而将参考轮廓调整(例如,使其翘曲、形态化(morphed)、适形)至患者图像。可以将经调整的轮廓存储到存储器中,以供以后调用。在88中,对经调整的轮廓进行转换(例如,使用薄板样条或一些其他适当的内插技术),以拟合高分辨率患者图像,所述高分辨率患者图像适于在例如放射治疗规划程序的治疗规划程序中使用。此外,用户可以使用已知技术对经适配的轮廓进行微调。
要认识到,可以使用任何成像模态生成所述高分辨率图像,例如使用CT、MRI、正电子发射断层摄影(PET)、单光子发射计算机断层摄影(SPECT)、x射线、上述选项的变体等。在这样的方案当中,处理器提供具有用于映射至检测界标的模态特异性界标的轮廓。图表集32兼备硬结构界标、软组织界标、PET界标、SPECT界标、x射线界标等,因而CT、MR、PET、SPECT、x射线以及其他图像和界标中的任何一者或全部均能够映射至图表集轮廓或者与其配准。
在另一实施例中,除了参考轮廓的图表集之外或者作为其的替代,在第一成像会话期间获得患者的多个初始界标。之后,将初始界标用于后续成像会话中的比较,以评估治疗进展等。
参考图5,示例性医院系统150可以包括多个成像设备,例如MR成像设备12、CT扫描器14、核(例如PET或SPECT)扫描器151、上述选项的组合(例如,多模态系统)等,所述成像设备生成成像数据,由独立的或者共享的重建处理器152重建所述成像数据以生成3D图像表示。通过网络154将图像表示传送至中央存储器156或本地存储器158。
在与网络连接的工作站16处,操作者使用用户接口170以将选定项目(例如,低分辨率3D图像或轮廓等)移动至中央存储器156和本地存储器158或者在中央存储器156和本地存储器158之间移动选定项目。视频处理器166在显示器40的第一视口1721内显示选定项目。在第二视口1722内显示患者图像(例如,由MR成像器12、CT扫描器14和核扫描器151之一生成的高分辨率图像)。第三视口1723可以显示经调整的轮廓和高分辨率图像的重叠。例如,可以允许用户将在患者的低分辨率(例如,CT或MR)图像中检测到的界标配准至从图表集中选出的参考轮廓中的参考界标,从而使参考轮廓适形于患者解剖结构。例如,操作者通过接口170选择参考轮廓中对应于低分辨率图像中的检测界标的参考界标(例如,使用鼠标、指示笔或其他适当的用户输入设备)。或者,可以通过由处理器18和/或166执行的存储在存储器20中的程序使参考界标核检测界标自动对准。之后,用户接口170中的处理器18(图1)执行翘曲或形态化算法,以利用对准的界标使参考轮廓的形状适形于患者解剖结构的形状。此外,处理器18执行转换(例如,使用薄板样条或一些其他适当的内插技术),以将经调整或适形的轮廓映射至患者的高分辨率图像。
一旦所述高分辨率图像包含了经调整的轮廓的信息,就将其提供给治疗规划部件180,以用于治疗规划(例如,放射治疗规划、超声治疗规划、物理治疗规划、近距治疗规划、高强度聚焦超声(HIFU)、MRI引导治疗、粒子束规划、消融规划等)。任选地,将治疗设备182耦合至治疗规划设备180,以执行由其生成的一个或多个治疗计划。
在另一实施例中,视口1723中显示的重叠是可调整的,以设置低分辨率图像和/或轮廓相对于高分辨率图像的权重,反之亦然。例如,可以调整滑动杆或旋钮(未示出)以改变视口1721和1722中的图像的权重,所述滑动杆或旋钮可以是机械的或呈现在显示器168上并利用输入设备进行操纵。在一个示例中,操作者可以将视口1723中的图像,从纯粹高分辨率图像数据(视口1722中所示的),经过高分辨率和低分辨率图像数据的多个和/或连续组合,调整成纯粹低分辨率图像数据(视口1721中所示的)。例如,可以采取离散或连续的方式将高分辨率图像数据与低分辨率图像数据的比值从0:1调整到1:0。作为另一选项,可以以灰度级显示高分辨率图像数据,并且使低分辨率图像数据着色,反之亦然。
一旦用户向中央存储器156下载和/或安装了图表集或轮廓库,就可以通过网络访问所述图表集,以促进向高分辨率图像的轮廓调整转换,以及本文所述的其他方面。根据这一示例,多个工作站或用户接口可以根据特定患者或各种治疗规划程序的成像会话的需要而访问轮廓库或图表集。

Claims (20)

1.一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的系统,包括:
处理器(18),其:
从成像设备(12,14)接收患者体内的解剖结构的初始图像(22);
检测所述初始图像中的解剖界标(24);
将所检测到的解剖界标(24)的位置与参考轮廓中对应于所述解剖结构的参考界标(28)进行比较;
将所检测到的解剖界标(24)映射至所述参考界标(28);
基于经映射的界标对将所述参考轮廓调整成患者空间内的经调整的轮廓(34);
使用所述经调整的轮廓调整所述患者图像中的所述解剖结构的轮廓;
将经调整的患者图像(36)存储至存储器(20);以及
将所述经调整的患者图像(36)提供给治疗规划部件(180)。
2.根据权利要求1所述的系统,其中,所述参考轮廓使用薄板样条(38)进行调整。
3.根据前述权利要求中任一项所述的系统,其中,所述初始图像是由CT扫描器(14)生成的低剂量CT图像,并且其中,所检测到的界标(24)是硬组织界标。
4.根据前述权利要求中任一项所述的系统,其中,所述初始图像(22)是由MR成像(MRI)设备(12)生成的低分辨率磁共振(MR)图像,并且其中,所检测到的界标(24)是软组织界标。
5.根据前述权利要求中任一项所述的系统,其中,检测到的界标的位置信息使用DICOM数据传输协议(26)进行输出。
6.根据前述权利要求中任一项所述的系统,其中,所述治疗规划部件(180)至少部分基于所述经调整的患者图像中包含的信息生成放射治疗计划、超声治疗计划、粒子束治疗计划、消融治疗计划以及物理治疗计划中的至少一个。
7.根据前述权利要求中任一项所述的系统,其中,所述初始图像(22)和所述患者图像是使用不同的成像模态生成的。
8.根据权利要求7所述的系统,其中,所述初始图像(22)是使用计算机断层摄影(CT)扫描器和磁共振成像(MRI)设备(12)中的至少一个生成的,并且其中,所述患者图像是使用所述CT扫描器(14)、所述MRI设备(12)和核成像设备(151)中的至少一个生成的。
9.一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的方法,包括:
检测初始图像中的解剖界标(24);
将所检测到的解剖界标(24)的位置与参考轮廓中对应于所述解剖结构的参考界标(28)进行比较;
将所检测到的解剖界标(24)映射至所述参考界标(28);
基于经映射的界标对将所述参考轮廓调整成患者空间内的经调整的轮廓(34);
使用所述经调整的轮廓调整所述患者图像中的所述解剖结构的轮廓;以及
至少部分基于经调整的患者图像(36)生成治疗计划。
10.根据权利要求9所述的方法,还包括如下中的至少一个:
在显示器(40)上显示所述初始图像和所述患者图像中的至少一个;
将所述初始图像和所述患者图像中的至少一个存储至存储器(20);以及
将所述治疗计划存储至所述存储器(20)。
11.根据权利要求9-10中任一项所述的方法,还包括:
使用薄板样条(38)调整所述参考轮廓。
12.根据权利要求9-11中任一项所述的方法,还包括:
利用CT扫描器(14)生成所述初始图像,其中,所检测到的界标(24)是硬组织界标。
13.根据权利要求9-12中任一项所述的方法,还包括:
利用MRI设备(12)生成所述初始图像(22),其中,所检测到的界标(24)是软组织界标(33)。
14.根据权利要求9-13中任一项所述的方法,还包括:
至少部分基于经调整的患者图像中包含的信息生成放射治疗计划、超声治疗计划、粒子束治疗计划、消融治疗计划以及物理治疗计划中的至少一个。
15.一种对患者解剖特征进行描绘以限定用于图像引导治疗规划的患者图像中的轮廓的装置,包括:
用于检测初始图像中的解剖界标(24)的模块;
用于将所检测到的解剖界标(24)的位置与参考轮廓中对应于所述解剖结构的参考界标(28)进行比较的模块;
用于将所检测到的解剖界标(24)映射至所述参考界标(28)的模块;
用于基于经映射的界标对将所述参考轮廓调整成患者空间内的经调整的轮廓(34)的模块;
用于使用所述经调整的轮廓调整所述患者图像中的所述解剖结构的轮廓的模块;以及
用于至少部分基于经调整的患者图像(36)生成治疗计划的模块。
16.根据权利要求15所述的装置,还包括如下中的至少一个:
用于在显示器(40)上显示所述初始图像和所述患者图像中的至少一个的模块;
用于将所述初始图像和所述患者图像中的至少一个存储至存储器(20)的模块;以及
用于将所述治疗计划存储至所述存储器(20)的模块。
17.根据权利要求15-16中任一项所述的装置,还包括:
用于使用薄板样条(38)调整所述参考轮廓的模块。
18.根据权利要求15-17中任一项所述的装置,还包括:
用于利用CT扫描器(14)生成所述初始图像的模块,其中,所检测到的界标(24)是硬组织界标。
19.根据权利要求15-18中任一项所述的装置,还包括:
用于利用MRI设备(12)生成所述初始图像(22)的模块,其中,所检测到的界标(24)是软组织界标(33)。
20.根据权利要求15-19中任一项所述的装置,还包括:
用于至少部分基于经调整的患者图像中包含的信息生成放射治疗计划、超声治疗计划、粒子束治疗计划、消融治疗计划以及物理治疗计划中的至少一个的模块。
CN201710067635.7A 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘 Active CN106975163B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16592309P 2009-04-02 2009-04-02
US61/165,923 2009-04-02
CN2010800155765A CN102369529A (zh) 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2010800155765A Division CN102369529A (zh) 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘

Publications (2)

Publication Number Publication Date
CN106975163A true CN106975163A (zh) 2017-07-25
CN106975163B CN106975163B (zh) 2020-11-24

Family

ID=42799693

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010800155765A Pending CN102369529A (zh) 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘
CN201710067635.7A Active CN106975163B (zh) 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010800155765A Pending CN102369529A (zh) 2009-04-02 2010-03-02 用于图像引导治疗规划的自动解剖结构描绘

Country Status (7)

Country Link
US (2) US9724538B2 (zh)
EP (1) EP2414976B1 (zh)
JP (1) JP5759446B2 (zh)
CN (2) CN102369529A (zh)
BR (1) BRPI1006340A2 (zh)
RU (1) RU2541887C2 (zh)
WO (1) WO2010113050A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE503419T1 (de) 2004-02-20 2011-04-15 Univ Florida System zur verabreichung von konformer strahlungstherapie unter gleichzeitiger abbildung von weichem gewebe
US8617171B2 (en) * 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
WO2012017427A1 (en) * 2010-08-04 2012-02-09 P-Cure Ltd. Teletherapy control system and method
WO2012123861A1 (en) 2011-03-15 2012-09-20 Koninklijke Philips Electronics N.V. Correlated image mapping pointer
EP2727030A4 (en) * 2011-06-29 2015-05-27 Univ Johns Hopkins SYSTEM FOR A THREE-DIMENSIONAL INTERFACE AND DATABASE
WO2013040693A1 (en) * 2011-09-23 2013-03-28 Hamid Reza Tizhoosh Computer system and method for atlas-based consensual and consistent contouring of medical images
NL2009885C2 (en) * 2011-11-30 2014-12-09 Gen Electric System and method for automated landmarking.
EP2650691A1 (en) 2012-04-12 2013-10-16 Koninklijke Philips N.V. Coordinate transformation of graphical objects registered to a magnetic resonance image
US10561861B2 (en) 2012-05-02 2020-02-18 Viewray Technologies, Inc. Videographic display of real-time medical treatment
CN103892854B (zh) * 2012-12-28 2018-10-09 上海联影医疗科技有限公司 数字医疗图像处理方法和装置
EP2987143B1 (en) 2013-04-17 2019-10-09 Koninklijke Philips N.V. Delineation and/or correction of a smooth stiff line in connection with an independent background image
US9818200B2 (en) 2013-11-14 2017-11-14 Toshiba Medical Systems Corporation Apparatus and method for multi-atlas based segmentation of medical image data
WO2015124388A1 (en) * 2014-02-19 2015-08-27 Koninklijke Philips N.V. Motion adaptive visualization in medical 4d imaging
JP6258084B2 (ja) * 2014-03-12 2018-01-10 東芝メディカルシステムズ株式会社 医用画像表示装置、医用画像表示システムおよび医用画像表示プログラム
KR20150108701A (ko) * 2014-03-18 2015-09-30 삼성전자주식회사 의료 영상 내 해부학적 요소 시각화 시스템 및 방법
GB201406134D0 (en) * 2014-04-04 2014-05-21 Elekta Ab Image-guided radiation therapy
US9740710B2 (en) * 2014-09-02 2017-08-22 Elekta Inc. Systems and methods for segmenting medical images based on anatomical landmark-based features
WO2016120086A1 (en) * 2015-01-30 2016-08-04 Koninklijke Philips N.V. Automated scan planning for follow-up magnetic resonance imaging
EP3181049B1 (en) * 2015-12-18 2018-02-14 RaySearch Laboratories AB Radiotherapy method, computer program and computer system
US10262424B2 (en) * 2015-12-18 2019-04-16 The Johns Hopkins University Method for deformable 3D-2D registration using multiple locally rigid registrations
EP3423153B1 (en) 2016-03-02 2021-05-19 ViewRay Technologies, Inc. Particle therapy with magnetic resonance imaging
JP6849356B2 (ja) * 2016-09-13 2021-03-24 キヤノンメディカルシステムズ株式会社 医用画像診断装置
EP3516621B1 (en) * 2016-09-21 2020-05-27 Koninklijke Philips N.V. Apparatus for adaptive contouring of a body part
CN110382049A (zh) 2016-12-13 2019-10-25 优瑞技术公司 放射治疗系统和方法
CN108697402B (zh) * 2017-01-24 2022-05-31 博医来股份公司 在三维图像中确定深度脑刺激电极的旋转方位
EP3375485A1 (en) 2017-03-17 2018-09-19 Koninklijke Philips N.V. Image-guided radiation therapy
CN110709943B (zh) * 2017-06-16 2023-11-28 珀金埃尔默细胞科技德国公司 使用沿骨骼的人造界标进行三维图像的自动失真校正和/或共同配准的系统和方法
CN109620407B (zh) * 2017-10-06 2024-02-06 皇家飞利浦有限公司 治疗轨迹引导系统
EP3486674A1 (en) * 2017-11-17 2019-05-22 Koninklijke Philips N.V. Artificial intelligence-enabled localization of anatomical landmarks
WO2019112880A1 (en) 2017-12-06 2019-06-13 Viewray Technologies, Inc. Optimization of multimodal radiotherapy
EP3564906A1 (de) * 2018-05-04 2019-11-06 Siemens Healthcare GmbH Verfahren zur erzeugung von bilddaten bei einem computertomographiegerät, bilderzeugungsrechner, computertomographiegerät, computerprogrammprodukt und computerlesbarer datenträger
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
US10678521B1 (en) 2018-12-05 2020-06-09 Bank Of America Corporation System for image segmentation, transformation and user interface component construction
US10635413B1 (en) 2018-12-05 2020-04-28 Bank Of America Corporation System for transforming using interface image segments and constructing user interface objects
US11080849B2 (en) * 2018-12-21 2021-08-03 General Electric Company Systems and methods for deep learning based automated spine registration and label propagation
CN110075430B (zh) * 2019-04-28 2020-10-02 南京大学 一种基于信息熵的超声空化实时监测方法及系统
EP3799784A1 (en) 2019-10-03 2021-04-07 Koninklijke Philips N.V. Imaging-based reflex measurements for sedation depth monitoring
US11457883B1 (en) 2021-04-09 2022-10-04 Pulmera, Inc. Medical imaging systems and associated devices and methods
WO2023004303A1 (en) * 2021-07-20 2023-01-26 Pulmera, Inc. Image guidance for medical procedures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775573A1 (de) * 2005-10-13 2007-04-18 Evotec Technologies GmbH Verfahren zur Detektion von Konturen in biologischen Zellen
WO2007133932A2 (en) * 2006-05-11 2007-11-22 Koninklijke Philips Electronics, N.V. Deformable registration of images for image guided radiation therapy
CN101226589A (zh) * 2007-01-18 2008-07-23 中国科学院自动化研究所 基于薄板样条形变模型的活体指纹检测方法
CN101228535A (zh) * 2005-07-28 2008-07-23 微软公司 图像混合
WO2008155738A2 (en) * 2007-06-21 2008-12-24 Koninklijke Philips Electronics N.V. Adjusting acquisition protocols for dynamic medical imaging using dynamic models

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946425A (en) * 1996-06-03 1999-08-31 Massachusetts Institute Of Technology Method and apparatus for automatic alingment of volumetric images containing common subject matter
RU2233118C1 (ru) * 2003-04-18 2004-07-27 Мишкинис Александр Борисович Способ ретроспективного анализа рентгеновских снимков легких
RU2298887C2 (ru) * 2004-04-12 2007-05-10 Автономная некоммерческая организация "Центральный научно-исследовательский и опытно-конструкторский институт "Центр перспективных исследований" (АНО ЦНИОКИ ЦПИ) Способ получения трехмерных рентгеновских изображений
WO2006089112A2 (en) 2005-02-17 2006-08-24 University Of Florida Research Foundation, Inc. Systems and methods for planning medical procedures and designing medical devices based on anatomical scan deformations
DE102005059210B4 (de) * 2005-12-12 2008-03-20 Siemens Ag Radiotherapeutische Vorrichtung
US8150498B2 (en) 2006-09-08 2012-04-03 Medtronic, Inc. System for identification of anatomical landmarks
EP2171686B1 (en) 2007-07-27 2014-01-01 Koninklijke Philips N.V. Interactive atlas to image registration
EP2252204B1 (en) * 2008-03-07 2017-10-04 Koninklijke Philips N.V. Ct surrogate by auto-segmentation of magnetic resonance images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228535A (zh) * 2005-07-28 2008-07-23 微软公司 图像混合
EP1775573A1 (de) * 2005-10-13 2007-04-18 Evotec Technologies GmbH Verfahren zur Detektion von Konturen in biologischen Zellen
WO2007133932A2 (en) * 2006-05-11 2007-11-22 Koninklijke Philips Electronics, N.V. Deformable registration of images for image guided radiation therapy
CN101226589A (zh) * 2007-01-18 2008-07-23 中国科学院自动化研究所 基于薄板样条形变模型的活体指纹检测方法
WO2008155738A2 (en) * 2007-06-21 2008-12-24 Koninklijke Philips Electronics N.V. Adjusting acquisition protocols for dynamic medical imaging using dynamic models

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRED L. BOOKSTEIN: "Principal Warps:Thin-Plate Splines and the Decomposition of Deformations", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
HE WANG ET AL.: "Performance Evaluation of Automatic Anatomy Segmentation Algorithm on Repeat or Four-Dimensional Computed Tomography Images Using Deformable Image Registration Method", 《INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS》 *

Also Published As

Publication number Publication date
CN102369529A (zh) 2012-03-07
WO2010113050A2 (en) 2010-10-07
JP2012522557A (ja) 2012-09-27
CN106975163B (zh) 2020-11-24
EP2414976B1 (en) 2018-12-26
RU2011144380A (ru) 2013-05-10
JP5759446B2 (ja) 2015-08-05
WO2010113050A3 (en) 2010-12-02
BRPI1006340A2 (pt) 2017-01-10
US20120035463A1 (en) 2012-02-09
EP2414976A2 (en) 2012-02-08
RU2541887C2 (ru) 2015-02-20
US9724538B2 (en) 2017-08-08
US20170296841A1 (en) 2017-10-19
US10946214B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN106975163A (zh) 用于图像引导治疗规划的自动解剖结构描绘
Dinkla et al. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch‐based three‐dimensional convolutional neural network
US10315049B2 (en) System and method for monitoring structural movements throughout radiation therapy
US10470733B2 (en) X-ray CT device and medical information management device
US8787648B2 (en) CT surrogate by auto-segmentation of magnetic resonance images
JP6208535B2 (ja) 放射線治療装置およびシステムおよび方法
US7817836B2 (en) Methods for volumetric contouring with expert guidance
US20080037843A1 (en) Image segmentation for DRR generation and image registration
US7466849B2 (en) Method and apparatus for acquisition and evaluation of image data of an examination subject
CN107072595A (zh) 基于多模态成像的自适应重计划
CN109567843A (zh) 一种成像扫描自动定位方法、装置、设备及介质
US9355454B2 (en) Automatic estimation of anatomical extents
CN109754369A (zh) 确定图像数据集的坐标系之间的变换
Baker Localization: conventional and CT simulation
JP2017202307A (ja) 医用画像診断装置及び医用情報管理装置
JP6956514B2 (ja) X線ct装置及び医用情報管理装置
CN110693513A (zh) 多模态医学系统的控制方法、系统及存储介质
Chu et al. Automatic 3D registration of CT-MR head and neck images with surface matching
US20240148351A1 (en) Image-based planning of tomographic scan
Vijayan ADVANCED INTRAOPERATIVE IMAGE REGISTRATION FOR PLANNING AND GUIDANCE OF ROBOT-ASSISTED SURGERY
JP2021171483A (ja) 治療支援装置及び治療支援プログラム
Pelizzari Medical imaging in IMRT planning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant