CN106972921A - The asymmetrical optical information safety system of double optical key is combined based on wavefront sensing - Google Patents
The asymmetrical optical information safety system of double optical key is combined based on wavefront sensing Download PDFInfo
- Publication number
- CN106972921A CN106972921A CN201710002772.2A CN201710002772A CN106972921A CN 106972921 A CN106972921 A CN 106972921A CN 201710002772 A CN201710002772 A CN 201710002772A CN 106972921 A CN106972921 A CN 106972921A
- Authority
- CN
- China
- Prior art keywords
- wavefront
- key
- aberration
- information security
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 75
- 230000004075 alteration Effects 0.000 claims abstract description 85
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 36
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000010365 information processing Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 8
- 238000005286 illumination Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Liquid Crystal (AREA)
Abstract
本发明涉及一种基于波前传感结合二重光学密钥的非对称光学信息安全系统,属于光学仪器技术领域。该系统主要包含像差密钥畸变波前生成模块、波前传感模块和相位编码加密模块。本发明结构紧凑、灵活,利用波前传感原理得到的理想点阵和畸变波前点阵构成非对称公钥密码体系大幅改善了传统对称密码系统的安全隐患,解密时必须同时知道公钥和私钥对波像差进行补偿,使用二重密码增强了密码系统的鲁棒性和对抗攻击算法的能力,并解决了密码系统密钥分发的问题,利用液晶空间光调制器分别代替像差密钥畸变波前生成模块的泽尼克次镜和随机相位板,可以实现对两种密钥的精确控制,使系统具有更好的控制灵活性,可广泛用于信息安全领域。
The invention relates to an asymmetric optical information security system based on wavefront sensing combined with a double optical key, belonging to the technical field of optical instruments. The system mainly includes an aberration key distortion wavefront generation module, a wavefront sensing module and a phase encoding encryption module. The invention has a compact and flexible structure, and uses the ideal lattice obtained by the wavefront sensing principle and the distorted wavefront lattice to form an asymmetric public key cryptosystem, which greatly improves the potential safety hazards of the traditional symmetric cryptosystem. When decrypting, the public key and the The private key compensates the wave aberration, and the use of double passwords enhances the robustness of the cryptosystem and the ability to resist attack algorithms, and solves the problem of key distribution in the cryptosystem, and uses liquid crystal spatial light modulators to replace aberration encryption The Zernike sub-mirror and random phase plate of the key distortion wavefront generation module can realize the precise control of the two keys, so that the system has better control flexibility and can be widely used in the field of information security.
Description
技术领域technical field
本发明属于光学仪器技术领域,涉及一种基于波前传感结合二重光学密钥的非对称光学信息安全系统,特别适用于光学加密、光学信息隐藏和光学认证等信息安全领域。The invention belongs to the technical field of optical instruments, and relates to an asymmetric optical information security system based on wavefront sensing combined with a double optical key, and is particularly suitable for information security fields such as optical encryption, optical information hiding, and optical authentication.
背景技术Background technique
随着全球互联网的迅猛发展和社会活动网络化程度的日益加深,信息安全技术日益重要。自上世纪九十年代以来,基于光学理论与方法的信息安全技术在国际上逐渐发展成为新一代信息安全领域的研究热点。与传统基于数学的信息加密方法相比,光学系统独有的并行数据处理能力对于处理图像视频等二维或多维大量数据时能够提供更快的速度,实现大容量信息的高速处理。同时光学信息具有多维度,包括波长、振幅、相位、频率和偏振状态等,因而光学理论中适用于信息安全的方法丰富多样,不同维度均可作为安全密钥的一部分,整个信息安全系统具有极大的自由度和密钥空间,光学信息安全技术用于有关信息加密、信息隐藏、信息认证和信息防伪等信息安全领域具有独特的优势。With the rapid development of the global Internet and the deepening of the networking of social activities, information security technology is becoming increasingly important. Since the 1990s, information security technology based on optical theory and methods has gradually developed into a new generation of research hotspots in the field of information security. Compared with the traditional mathematics-based information encryption method, the unique parallel data processing capability of the optical system can provide faster speed for processing large amounts of two-dimensional or multi-dimensional data such as images and videos, and realize high-speed processing of large-capacity information. At the same time, optical information has multiple dimensions, including wavelength, amplitude, phase, frequency, and polarization state, etc. Therefore, there are various methods applicable to information security in optical theory, and different dimensions can be used as part of the security key. The entire information security system has extremely high With a large degree of freedom and key space, optical information security technology has unique advantages in information security fields such as information encryption, information hiding, information authentication, and information anti-counterfeiting.
国内与本发明相似的专利“有基于虚拟波前编码的非对称加解密方法及装置”,专利号为200610014905.X,该专利同样利用波前传感原理构建公钥密码系统,但加密前需要对待加密的原始图像进行特定的波前编码预处理,波前传感的非规则点阵主要是由波前编码处理方式决定,编码方式需要人为精心设计设计,过程较为繁琐且波前编码后的待加密原始图像不可重复使用,系统灵活性交叉。此外,该专利虽利用了波前传感的光学模型,但整个系统都是利用基于电子电路的数字处理模块去模拟光学信息处理过程,即虚拟光学过程,并没有利用到实际光学系统进行光信息处理,虽与计算机网络兼容,整个过程加密-解密的速度和效果主要还是更加依赖于硬件性能,并没有考虑到光学空间传输与处理的真实情况。A domestic patent similar to the present invention "has an asymmetric encryption and decryption method and device based on virtual wavefront encoding", the patent number is 200610014905. Specific wavefront coding preprocessing is performed on the original image to be encrypted. The irregular lattice of wavefront sensing is mainly determined by the wavefront coding processing method. The coding method needs to be carefully designed by humans. The original image to be encrypted cannot be reused, and the system flexibility is crossed. In addition, although the patent uses the optical model of wavefront sensing, the entire system uses digital processing modules based on electronic circuits to simulate the optical information processing process, that is, the virtual optical process, and does not use the actual optical system for optical information processing. Although the processing is compatible with the computer network, the speed and effect of the encryption-decryption of the whole process mainly depend on the performance of the hardware, and do not take into account the real situation of optical space transmission and processing.
本发明设计的非对称光学信息安全系统完全通过纯光学光路实现,设计完整的基于波前传感结合像差密钥与双随机相位编码的非对称纯光学信息安全系统光学装置,辅助电控的液晶空间光调制器增加系统处理的灵活性和控制的精确性,系统的加密用到了像差密钥和随机相位密钥,两种密钥分别作为非对称密码和对称密码共同作用于同一待加密信息上,新型混合密码系统在继承两种密码优势的同时改善了对称密码系统应对攻击时的隐患。系统把实际光学成像系统的像差加以分析和利用,定量引入不同类型、不同大小的像差量作为像差密钥,像差密钥大小由无像差时的理想波前和有像差时的畸变波前共同决定,因为可将像差密钥的波像差量作为引入到非对称公钥密码体系,将波前传感得到的理想波前点阵和畸变波前点阵分别作为私钥和公钥,整个过程可由光学系统利用自适应光学原理主动控制,添加不同加密像差密钥的同时,实时生成对应像差补偿的解密像差密钥,加密-解密密钥对的生成和分发方便且迅捷,非对称像差密钥加密后的一重加密还需通过双随机相位编码系统进行二重加密,生成稳定的白噪声图像,有机地将非对称密钥和对称密钥同时引入到同一个密码系统中,进一步增强了系统的安全性。The asymmetric optical information security system designed by the present invention is completely realized through the pure optical optical path, and the complete design of the optical device of the asymmetric pure optical information security system based on wavefront sensing combined with aberration key and double random phase encoding, and auxiliary electronic control The liquid crystal spatial light modulator increases the flexibility of system processing and the accuracy of control. The encryption of the system uses the aberration key and the random phase key. In terms of information, while inheriting the advantages of the two ciphers, the new hybrid cryptography system improves the hidden dangers of the symmetric cryptography system when dealing with attacks. The system analyzes and utilizes the aberrations of the actual optical imaging system, and quantitatively introduces different types and sizes of aberrations as aberration keys. The wavefront distortion of the wavefront is jointly determined, because the wave aberration of the aberration key can be introduced into the asymmetric public key cryptosystem, and the ideal wavefront lattice and the distorted wavefront lattice obtained by wavefront sensing can be used as the private key respectively. Key and public key, the whole process can be actively controlled by the optical system using the principle of adaptive optics, while adding different encryption aberration keys, the decryption aberration key corresponding to the aberration compensation is generated in real time, the encryption-decryption key pair generation and The distribution is convenient and fast, and the first encryption after the asymmetric aberration key encryption needs to be double-encrypted through the double random phase encoding system to generate a stable white noise image, and the asymmetric key and the symmetric key are organically introduced into the In the same password system, the security of the system is further enhanced.
发明内容Contents of the invention
本发明的目的是探索实时主动控制式的新型光学信息安全系统,利用波前传感原理并结合像差密钥和双随机相位密钥二重加密,同时用于公钥-私钥体系的安全认真,实现纯光学方案结合液晶空间光调制器辅助控制的灵活、迅捷的光学信息安全系统。The purpose of the present invention is to explore a new type of real-time active control optical information security system, which uses the principle of wavefront sensing and combines aberration keys and double random phase keys for double encryption, and is used for the security of the public key-private key system at the same time Seriously, realize a flexible and fast optical information security system with pure optical scheme combined with auxiliary control of liquid crystal spatial light modulator.
本发明解决技术问题的具体方案是:The concrete scheme that the present invention solves technical problem is:
一种基于波前传感原理结合像差非对称密钥和随机相位对称密钥的混合光学信息安全系统,其特征在于:包括激光器光源(1)、光束扩束器(2)、准直透镜(3)、光焦度为正的球面反射镜(4)、液晶空间光调制器(SLM)(反射或透射)(5)、分束器(6)、微透镜阵列(7)、有分划线的CCD探测器(8)、傅里叶变换透镜(9)、两个相互独随机白噪声分布的随机相位掩模板(RPM)(或透射式液晶空间光调制器(TSLM))(10)、CCD探测器(11)和平面反射镜(12);包括像差密钥畸变波前生成模块、波前传感模块、相位编码加密模块:其中:相干光源由激光器光源(1)产生,作为该非对称信息安全系统的光源;光束扩束器(2)将细激光光束扩束成大发散角的发散光束,增大激光的照射区域;光焦度为正的准直透镜(3)将发散光束准直,生成平行平面波前;在透射式像差密钥畸变波前生成模块中,光束准之后的平行平面波直接通过透射式液晶空间光调制器(TSLM)(5)引入像差密钥生成畸变波前,准直光学系统和透射式液晶空间光调制器(TSLM)(5)作为光学信息安全系统的像差密钥生成器;在反射式像差密钥畸变波前生成模块中,系统的孔径光阑位于光焦度为正的球面反射镜主镜(4),与反射式液晶空间光调制器(RSLM)(5)次镜一起构成反射式无焦系统,二者构成的反射式无焦系统作为光学信息安全系统的像差密钥生成器,球面反射镜主镜(4)与反射式液晶空间光调制器(RSLM)(5)在X方向有一定的偏移量,避免中心遮拦;需要说明的是透射式和反射式像差密钥畸变波前生成模块可用作不同途径,透射式像差密钥畸变波前生成模块适合用于小口径光学系统中,其光束扩束比由光束扩束器(2)决定,故对光束扩束器(2)和光焦度为正的准直透镜(3)的口径大小和设计要求较高;而反射式像差密钥畸变波前生成模块适合用于大口径光学系统中,其光束扩束比主要由光焦度为正的球面反射镜主镜(4)与反射式液晶空间光调制器(RSLM)(5)次镜一起构成反射式无焦系统决定,对光束扩束器(2)和光焦度为正的准直透镜(3)的设计要求不高;分束器(6)用作光线分光,一路光束经过波前传感器作为波前传感测量光束,另一路光线作为主光束经过后置二重加密光学系统;微透镜阵列(7)是波前传感器的重要组成部分,将一个完整的激光波前在空间上分成许多微小的部分,每一部分都被相应的小透镜聚焦在焦平面上,一系列微透镜就可以得到由一系列焦点组成的平面,用于探测理想平面波前和引入了像差密钥后的畸变波前;有分划线的CCD探测器(8)是波前传感专用的特殊探测器,经过划分可以知道理想波前和畸变波前在探测器的相对位置,便于后续的波前重构;两块相同的傅里叶变换透镜(9)构成常规4f光学信息处理系统;两个相互独立分布为随机白噪声的随机相位掩模板(RPM)(10),分别置于第一块傅里叶变换透镜(9)的前焦面和频谱变换面作为双随机相位编码的重要组件,其中随机相位掩模板(RPM)可以用两个透射式液晶空间光调制器(TSLM)(10)模拟;经过非对称光学信息安全系统加密后的加密图像由CCD探测器(11)探测;平面反射镜(12)令分束器(6)分出的平行光发生偏振,用于减小实验光路体积使整个光学信息安全系统更加紧凑,便于装调。A hybrid optical information security system based on the principle of wavefront sensing combined with aberration asymmetric keys and random phase symmetric keys, characterized in that it includes a laser light source (1), a beam expander (2), and a collimating lens (3), spherical mirror with positive focal power (4), liquid crystal spatial light modulator (SLM) (reflection or transmission) (5), beam splitter (6), microlens array (7), split Scribed CCD detector (8), Fourier transform lens (9), two random phase masks (RPM) (or transmissive liquid crystal spatial light modulator (TSLM)) with independent random white noise distribution (10 ), a CCD detector (11) and a plane reflector (12); including an aberration key distortion wavefront generation module, a wavefront sensing module, and a phase encoding encryption module: wherein: the coherent light source is produced by a laser light source (1), As the light source of the asymmetric information security system; the beam expander (2) expands the thin laser beam into a divergent beam with a large divergence angle, increasing the irradiation area of the laser; the collimator lens (3) with positive refractive power Collimate the divergent light beams to generate parallel plane wavefronts; in the transmission type aberration key distortion wavefront generation module, the parallel plane waves after the beam collimation are directly introduced into the aberration density through the transmission type liquid crystal spatial light modulator (TSLM) (5) The key generates the distorted wavefront, the collimating optical system and the transmissive liquid crystal spatial light modulator (TSLM) (5) are used as the aberration key generator of the optical information security system; in the reflective aberration key distortion wavefront generation module , the aperture stop of the system is located in the primary mirror (4) of the spherical reflector with positive refractive power, which forms a reflective afocal system together with the secondary mirror of the reflective liquid crystal spatial light modulator (RSLM) (5). The reflective afocal system is used as the aberration key generator of the optical information security system, the spherical mirror main mirror (4) and the reflective liquid crystal spatial light modulator (RSLM) (5) have a certain offset in the X direction, Avoid central occlusion; it should be noted that the transmissive and reflective aberration-key distortion wavefront generation modules can be used in different ways, and the transmission-type aberration-key distortion wavefront generation module is suitable for small-aperture optical systems, and its beam The beam expansion ratio is determined by the beam expander (2), so the aperture size and design requirements for the beam expander (2) and the collimator lens (3) with positive refractive power are relatively high; while the reflective aberration key The distorted wavefront generation module is suitable for use in large-aperture optical systems, and its beam expansion ratio is mainly composed of a spherical mirror with a positive focal power (4) and a reflective liquid crystal spatial light modulator (RSLM) (5). Mirrors together form a reflective afocal system, so the requirements for the design of the beam expander (2) and the collimator lens (3) with positive refractive power are not high; The wavefront sensor is used as the wavefront sensing and measuring beam, and the other line of light is used as the main beam through the post-installed double encryption optical system; the microlens array (7) is an important part of the wavefront sensor, and a complete laser wavefront in space It is divided into many tiny parts, and each part is focused on the focal plane by a corresponding small lens. A series of micro lenses is A plane composed of a series of focal points can be obtained, which is used to detect the ideal plane wavefront and the distorted wavefront after introducing the aberration key; the CCD detector (8) with reticles is a special detector dedicated to wavefront sensing , the relative position of the ideal wavefront and the distorted wavefront in the detector can be known after division, which is convenient for subsequent wavefront reconstruction; two identical Fourier transform lenses (9) constitute a conventional 4f optical information processing system; two mutual The random phase mask (RPM) (10) independently distributed as random white noise is respectively placed on the front focal plane and spectral transformation plane of the first Fourier transform lens (9) as an important component of double random phase encoding, wherein The random phase mask (RPM) can be simulated by two transmissive liquid crystal spatial light modulators (TSLM) (10); the encrypted image encrypted by the asymmetric optical information security system is detected by the CCD detector (11); the flat mirror (12) Polarize the parallel light separated by the beam splitter (6), which is used to reduce the volume of the experimental light path to make the entire optical information security system more compact and easy to install and adjust.
优选的,所述光学信息安全系统像差密钥畸变波前生成模块,包括透射式与反射式两种设计结构,其中,透射式包括光束扩束器(2)、光焦度为正的准直透镜(3)和一个透射式液晶空间光调制器(TSLM)(5)构成的透射式扩束准直系统系统;其中,反射式包括一个光焦度为正的球面反射镜主镜(4)与一个反射式液晶空间光调制器(RSLM)(5)拟合的泽尼克自由曲面次镜,二者构成一个放大比为4倍的放射式两镜无焦光学系统,孔径光阑位于主镜处,为了消除中心遮拦,主镜和次镜相对于X方向有一定的偏移量。Preferably, the aberration key distortion wavefront generating module of the optical information security system includes two design structures of a transmission type and a reflection type, wherein the transmission type includes a beam expander (2), a quasi- A transmissive beam expander collimation system system composed of a straight lens (3) and a transmissive liquid crystal spatial light modulator (TSLM) (5); wherein, the reflective type includes a spherical mirror main mirror (4 ) and a Zernike freeform secondary mirror fitted with a reflective liquid crystal spatial light modulator (RSLM) (5), the two constitute a radial two-mirror afocal optical system with a magnification ratio of 4 times, and the aperture stop is located At the mirror, in order to eliminate the central occlusion, the primary mirror and the secondary mirror have a certain offset relative to the X direction.
优选的,所述光学信息安全系统像差密钥畸变波前生成模块,为了控制所添加的像差密钥类型、数量和大小,使用液晶空间光调制器(5)去拟合可表示不同像差的泽尼克多项式,使像差密钥畸变波前生成模块更加灵活和可调节,且泽尼克多项式有更多自由变量来增大像差密钥空间,同时补偿扩束准直系统中的残余像差。Preferably, the aberration key distortion wavefront generation module of the optical information security system, in order to control the type, quantity and size of the added aberration key, uses a liquid crystal spatial light modulator (5) to fit to represent different image Poor Zernike polynomials, making the aberration key distortion wavefront generation module more flexible and adjustable, and the Zernike polynomials have more free variables to increase the aberration key space while compensating the residual in the expanded beam collimation system aberrations.
优选的,所述光学信息安全系统像差密钥畸变波前生成模块为了用于公钥-私钥非对称密码体系中,必须使用波前传感模块波前探测得到的理想波前点阵和畸变波前点阵分别作为非对称密码体系中私钥和公钥,波前传感模块由微透镜阵列(7)和有分划线的CCD探测器(8)构成。Preferably, the aberration key distortion wavefront generating module of the optical information security system must use the ideal wavefront lattice obtained by the wavefront sensing module wavefront detection and The distorted wavefront lattice is respectively used as a private key and a public key in an asymmetric cryptosystem, and the wavefront sensing module is composed of a microlens array (7) and a CCD detector (8) with reticles.
优选的,所述相位编码加密模块作为二重加密,两块相同的傅里叶变换透镜(9)构成常规4f光学信息处理系统,可直接使用两个相互独随机白噪声分布的随机相位掩模板(RPM)或使用两个透射式液晶空间光调制器(TSLM)(10)模拟随机相位板,分别对信息空间域和频率域进行处理,经过平面反射镜(12)的两次反射后,使整个系统更加紧凑,系统体积大大减小,不仅可以在非对称密码加密的基础上引入对称密码作为二重加密,同时也对一重加密后的像差加密信息做处理,使其处理成为稳定的白噪声。Preferably, the phase encoding encryption module is used as a double encryption, and two identical Fourier transform lenses (9) constitute a conventional 4f optical information processing system, which can directly use two random phase masks with independent random white noise distribution (RPM) or use two transmissive liquid crystal spatial light modulators (TSLM) (10) to simulate a random phase plate, respectively process the information space domain and frequency domain, after two reflections by the plane mirror (12), make The whole system is more compact, and the volume of the system is greatly reduced. Not only can symmetric encryption be introduced as double encryption on the basis of asymmetric encryption, but also the aberration encryption information after the first encryption can be processed to make it a stable white noise.
本发明具有以下显著优点:本发明采用波前编码的方式对入射平面波进行调制,通过液晶空间光调制器拟合泽尼克多项式引入不同像差作为新型密钥使入射平面波变成畸变波前,然后通过波前传感模块进行波前传感,传感得到的理想波前和畸变波前分别作为公钥-私钥密码体系中的私钥和公钥,像差密钥成为一种特殊的加密-认证密钥,其中波前传感模块中的阵列透镜焦距和入射照明波长都对像差密钥有影响,进一步扩大了像差密钥的自由度。后组的双随机相位编码系统作为二次加密系统,同时完善了单一像差密钥的加密效果,使加密图像成为稳定白噪声图像。像差密钥畸变波前生成模块被设计成透射式和反射式两种,可分别适用于小口径和大口径光学信息安全系统。其中,透射式系统中像差密钥畸变波前生成模块与相位加密编码模块中的两个随机相位掩模可用三个透射式液晶空间光调制器(TSLM)实现;反射式系统中像差密钥畸变波前生成模块的反射次镜与相位加密编码模块中的两个随机相位掩模可分别用一个反射式液晶空间光调制器(RSLM)和两个透射式液晶空间光调制器(TSLM)实现,使整个加密系统完全通过光电系统实现,使信息安全系统操作更加灵活、迅捷,一方面克服了单一对称密码系统的安全性隐患,提高了密码系统的抗攻击能力,另一方面整个系统完全使用光学器件和电控光学器件实现,真正意义上实现了纯光学加密,且结合自适应光学的波前传感原理,是整个信息安全系统的加密-解密模块构成一个主动式的闭环,方便信息加密-解密的实时性处理,特别适用于对光图像、光信息的加密、隐藏、认证和识别等领域。The present invention has the following remarkable advantages: the present invention modulates the incident plane wave by means of wavefront encoding, and introduces different aberrations as a new key by fitting Zernike polynomials through a liquid crystal spatial light modulator to make the incident plane wave into a distorted wavefront, and then The wavefront is sensed by the wavefront sensing module, and the ideal wavefront and distorted wavefront obtained by sensing are respectively used as the private key and public key in the public key-private key cryptosystem, and the aberration key becomes a special encryption - The authentication key, where both the focal length of the array lens in the wavefront sensing module and the incident illumination wavelength have an effect on the aberration key, further expanding the degree of freedom of the aberration key. The double random phase encoding system in the latter group is used as a secondary encryption system, and at the same time it improves the encryption effect of the single aberration key, making the encrypted image a stable white noise image. The aberration key distortion wavefront generation module is designed into two types of transmission type and reflection type, which can be applied to small-aperture and large-aperture optical information security systems respectively. Among them, the two random phase masks in the aberration key distortion wavefront generation module and the phase encryption coding module in the transmissive system can be realized by three transmissive liquid crystal spatial light modulators (TSLM); A reflective liquid crystal spatial light modulator (RSLM) and two transmissive liquid crystal spatial light modulators (TSLM) can be used for the reflective secondary mirror of the key distortion wavefront generation module and the two random phase masks in the phase encryption coding module Realize that the entire encryption system is completely realized through the photoelectric system, making the operation of the information security system more flexible and fast. Realized by using optical devices and electronically controlled optical devices, pure optical encryption is realized in the true sense, and combined with the wavefront sensing principle of adaptive optics, the encryption-decryption module of the entire information security system forms an active closed loop, which is convenient for information The real-time processing of encryption-decryption is especially suitable for the fields of encryption, concealment, authentication and identification of optical images and optical information.
附图说明Description of drawings
图1a是本发明基于波前传感结合二重光学密钥的非对称光学信息安全系统的透射式光学系统结构图Figure 1a is a structural diagram of the transmissive optical system of the asymmetric optical information security system based on wavefront sensing combined with dual optical keys in the present invention
图1b是本发明基于波前传感结合二重光学密钥的非对称光学信息安全系统的反射式光学系统结构图Figure 1b is a structural diagram of the reflective optical system of the asymmetric optical information security system based on wavefront sensing combined with double optical keys in the present invention
图2a是通过仿真模拟波前传感得到的理想波前图和理想波前点阵图私钥。Figure 2a is the ideal wavefront diagram and the ideal wavefront lattice diagram private key obtained by simulating the simulated wavefront sensing.
图2b是通过仿真模拟波前传感得到的畸变波前图和畸变波前点阵图公钥。Fig. 2b is the distorted wavefront diagram and the public key of the distorted wavefront dot matrix obtained by simulating the wavefront sensing.
图3a是实验中所要加密的待加密明文。Figure 3a is the plaintext to be encrypted to be encrypted in the experiment.
图3b是子孔径焦距为100mm,波长为550nm时的像差密钥加密密文。Figure 3b is the aberration key encrypted ciphertext when the focal length of the subaperture is 100mm and the wavelength is 550nm.
图3c是子孔径焦距为100mm,波长为825nm时的像差密钥加密密文。Figure 3c is the aberration key encrypted ciphertext when the focal length of the subaperture is 100mm and the wavelength is 825nm.
图3d是子孔径焦距为100mm,波长为1100nm时的像差密钥加密密文。Figure 3d is the aberration key encrypted ciphertext when the focal length of the subaperture is 100mm and the wavelength is 1100nm.
图3e是子孔径焦距为200mm,波长为825nm时的像差密钥加密密文。Figure 3e is the aberration key encrypted ciphertext when the subaperture focal length is 200mm and the wavelength is 825nm.
图3f是子孔径焦距为300mm,波长为825nm时的像差密钥加密密文。Figure 3f is the aberration key encrypted ciphertext when the subaperture focal length is 300mm and the wavelength is 825nm.
图4a是实验中所要加密的待加密明文。Figure 4a is the plaintext to be encrypted to be encrypted in the experiment.
图4b是同时使用像差非对称密钥和双随机相位对称密钥时的加密结果。Figure 4b is the encryption result when aberration asymmetric key and double random phase symmetric key are used at the same time.
图4c是当两种解密密钥都错误时的解密结果。Figure 4c is the decryption result when both decryption keys are wrong.
图4d是当双随机相位密钥正确而像差密钥错误时的解密结果。Figure 4d is the decryption result when the double random phase key is correct and the aberration key is wrong.
图4e是当双随机相位密钥错误而像差密钥正确时的解密结果。Figure 4e is the decryption result when the double random phase key is wrong and the aberration key is correct.
图4f是当两种解密密钥都正确时的正确解密结果。Figure 4f is the correct decryption result when both decryption keys are correct.
其中图1中各元件分别如下:1激光器光源光束、2扩束器、3准直透镜、4光焦度为正的球面反射镜、5液晶空间光调制器(SLM)(反射或透射)、6分束器、7微透镜阵列、8有分划线的CCD探测器、9傅里叶变换透镜、10透射式液晶空间光调制器(TSLM)、11 CCD探测器和12平面反射镜。The components in Figure 1 are as follows: 1 laser light source beam, 2 beam expander, 3 collimator lens, 4 spherical mirror with positive power, 5 liquid crystal spatial light modulator (SLM) (reflection or transmission), 6 beam splitters, 7 microlens arrays, 8 CCD detectors with reticles, 9 Fourier transform lenses, 10 transmissive liquid crystal spatial light modulators (TSLM), 11 CCD detectors and 12 flat mirrors.
具体实施方式detailed description
为了更好的解释本发明,下面结合附图与实施例对分发明做进一步的详细说明:In order to better explain the present invention, below in conjunction with accompanying drawing and embodiment sub-invention is described in further detail:
图1是本发明基于波前传感结合二重光学密钥的非对称光学信息安全系统的光学系统结构图。该结构包括激光器光源(1)、光束扩束器(2)、准直透镜(3)、光焦度为正的球面反射镜(4)、液晶空间光调制器(RSLM)(5)、分束器(6)、微透镜阵列(7)、有分划线的CCD探测器(8)、傅里叶变换透镜(9)、两个相互独随机白噪声分布的随机相位掩模板(RPM)(或透射式液晶空间光调制器(TSLM))(10)、CCD探测器(11)和平面反射镜(12)。在光线传播方向上,各光学元件按顺序依次排列,孔径光阑位于光焦度为正的球面反射镜(4)上,同时为了避免无焦反射式系统中心遮拦的影响,光焦度为正的球面反射镜(4)和反射式液晶空间光调制器(RSLM)(5)构成的次镜反射镜之间在X方向有一定的偏移量。Fig. 1 is an optical system structure diagram of an asymmetric optical information security system based on wavefront sensing combined with a double optical key in the present invention. The structure includes a laser light source (1), a beam expander (2), a collimator lens (3), a spherical reflector with positive power (4), a liquid crystal spatial light modulator (RSLM) (5), and a Beamer (6), microlens array (7), CCD detector with reticle (8), Fourier transform lens (9), two random phase masks (RPM) with independent random white noise distribution (or a transmissive liquid crystal spatial light modulator (TSLM)) (10), a CCD detector (11) and a plane mirror (12). In the direction of light propagation, the optical elements are arranged in order, and the aperture stop is located on the spherical reflector (4) with positive power. There is a certain amount of offset in the X direction between the secondary mirror composed of the spherical reflector (4) and the reflective liquid crystal spatial light modulator (RSLM) (5).
首先从激光器(1)发出照明光线,经过光束扩束器(2)扩束之后再由准直透镜(3)准直,形成平行平面波照明,由此平行平面波照明的理想波前通过微透镜阵列(7)进行第一次波前传感,在有分划线的CCD探测器(8)上得到理想平面波前的理想点阵图,此理想点阵图为非对称像差密钥的私钥;再次,重复上述操作,对于透射式像差密钥畸变波前生成模块,从激光器(1)发出照明光线,直接经过光束扩束器(2)扩束之后再由准直透镜准直(3),形成平行平面波照明,然后入射平面波直接经过一个透射式液晶空间光调制器(TSLM)(5)拟合的泽尼克自由曲面次镜构成的像差密钥畸变波前生成模块引入像差密钥,得到含像差的入射畸变波前;对于反射式像差密钥畸变波前生成模块,从激光器(1)发出照明光线,直接经过光束扩束器(2)扩束之后再由准直透镜准直(3),形成平行平面波照明,然后入射平面波通过光焦度为正的球面反射镜主镜(4)与一个反射式液晶空间光调制器(RSLM)(5)拟合的泽尼克自由曲面次镜构成的像差密钥畸变波前生成模块,引入像差密钥,得到含像差的入射畸变波前,两种方式可分别适用于小口径和大口径光学信息安全系统。此畸变波前经过分束器(6),将畸变波前光束分光成两路,一路光束进入波前传感模块的微透镜阵列(7),在有分划线的CCD探测器(8)上得到含像差密钥的畸变波前点阵图,此畸变波前点阵图为非对称像差密钥的公钥,另一路光束由两个平面反射镜(12)反射两次后,偏折180°进入相位编码加密模块,首先经过位于第一块傅里叶变换透镜(9)前焦面的待加密输入图像和空间域上的第一块随机相位掩模板(RPM)(或透射式液晶空间光调制器(TSLM)),进行空间域的相位调制,然后经过第一块傅里叶变换透镜(9)发生傅里叶变换,在其后焦面上得到傅里叶变换频谱,再经过傅里叶变换频谱面上的第二块随机相位掩模板(RPM)(或透射式液晶空间光调制器(TSLM)),进行频率域的相位调制,最后通过第二块傅里叶变换透镜(9)在其后焦面上得到非对称像差密钥和对称双随机相位密钥二重加密后的密文信息,密文信息可通过相移干涉法或全息的方式记录。Firstly, the illumination light is emitted from the laser (1), expanded by the beam expander (2) and then collimated by the collimator lens (3) to form parallel plane wave illumination, so that the ideal wavefront of the parallel plane wave illumination passes through the microlens array (7) Carry out wavefront sensing for the first time, obtain the ideal lattice pattern of ideal plane wavefront on the CCD detector (8) that divides line, this ideal lattice pattern is the private key of asymmetrical aberration key ; Again, repeat the above operation, for the transmissive aberration key distortion wavefront generation module, the illuminating light is sent from the laser (1), and is collimated by the collimating lens after the beam expander (2) expands the beam directly (3 ), to form parallel plane wave illumination, and then the incident plane wave directly passes through a transmissive liquid crystal spatial light modulator (TSLM) (5) to introduce the aberration key distortion wavefront generation module composed of a Zernike freeform surface secondary mirror key to obtain the incident distorted wavefront with aberration; for the reflective aberration key distorted wavefront generation module, the illumination light is emitted from the laser (1), and the beam expands directly through the beam expander (2) and then the beam is expanded by the collimator The lens is collimated (3) to form a parallel plane wave illumination, and then the incident plane wave passes through a positive spherical reflector with a positive power. The main mirror (4) is fitted with a reflective liquid crystal spatial light modulator (RSLM) (5). The aberration key distortion wavefront generation module composed of free-form surface secondary mirrors introduces the aberration key to obtain the incident distortion wavefront with aberrations. The two methods can be applied to small-aperture and large-aperture optical information security systems respectively. The distorted wavefront passes through the beam splitter (6), which splits the distorted wavefront beam into two beams, and one beam enters the microlens array (7) of the wavefront sensing module, and then passes through the CCD detector (8) with reticles. Obtain the distorted wavefront lattice diagram containing the aberration key, this distorted wavefront lattice diagram is the public key of the asymmetric aberration key, after the other beam is reflected twice by two plane mirrors (12), Deflection 180° enters the phase encoding encryption module, first passes through the input image to be encrypted at the front focal plane of the first Fourier transform lens (9) and the first random phase mask (RPM) (or transmission) on the space domain Type liquid crystal spatial light modulator (TSLM)), carry out the phase modulation in the space domain, then undergo Fourier transform through the first Fourier transform lens (9), and get the Fourier transform spectrum on its rear focal plane, Then through the second random phase mask (RPM) (or transmissive liquid crystal spatial light modulator (TSLM)) on the Fourier transform spectrum surface, the phase modulation in the frequency domain is performed, and finally through the second Fourier transform The lens (9) obtains ciphertext information double-encrypted by the asymmetric aberration key and the symmetric double random phase key on its back focal plane, and the ciphertext information can be recorded by phase-shift interferometry or holography.
图2表示两次操作分别不经过像差密钥畸变波前生成模块直接传感和经过像差密钥畸变波前生成模块引入像差密钥后再传感的两幅波前点阵图。图2a是通过仿真模拟波前传感得到的理想波前图和理想波前点阵图私钥。图2b是通过仿真模拟波前传感得到的畸变波前图和畸变波前点阵图公钥。Fig. 2 shows two wavefront dot matrix images of direct sensing without the aberration key distortion wavefront generation module and sensing after introducing the aberration key through the aberration key distortion wavefront generation module in two operations. Figure 2a is the ideal wavefront diagram and the ideal wavefront lattice diagram private key obtained by simulating the simulated wavefront sensing. Fig. 2b is the distorted wavefront diagram and the public key of the distorted wavefront dot matrix obtained by simulating the wavefront sensing.
图3是针对单一像差密钥加密后的计算机仿真模拟实验数据,针对不同波长和不同阵列透镜子孔径焦距得到实验结果。它们均为256x256像素。图3a是实验中所要加密的待加密明文。图3b是子孔径焦距为100mm,波长为550nm时的加密密文。图3c是子孔径焦距为100mm,波长为825nm时的加密密文。图3d是子孔径焦距为100mm,波长为1100nm时的加密密文。图3e是子孔径焦距为200mm,波长为825nm时的加密密文。图3f是子孔径焦距为300mm,波长为825nm时的加密密文。Fig. 3 is the computer simulation experiment data encrypted with a single aberration key, and the experimental results are obtained for different wavelengths and different array lens sub-aperture focal lengths. They are both 256x256 pixels. Figure 3a is the plaintext to be encrypted to be encrypted in the experiment. Figure 3b is the encrypted ciphertext when the focal length of the sub-aperture is 100mm and the wavelength is 550nm. Figure 3c is the encrypted ciphertext when the focal length of the sub-aperture is 100mm and the wavelength is 825nm. Figure 3d is the encrypted ciphertext when the focal length of the sub-aperture is 100mm and the wavelength is 1100nm. Figure 3e is the encrypted ciphertext when the focal length of the sub-aperture is 200mm and the wavelength is 825nm. Figure 3f is the encrypted ciphertext when the focal length of the sub-aperture is 300mm and the wavelength is 825nm.
图4是针对混合二重密钥加密后的计算机仿真模拟实验数据和针对已知部分加密密钥的攻击结果。它们均为256x256像素。图4a是实验中所要加密的待加密明文。图4b是同时使用像差非对称密钥和双随机相位对称密钥时的加密结果。图4c是当两种解密密钥都错误时的解密结果。图4d是当双随机相位密钥正确而像差密钥错误时的解密结果。图4e是当双随机相位密钥错误而像差密钥正确时的解密结果。图4f是当两种解密密钥都正确时的正确解密结果。Fig. 4 is the computer simulation experiment data after the encryption of the mixed double key and the attack result on the known part of the encryption key. They are both 256x256 pixels. Figure 4a is the plaintext to be encrypted to be encrypted in the experiment. Figure 4b is the encryption result when aberration asymmetric key and double random phase symmetric key are used at the same time. Figure 4c is the decryption result when both decryption keys are wrong. Figure 4d is the decryption result when the double random phase key is correct and the aberration key is wrong. Figure 4e is the decryption result when the double random phase key is wrong and the aberration key is correct. Figure 4f is the correct decryption result when both decryption keys are correct.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710002772.2A CN106972921B (en) | 2017-01-03 | 2017-01-03 | Asymmetric optical information security system based on wave-front sensing and double optical keys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710002772.2A CN106972921B (en) | 2017-01-03 | 2017-01-03 | Asymmetric optical information security system based on wave-front sensing and double optical keys |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106972921A true CN106972921A (en) | 2017-07-21 |
CN106972921B CN106972921B (en) | 2020-07-28 |
Family
ID=59335138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710002772.2A Active CN106972921B (en) | 2017-01-03 | 2017-01-03 | Asymmetric optical information security system based on wave-front sensing and double optical keys |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106972921B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108933629A (en) * | 2018-06-08 | 2018-12-04 | 西安电子科技大学 | A kind of semiactive homing laser water printing guiding method of more sub-light beam interferometers |
CN109614801A (en) * | 2018-10-18 | 2019-04-12 | 四川大学 | An Asymmetric Optical Image Encryption Method Based on Cylinder Diffraction Transform and Equivalent Modular Decomposition |
CN110640306A (en) * | 2018-06-27 | 2020-01-03 | 三星显示有限公司 | Beam Shaping Optical System |
CN110795892A (en) * | 2019-10-23 | 2020-02-14 | 北京邮电大学 | Channel simulation method and device based on generation countermeasure network |
CN112782848A (en) * | 2021-01-19 | 2021-05-11 | 北京理工大学 | Optical encryption system based on variable lens wave aberration modulation |
CN112817167A (en) * | 2021-01-19 | 2021-05-18 | 北京理工大学 | Hybrid optical encryption system based on wave aberration preprocessing |
CN113918962A (en) * | 2021-09-07 | 2022-01-11 | 北京理工大学 | Optical information security system based on foveological duplex optical key |
CN114936375A (en) * | 2022-06-02 | 2022-08-23 | 北京理工大学 | An Asymmetric Integrated Optical Encryption System Based on Two-dimensional Empirical Mode Decomposition |
CN115051842A (en) * | 2022-06-02 | 2022-09-13 | 北京理工大学 | Optical video encryption system based on local distributed aberration theory |
WO2022213419A1 (en) * | 2021-04-08 | 2022-10-13 | 苏州大学 | Optical encryption system and method based on random optical field spatial coherent structure regulation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1889424A (en) * | 2006-07-25 | 2007-01-03 | 深圳大学 | Asynmmetric ciphering and deciphering method and apparatus based on virtual wavefront coding |
US8244137B1 (en) * | 2009-06-30 | 2012-08-14 | Verizon Patent And Licensing Inc. | Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks |
JP5286852B2 (en) * | 2008-03-14 | 2013-09-11 | 日本電気株式会社 | Quantum key distribution encoding apparatus and method |
CN103799975A (en) * | 2014-02-26 | 2014-05-21 | 中国科学院光电技术研究所 | Adaptive optics OCT retinal imager employing coherence gate wavefront sensor |
CN104954120A (en) * | 2015-05-13 | 2015-09-30 | 中国人民解放军国防科学技术大学 | Pure phase based optical encryption-decryption system |
CN105022165A (en) * | 2015-06-30 | 2015-11-04 | 北京空间机电研究所 | Optical imaging system based on anaberration of wavefront coding technology |
-
2017
- 2017-01-03 CN CN201710002772.2A patent/CN106972921B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1889424A (en) * | 2006-07-25 | 2007-01-03 | 深圳大学 | Asynmmetric ciphering and deciphering method and apparatus based on virtual wavefront coding |
JP5286852B2 (en) * | 2008-03-14 | 2013-09-11 | 日本電気株式会社 | Quantum key distribution encoding apparatus and method |
US8244137B1 (en) * | 2009-06-30 | 2012-08-14 | Verizon Patent And Licensing Inc. | Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks |
CN103799975A (en) * | 2014-02-26 | 2014-05-21 | 中国科学院光电技术研究所 | Adaptive optics OCT retinal imager employing coherence gate wavefront sensor |
CN104954120A (en) * | 2015-05-13 | 2015-09-30 | 中国人民解放军国防科学技术大学 | Pure phase based optical encryption-decryption system |
CN105022165A (en) * | 2015-06-30 | 2015-11-04 | 北京空间机电研究所 | Optical imaging system based on anaberration of wavefront coding technology |
Non-Patent Citations (4)
Title |
---|
位恒政: ""光学对称密码分析学的研究"", 《中国博士学位论文全文数据库信息科技辑》 * |
刘伟: ""基于位相恢复算法的光学图像加密及认证技术研究"", 《中国博士学位论文全文数据库信息科技辑》 * |
王也: ""高密度体全息存储器的光学系统设计"", 《中国博士学位论文全文数据库信息科技辑》 * |
谢振威: ""基于空间光调制器的太赫兹波波前调制及应用研究"", 《中国博士学位论文全文数据库信息科技辑》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108933629A (en) * | 2018-06-08 | 2018-12-04 | 西安电子科技大学 | A kind of semiactive homing laser water printing guiding method of more sub-light beam interferometers |
CN110640306A (en) * | 2018-06-27 | 2020-01-03 | 三星显示有限公司 | Beam Shaping Optical System |
CN110640306B (en) * | 2018-06-27 | 2023-09-01 | 三星显示有限公司 | Beam Shaping Optical System |
CN109614801A (en) * | 2018-10-18 | 2019-04-12 | 四川大学 | An Asymmetric Optical Image Encryption Method Based on Cylinder Diffraction Transform and Equivalent Modular Decomposition |
CN110795892A (en) * | 2019-10-23 | 2020-02-14 | 北京邮电大学 | Channel simulation method and device based on generation countermeasure network |
CN112782848A (en) * | 2021-01-19 | 2021-05-11 | 北京理工大学 | Optical encryption system based on variable lens wave aberration modulation |
CN112817167A (en) * | 2021-01-19 | 2021-05-18 | 北京理工大学 | Hybrid optical encryption system based on wave aberration preprocessing |
WO2022213419A1 (en) * | 2021-04-08 | 2022-10-13 | 苏州大学 | Optical encryption system and method based on random optical field spatial coherent structure regulation |
CN113918962A (en) * | 2021-09-07 | 2022-01-11 | 北京理工大学 | Optical information security system based on foveological duplex optical key |
CN113918962B (en) * | 2021-09-07 | 2024-05-28 | 北京理工大学 | Optical information security system based on concave double optical key |
CN115051842A (en) * | 2022-06-02 | 2022-09-13 | 北京理工大学 | Optical video encryption system based on local distributed aberration theory |
CN114936375A (en) * | 2022-06-02 | 2022-08-23 | 北京理工大学 | An Asymmetric Integrated Optical Encryption System Based on Two-dimensional Empirical Mode Decomposition |
CN114936375B (en) * | 2022-06-02 | 2024-06-04 | 北京理工大学 | Asymmetric integrated optical encryption system based on two-dimensional empirical mode decomposition |
Also Published As
Publication number | Publication date |
---|---|
CN106972921B (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106972921B (en) | Asymmetric optical information security system based on wave-front sensing and double optical keys | |
Peng et al. | Optical coherence encryption with structured random light | |
Guo et al. | Stokes meta-hologram toward optical cryptography | |
Kong et al. | Image encryption based on interleaved computer-generated holograms | |
CN102087503B (en) | Double-random-phase optical color image encryption device and method | |
Wang et al. | Optical image encryption method based on incoherent imaging and polarized light encoding | |
Zamrani et al. | Optical image encryption technique based on deterministic phase masks | |
CN104007649B (en) | Color image encryption system and encryption and decryption method based on compression holography | |
WO2022213419A1 (en) | Optical encryption system and method based on random optical field spatial coherent structure regulation | |
CN104954120B (en) | A kind of optical encryption decryption system based on pure phase bit-type | |
Qin et al. | Interference-based multiple-image encryption by phase-only mask multiplexing with high quality retrieved images | |
Liu et al. | Optical asymmetric JTC cryptosystem based on multiplication-division operation and RSA algorithm | |
Lee et al. | Visual cryptography based on an interferometric encryption technique | |
CN201945812U (en) | Double-random-phase encryption device for optical color image | |
Vanitha et al. | Augmenting data security: physical unclonable functions for linear canonical transform based cryptography | |
CN110161716B (en) | Device for realizing super resolution by single laser angular incoherent light | |
CN105954991A (en) | Optical encryption method based on holographic calculation | |
Liao et al. | Optical cryptanalysis method using wavefront shaping | |
CN111382449A (en) | Optical Image Encryption Scheme Based on Interference and 4f System | |
Lu et al. | Enhancement of optical image encryption based on radial shearing interference | |
CN112817167A (en) | Hybrid optical encryption system based on wave aberration preprocessing | |
Vanitha et al. | Augmenting data security: Physical Unclonable Functions for digital holography based quadratic phase cryptography | |
CN112782848A (en) | Optical encryption system based on variable lens wave aberration modulation | |
Kong et al. | Holographic lensless interference encryption based on single spatial light modulator | |
CN109873814A (en) | Vortex laser array scanning holographic multi-image encryption system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |