CN106971238A - The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S - Google Patents

The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S Download PDF

Info

Publication number
CN106971238A
CN106971238A CN201710141487.9A CN201710141487A CN106971238A CN 106971238 A CN106971238 A CN 106971238A CN 201710141487 A CN201710141487 A CN 201710141487A CN 106971238 A CN106971238 A CN 106971238A
Authority
CN
China
Prior art keywords
data
load
neural network
fuzzy
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710141487.9A
Other languages
Chinese (zh)
Inventor
付宏宇
钱素琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201710141487.9A priority Critical patent/CN106971238A/en
Publication of CN106971238A publication Critical patent/CN106971238A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于T‑S模糊Elman神经网络的短期电力负荷预测方法,包括以下步骤:获取某地区的电力系统历史负荷数据,对历史负荷数据的异常数据进行处理;对影响电力负荷因素进行分析与量化,将修正后的数据进行归一化;确定神经网络的输入输出数据,在规则层引入延时单元,将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息,从而建立基于T‑S模糊Elman神经网络,用训练好的T‑S模糊Elman神经网络进行预测,并将预测的数据反归一化从而得到最终的预测负荷值。本发明可以很好的拟合电力负荷系统的非线性、动态性和时变性的特点,预测精度较高,可广泛应用于电力系统短期负荷预测中。

The invention relates to a short-term power load forecasting method based on T-S fuzzy Elman neural network, comprising the following steps: obtaining historical load data of a power system in a certain area, processing abnormal data of the historical load data; Analysis and quantification, normalize the corrected data; determine the input and output data of the neural network, introduce a delay unit in the rule layer, and use the output of the rule layer, that is, the activation intensity of all the rules at the previous moment, as the input information at the current moment , so as to establish a T-S fuzzy Elman neural network, use the trained T-S fuzzy Elman neural network to predict, and denormalize the predicted data to obtain the final forecast load value. The invention can well fit the nonlinear, dynamic and time-varying characteristics of the electric load system, has high prediction accuracy, and can be widely used in the short-term load prediction of the electric power system.

Description

基于T-S模糊Elman神经网络的短期电力负荷预测方法Short-term Power Load Forecasting Method Based on T-S Fuzzy Elman Neural Network

技术领域technical field

本发明涉及一种基于T-S模糊Elman神经网络的短期电力负荷预测方法,属于电力系统负荷预测领域。The invention relates to a short-term power load forecasting method based on T-S fuzzy Elman neural network, which belongs to the field of power system load forecasting.

背景技术Background technique

电力系统负荷预测根据预测周期分类可分为中长期负荷预测、短期负荷预测和超短期负荷预测。其中,短期负荷预测是指针对未来一天到一周时间内每天各时段的负荷预测的研究。短期负荷预测在电力系统负荷预测研究中是至关重要的,其预测的精度直接影响到电力系统安全经济稳定运行、实现电网科学管理和调度。目前,主要采用的是人工神经网络算法的反向传播法(BP算法),其在电力系统负荷预测研究方向得到了广阔的应用。由于电力系统负荷易受气候、经济等因素的影响呈动态特性,而BP神经网络是将动态建模问题转换为静态建模问题,这样就会使网络运行时存在陷入局部极小、单向传播没有反馈等问题。Power system load forecasting can be divided into medium and long-term load forecasting, short-term load forecasting and ultra-short-term load forecasting according to the classification of forecasting period. Among them, short-term load forecasting refers to the research on load forecasting for each time period of each day in the next day to a week. Short-term load forecasting is very important in the research of power system load forecasting. The accuracy of its forecasting directly affects the safe, economical and stable operation of the power system and the realization of scientific management and dispatching of the power grid. At present, the backpropagation method (BP algorithm) of the artificial neural network algorithm is mainly used, which has been widely used in the research direction of power system load forecasting. Since the power system load is easily affected by climate, economic and other factors, it is dynamic, and the BP neural network converts the dynamic modeling problem into a static modeling problem, which will make the network run into local minimum and one-way propagation. No questions about feedback etc.

发明内容Contents of the invention

本发明要解决的技术问题是:更好地拟合电力负荷系统的非线性、动态性和时变性的特点。The technical problem to be solved by the invention is: to better fit the nonlinear, dynamic and time-varying characteristics of the electric load system.

为了解决上述技术问题,本发明的技术方案是提供了一种基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,包括以下步骤:In order to solve the problems of the technologies described above, the technical solution of the present invention provides a kind of short-term power load forecasting method based on T-S fuzzy Elman neural network, it is characterized in that, comprises the following steps:

步骤1、获取某地区的电力系统历史负荷数据,对历史负荷数据的异常数据进行处理;Step 1. Obtain the historical load data of the power system in a certain area, and process the abnormal data of the historical load data;

步骤2、对影响电力负荷因素进行分析与量化,将修正后的负荷数据进行归一化;Step 2. Analyze and quantify the factors affecting the electric load, and normalize the corrected load data;

步骤3、确定神经网络的输入输出数据,其中,将预测日当天的天气特征、温度、日期类型和t-1小时负荷值以及预测时刻的n-1、n-2日第t、t-1和t+1小时负荷值作为输入数据,预测日的第t小时整点负荷值为输出数据,并且确定最优的隐含层神经元的个数,在规则层引入延时单元,将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息,从而建立基于T-S模糊Elman神经网络;Step 3. Determine the input and output data of the neural network, in which the weather characteristics, temperature, date type and load value of t-1 hour of the forecast day and the n-1 and n-2 days t and t-1 of the forecast time and the load value of hour t+1 as input data, the load value of the hour t hour of the predicted day is the output data, and determine the optimal number of neurons in the hidden layer, introduce a delay unit in the regular layer, and convert the regular layer The output of the previous moment is the activation intensity of all the rules as the current input information, so as to establish a T-S fuzzy Elman neural network;

步骤4、使用预测日前两个月的历史负荷数据、天气参数数据和日期类型数据进行训练,用训练好的T-S模糊Elman神经网络进行预测,并将预测的数据反归一化从而得到最终的预测负荷值;Step 4. Use the historical load data, weather parameter data and date type data of the two months before the forecast date for training, use the trained T-S fuzzy Elman neural network for forecasting, and denormalize the forecasted data to obtain the final forecast load value;

优选地,所述步骤1中获取某地区的电力历史负荷数据,其数据样本来自于SCADA系统。Preferably, in the step 1, historical electricity load data of a certain region is obtained, and the data samples thereof come from a SCADA system.

优选地,所述步骤1中的异常数据处理的处理方式包括水平处理、垂直处理或曲线拟合。Preferably, the abnormal data processing in step 1 includes horizontal processing, vertical processing or curve fitting.

优选地,所述步骤2中的影响负荷因素包括温度、天气特征和日期类型,根据这些因素对负荷的影响程度将其进行量化处理。Preferably, the factors affecting the load in the step 2 include temperature, weather characteristics and date type, and quantify them according to the degree of influence of these factors on the load.

优选地,所述步骤2中负荷数据归一化,使用归一化公式将负荷数据归一化为[0,1],使其处于同一数量级别,加快神经网络收敛。Preferably, in the step 2, the load data is normalized, and the normalization formula is used to normalize the load data to [0, 1], so that they are at the same magnitude level, so as to speed up the convergence of the neural network.

优选地,所述步骤3中确定最优的隐含层神经元的个数中,该网络的隐含层为单隐含层,其神经元的个数根据经验公式和训练的效果进行确定。Preferably, in the determination of the optimal number of hidden layer neurons in step 3, the hidden layer of the network is a single hidden layer, and the number of neurons is determined according to empirical formulas and training effects.

优选地,所述步骤4中将预测的数据反归一化得到最终的预测负荷值总,其反归一化根据归一化公式的变形即可得到反归一化的公式,最终的数据就是实际数量级的负荷数据。Preferably, in said step 4, the predicted data is denormalized to obtain the final forecasted load value, and the denormalized formula can be obtained according to the deformation of the normalized formula, and the final data is Load data of the actual order of magnitude.

Elman神经网络是一种典型的动态神经元网络,具有适应时变特性的能力,同时T-S模糊控制使系统的输出可以表示为输入变量的线性组合,因此该系统可以很好的拟合电力负荷系统的非线性、动态性和时变性的特点。Elman neural network is a typical dynamic neuron network, which has the ability to adapt to time-varying characteristics. At the same time, T-S fuzzy control enables the output of the system to be expressed as a linear combination of input variables, so the system can well fit the power load system Non-linear, dynamic and time-varying characteristics.

由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明将T-S模糊控制与Elman神经网络相结合应用到短期电力负荷预测中,该模型兼具Elman神经网络和模糊控制的优点,不仅具有很强的动态非线性拟合能力,而且较好的模拟了误差反馈修正的动态过程,能够更好的拟合电力负荷系统的非线性、动态性和时变性的特点,预测精度较高,可广泛应用于电力系统短期负荷预测中。Due to the adoption of the above-mentioned technical scheme, the present invention has the following advantages and positive effects compared with the prior art: the present invention combines T-S fuzzy control with Elman neural network and applies it to short-term power load forecasting, and the model has both Elman The advantages of neural network and fuzzy control not only have a strong dynamic nonlinear fitting ability, but also better simulate the dynamic process of error feedback correction, which can better fit the nonlinear, dynamic and time-sensitive characteristics of the power load system. Due to the characteristics of variability and high forecasting accuracy, it can be widely used in short-term load forecasting of power systems.

附图说明Description of drawings

图1是本发明的流程图;Fig. 1 is a flow chart of the present invention;

图2是本发明T-S模糊Elman神经网络结构图。Fig. 2 is a structural diagram of the T-S fuzzy Elman neural network of the present invention.

具体实施方式detailed description

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the teachings of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

本发明的实施方式涉及一种基于T-S模糊Elman神经网络的短期电力负荷预测方法,如图1所示,包括以下步骤:Embodiments of the present invention relate to a short-term power load forecasting method based on T-S fuzzy Elman neural network, as shown in Figure 1, comprising the following steps:

(1)获取某地区的电力系统历史负荷数据,对历史负荷数据的异常数据进行处理;其中,历史负荷数据样本主要来自于SCADA系统;异常数据是由于其他一些因素的干扰该系统会存在不完整的数据,并存在错误数据。(1) Obtain the historical load data of the power system in a certain area, and process the abnormal data of the historical load data; among them, the historical load data samples mainly come from the SCADA system; the abnormal data is due to the interference of other factors, and the system will be incomplete data, and there are erroneous data.

(2)对影响电力负荷因素进行分析与量化,将修正后的数据进行归一化;其中,影响电力负荷因素包括温度、天气特征和日期类型等,根据这些因素对负荷的影响程度将其进行量化处理;归一化是使用归一化公式将负荷数据归一化为[0,1],使其处于同一数量级别,加快神经网络收敛。(2) Analyze and quantify the factors that affect the power load, and normalize the corrected data; among them, the factors that affect the power load include temperature, weather characteristics, and date types, etc., according to the degree of influence of these factors on the load. Quantization processing; normalization is to use the normalization formula to normalize the load data to [0, 1], so that it is at the same level of magnitude and speed up the convergence of the neural network.

(3)确定神经网络的输入输出数据,并且确定最优的隐含层神经元的个数,在规则层引入延时单元,将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息,从而建立基于T-S模糊Elman神经网络;其中,输入输出数据是将预测日当天的天气特征、温度、日期类型和t-1小时负荷值以及预测时刻的n-1、n-2日第t、t-1和t+1小时负荷值作为输入数据,预测日的第t小时整点负荷值为输出数据;隐含层神经元的个数,根据经验公式和训练的效果进行确定;延时单元,是将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息,也可看作是记忆单元。(3) Determine the input and output data of the neural network, and determine the optimal number of neurons in the hidden layer, introduce a delay unit in the rule layer, and use the output of the rule layer, that is, the activation intensity of all the rules at the previous moment, as the current moment The input information is used to establish a T-S fuzzy Elman neural network; among them, the input and output data are the weather characteristics, temperature, date type and t-1 hour load value of the forecast day and the n-1 and n-2 days of the forecast time The load values at hours t, t-1, and t+1 are used as input data, and the load values at the hour t of the forecast day are output data; the number of neurons in the hidden layer is determined according to the empirical formula and the effect of training; The delay unit takes the output of the rule layer, that is, the activation intensity of all the rules at the previous moment, as the input information at the current moment, and can also be regarded as a memory unit.

(4)使用预测日前两个月的历史负荷数据、天气参数数据和日期类型数据进行训练,用训练好的T-S模糊Elman神经网络进行预测,并将预测的数据反归一化从而得到最终的预测负荷值;其中,反归一化是将归一化公式变形得到的反归一化公式,从而得到实际数量级的负荷数据。(4) Use the historical load data, weather parameter data and date type data of the two months before the forecast date for training, use the trained T-S fuzzy Elman neural network for forecasting, and denormalize the forecasted data to obtain the final forecast Load value; wherein, the denormalization is the denormalization formula obtained by deforming the normalization formula, so as to obtain the load data of the actual order of magnitude.

下面以某沿海地区地级市的历史负荷数据为研究对象为例来进一步说明本发明。其具体步骤如下:The present invention will be further described below by taking the historical load data of a prefecture-level city in a certain coastal area as the research object as an example. The specific steps are as follows:

获取历史负荷数据及数据的处理Acquisition of historical load data and data processing

在现阶段电力系统中,电力系统负荷数据主要来自于SCADA系统,由于种种原因,SCADA系统的数据并不完整,并存在一些错误数据。针对这些异常数据,需要采用一定的方法来对数据进行检测和修正。In the current power system, the load data of the power system mainly comes from the SCADA system. Due to various reasons, the data of the SCADA system is not complete and there are some wrong data. For these abnormal data, it is necessary to adopt certain methods to detect and correct the data.

数据的垂直处理:电力系统负荷具有一定的周期性,在相似日同一时刻负荷具有一定的相似性,其变化范围保持在一定的范围内。若超出这个范围,则可判定为异常数据。通过对负荷的垂直处理,可检测出部分异常数据。通过对突变负荷的平滑处理,可以使得数据波动较小。Vertical processing of data: The load of the power system has a certain periodicity, and the load at the same time on similar days has a certain similarity, and its variation range is kept within a certain range. If it exceeds this range, it can be judged as abnormal data. Through the vertical processing of the load, some abnormal data can be detected. By smoothing the mutation load, the data fluctuation can be reduced.

数据的水平处理:在电力系统负荷数据中,相似时刻负荷不会出现大幅突变的情况,因此可依据前后两时刻负荷数据为基准值,设定数据的最大误差范围。如果负荷值与前后两个时刻的负荷数据之差的绝对值都超过阈值的话,则可判定该负荷值是坏数据。Horizontal processing of data: In the load data of the power system, the load at similar times will not change drastically. Therefore, the maximum error range of the data can be set based on the load data at two moments before and after as the benchmark value. If the absolute value of the difference between the load value and the load data at two moments before and after exceeds the threshold, it can be determined that the load value is bad data.

对影响负荷因素量化及将修正后的数据归一化Quantify the influencing load factors and normalize the corrected data

在电力市场中,电力系统负荷受影响的因素较多,其不仅受电力负荷需求、天气状况、季节性、地域等因素,同时也受国家经济、政治、居民生活习惯等因素影响。对该沿海地区主要影响因素为温度、天气特征和日期类型。当温度变化在一定范围内,对负荷变化影响基本相似,所以在不同温度赋予一个[0,1]之间的量化值。针对天气特征,该地区四季分明,因此根据历史负荷数据和季节特点,从天气晴朗到阴到暴雨赋予一个[0,1]之间从大到小的量化值。对日期类型,主要是根据工作日和休息日对其量化处理。In the electricity market, the load of the power system is affected by many factors, not only by power load demand, weather conditions, seasonality, and geographical factors, but also by factors such as national economy, politics, and residents' living habits. The main factors affecting this coastal area are temperature, weather characteristics and date type. When the temperature changes within a certain range, the influence on the load change is basically similar, so a quantized value between [0, 1] is given at different temperatures. For the weather characteristics, the region has four distinct seasons, so according to the historical load data and seasonal characteristics, a quantitative value between [0, 1] from large to small is given from sunny to cloudy to heavy rain. For the date type, it is mainly quantified according to working days and rest days.

构建T-S模糊Elman神经网络的模型Constructing the Model of T-S Fuzzy Elman Neural Network

T-S模糊Elman神经网络包含五层,分别是输入层、隶属函数层、规则层、参数层、输出层,共n个输入节点,1个输出节点,其拓扑结构如图2所示。The T-S fuzzy Elman neural network consists of five layers, which are input layer, membership function layer, rule layer, parameter layer, and output layer, with a total of n input nodes and one output node. Its topology is shown in Figure 2.

输入层即输入的数据,包括预测日当天的天气特征、温度、日期类型和t-1小时负荷值以及预测时刻的n-1、n-2日第t、t-1和t+1小时负荷值;隶属函数层,该层的每个节点代表一个隶属函数,与输入层的连接权值为1,采用高斯函数作为隶属度函数,计算每个节点对应的隶属度;规则层引入了延时单元,将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息;参数层,该层属于T-S模糊神经网络的后件部分;输出层,实现T-S模糊系统的去模糊化功能,得到一个线性组合的输出。The input layer is the input data, including the weather characteristics, temperature, date type and t-1 hour load value of the forecast day, and the t, t-1 and t+1 hour loads of the n-1 and n-2 days at the forecast time value; membership function layer, each node in this layer represents a membership function, and the connection weight with the input layer is 1, using the Gaussian function as the membership function to calculate the membership degree corresponding to each node; the rule layer introduces a delay Unit, which takes the output of the rule layer, that is, the activation intensity of all the rules at the previous moment, as the input information at the current moment; the parameter layer, which belongs to the subsequent part of the T-S fuzzy neural network; the output layer, which realizes the defuzzification function of the T-S fuzzy system , to get the output of a linear combination.

短期负荷预测的实现Realization of Short-term Load Forecasting

以该地区2012年5月和6月的数据作为原始样本数据,经过异常数据的处理以及归一化后,得到一组正常的可供神经网络学习的数据,通过已经构建好的T-S模糊神经网络,最终得到预测日的一天24小时的负荷值,经检验对比,其平均绝对误差可以控制在2%以内,MSE可以控制在0.6%以内。因此,该模型可以很好的预测短期电力负荷数据。Taking the data of May and June 2012 in this area as the original sample data, after abnormal data processing and normalization, a set of normal data for neural network learning is obtained, and the constructed T-S fuzzy neural network is used to , and finally get the load value of 24 hours a day on the forecast day. After inspection and comparison, the average absolute error can be controlled within 2%, and the MSE can be controlled within 0.6%. Therefore, the model can predict short-term power load data well.

Claims (7)

1.一种基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,包括以下步骤:1. a short-term power load forecasting method based on T-S fuzzy Elman neural network, is characterized in that, comprises the following steps: 步骤1、获取某地区的电力系统历史负荷数据,对历史负荷数据的异常数据进行处理;Step 1. Obtain the historical load data of the power system in a certain area, and process the abnormal data of the historical load data; 步骤2、对影响电力负荷因素进行分析与量化,将修正后的负荷数据进行归一化;Step 2. Analyze and quantify the factors affecting the electric load, and normalize the corrected load data; 步骤3、确定神经网络的输入输出数据,其中,将预测日当天的天气特征、温度、日期类型和t-1小时负荷值以及预测时刻的n-1、n-2日第t、t-1和t+1小时负荷值作为输入数据,预测日的第t小时整点负荷值为输出数据,并且确定最优的隐含层神经元的个数,在规则层引入延时单元,将规则层的输出即上一时刻所有规则的激活强度作为当前时刻输入的信息,从而建立基于T-S模糊Elman神经网络;Step 3. Determine the input and output data of the neural network, in which the weather characteristics, temperature, date type and load value of t-1 hour of the forecast day and the n-1 and n-2 days t and t-1 of the forecast time and the load value of hour t+1 as input data, the load value of the hour t hour of the predicted day is the output data, and determine the optimal number of neurons in the hidden layer, introduce a delay unit in the regular layer, and convert the regular layer The output of the previous moment is the activation intensity of all the rules as the current input information, so as to establish a T-S fuzzy Elman neural network; 步骤4、使用预测日前两个月的历史负荷数据、天气参数数据和日期类型数据进行训练,用训练好的T-S模糊Elman神经网络进行预测,并将预测的数据反归一化从而得到最终的预测负荷值。Step 4. Use the historical load data, weather parameter data and date type data of the two months before the forecast date for training, use the trained T-S fuzzy Elman neural network for forecasting, and denormalize the forecasted data to obtain the final forecast load value. 2.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤1中获取某地区的电力历史负荷数据,其数据样本来自于SCADA系统。2. the short-term electric load forecasting method based on T-S fuzzy Elman neural network according to claim 1, is characterized in that, in the described step 1, obtains the electric historical load data of certain area, and its data sample comes from SCADA system. 3.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤1中的异常数据处理的处理方式包括水平处理、垂直处理或曲线拟合。3. The short-term power load forecasting method based on T-S fuzzy Elman neural network according to claim 1, characterized in that the abnormal data processing in the step 1 includes horizontal processing, vertical processing or curve fitting. 4.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤2中的影响负荷因素包括温度、天气特征和日期类型,根据这些因素对负荷的影响程度将其进行量化处理。4. the short-term power load forecasting method based on T-S fuzzy Elman neural network according to claim 1, is characterized in that, the influence load factor in described step 2 comprises temperature, weather feature and date type, according to these factors to load The degree of influence will be quantified. 5.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤2中负荷数据归一化,使用归一化公式将负荷数据归一化为[0,1],使其处于同一数量级别,加快神经网络收敛。5. the short-term power load forecasting method based on T-S fuzzy Elman neural network according to claim 1, is characterized in that, in described step 2, load data normalization, use normalization formula load data normalization to [ 0, 1], making it at the same level of magnitude, speeding up the convergence of the neural network. 6.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤3中确定最优的隐含层神经元的个数中,该网络的隐含层为单隐含层,其神经元的个数根据经验公式和训练的效果进行确定。6. the short-term power load forecasting method based on T-S fuzzy Elman neural network according to claim 1, is characterized in that, in the number of optimal hidden layer neurons determined in the described step 3, the implicit of this network The layer is a single hidden layer, and the number of its neurons is determined according to the empirical formula and the effect of training. 7.根据权利要求1所述的基于T-S模糊Elman神经网络的短期电力负荷预测方法,其特征在于,所述步骤4中将预测的数据反归一化得到最终的预测负荷值总,其反归一化根据归一化公式的变形即可得到反归一化的公式,最终的数据就是实际数量级的负荷数据。7. the short-term power load forecasting method based on T-S fuzzy Elman neural network according to claim 1, is characterized in that, in described step 4, the data denormalization of prediction obtains final forecasted load value total, and its regression According to the deformation of the normalization formula, the anti-normalization formula can be obtained, and the final data is the load data of the actual order of magnitude.
CN201710141487.9A 2017-03-10 2017-03-10 The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S Pending CN106971238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710141487.9A CN106971238A (en) 2017-03-10 2017-03-10 The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710141487.9A CN106971238A (en) 2017-03-10 2017-03-10 The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S

Publications (1)

Publication Number Publication Date
CN106971238A true CN106971238A (en) 2017-07-21

Family

ID=59330131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710141487.9A Pending CN106971238A (en) 2017-03-10 2017-03-10 The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S

Country Status (1)

Country Link
CN (1) CN106971238A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590562A (en) * 2017-09-05 2018-01-16 西安交通大学 A kind of Short-Term Load Forecasting of Electric Power System based on changeable weight combination predicted method
CN107704967A (en) * 2017-10-17 2018-02-16 吉林省电力科学研究院有限公司 A kind of Short-Term Load Forecasting Method based on improvement fuzzy neural network
CN109240088A (en) * 2018-10-24 2019-01-18 闽江学院 A kind of estimation of electric power networks communication delay and compensation finite-time control method
CN109617097A (en) * 2018-12-26 2019-04-12 贵州电网有限责任公司 Three-phase load unbalance self-decision administering method based on fuzzy neural network algorithm
CN110009132A (en) * 2019-03-04 2019-07-12 三峡大学 A kind of short-term electric load fining prediction technique based on LSTM deep neural network
CN110046765A (en) * 2019-04-15 2019-07-23 国网甘肃省电力公司电力科学研究院 A kind of power system stabilizer, PSS implementation method based on Elman neural network
CN111080037A (en) * 2020-01-02 2020-04-28 中国电力科学研究院有限公司 Short-term power load prediction method and device based on deep neural network
CN111142027A (en) * 2019-12-31 2020-05-12 国电南瑞南京控制系统有限公司 Lithium iron phosphate battery state-of-charge monitoring and early warning method based on neural network
CN111952962A (en) * 2020-07-30 2020-11-17 国网江苏省电力有限公司南京供电分公司 A Low Voltage Prediction Method of Distribution Network Based on T-S Fuzzy Neural Network
CN112668776A (en) * 2020-12-25 2021-04-16 国网黑龙江省电力有限公司电力科学研究院 Long-short term memory network model power load prediction method suitable for alpine region
CN112862194A (en) * 2021-02-08 2021-05-28 杭州市电力设计院有限公司余杭分公司 Power distribution network power supply planning method, device, equipment and readable storage medium
CN118982260A (en) * 2024-08-21 2024-11-19 南京中汇电气科技有限公司 A load forecasting method based on neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636822A (en) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 Residential load prediction method of elman-based neural network
CN105678404A (en) * 2015-12-30 2016-06-15 东北大学 Micro-grid load prediction system and method based on electricity purchased on-line and dynamic correlation factor
CN106022549A (en) * 2016-07-28 2016-10-12 兰州理工大学 Short term load predication method based on neural network and thinking evolutionary search

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636822A (en) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 Residential load prediction method of elman-based neural network
CN105678404A (en) * 2015-12-30 2016-06-15 东北大学 Micro-grid load prediction system and method based on electricity purchased on-line and dynamic correlation factor
CN106022549A (en) * 2016-07-28 2016-10-12 兰州理工大学 Short term load predication method based on neural network and thinking evolutionary search

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘齐更: "基于数据挖掘的短期负荷预测方法的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
袁喜春等: "动态T-S模糊Elman网络及其应用", 《信息与控制》 *
邰晓红等: "基于模糊控制修正Elman神经网络的电力负荷短期动态预测", 《世界科技研究与发展》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590562A (en) * 2017-09-05 2018-01-16 西安交通大学 A kind of Short-Term Load Forecasting of Electric Power System based on changeable weight combination predicted method
CN107704967A (en) * 2017-10-17 2018-02-16 吉林省电力科学研究院有限公司 A kind of Short-Term Load Forecasting Method based on improvement fuzzy neural network
CN109240088B (en) * 2018-10-24 2020-04-10 闽江学院 Estimation and compensation finite time control method for power network communication delay
CN109240088A (en) * 2018-10-24 2019-01-18 闽江学院 A kind of estimation of electric power networks communication delay and compensation finite-time control method
CN109617097A (en) * 2018-12-26 2019-04-12 贵州电网有限责任公司 Three-phase load unbalance self-decision administering method based on fuzzy neural network algorithm
CN109617097B (en) * 2018-12-26 2022-06-21 贵州电网有限责任公司 Three-phase load unbalance self-decision-making treatment method based on fuzzy neural network algorithm
CN110009132A (en) * 2019-03-04 2019-07-12 三峡大学 A kind of short-term electric load fining prediction technique based on LSTM deep neural network
CN110046765A (en) * 2019-04-15 2019-07-23 国网甘肃省电力公司电力科学研究院 A kind of power system stabilizer, PSS implementation method based on Elman neural network
CN111142027A (en) * 2019-12-31 2020-05-12 国电南瑞南京控制系统有限公司 Lithium iron phosphate battery state-of-charge monitoring and early warning method based on neural network
CN111080037A (en) * 2020-01-02 2020-04-28 中国电力科学研究院有限公司 Short-term power load prediction method and device based on deep neural network
CN111952962A (en) * 2020-07-30 2020-11-17 国网江苏省电力有限公司南京供电分公司 A Low Voltage Prediction Method of Distribution Network Based on T-S Fuzzy Neural Network
CN112668776A (en) * 2020-12-25 2021-04-16 国网黑龙江省电力有限公司电力科学研究院 Long-short term memory network model power load prediction method suitable for alpine region
CN112862194A (en) * 2021-02-08 2021-05-28 杭州市电力设计院有限公司余杭分公司 Power distribution network power supply planning method, device, equipment and readable storage medium
CN112862194B (en) * 2021-02-08 2024-04-26 杭州市电力设计院有限公司余杭分公司 Power distribution network power supply planning method, device, equipment and readable storage medium
CN118982260A (en) * 2024-08-21 2024-11-19 南京中汇电气科技有限公司 A load forecasting method based on neural network

Similar Documents

Publication Publication Date Title
CN106971238A (en) The Short-Term Load Forecasting Method of Elman neutral nets is obscured based on T S
CN110705743B (en) New energy consumption electric quantity prediction method based on long-term and short-term memory neural network
CN110414788B (en) Electric energy quality prediction method based on similar days and improved LSTM
CN110619420B (en) A Short-Term Residential Load Forecasting Method Based on Attention-GRU
CN105631483B (en) Method and device for short-term electricity load forecasting
CN105678404B (en) Based on online shopping electricity and dynamically associate the micro-grid load forecasting system and method for the factor
CN113554466B (en) Short-term electricity consumption prediction model construction method, prediction method and device
CN108647812A (en) Short-Term Load Forecasting Method based on principal component self-adaptive BP neural networks
CN111915092B (en) Ultra-short-term wind power forecasting method based on long-short-term memory neural network
CN114862032B (en) XGBoost-LSTM-based power grid load prediction method and device
CN112329990A (en) User power load prediction method based on LSTM-BP neural network
CN111241755A (en) Power load prediction method
CN113139605A (en) Power load prediction method based on principal component analysis and LSTM neural network
CN106022549A (en) Short term load predication method based on neural network and thinking evolutionary search
Sundararajan et al. Regression and generalized additive model to enhance the performance of photovoltaic power ensemble predictors
CN106127303A (en) A kind of short-term load forecasting method towards multi-source data
CN115222106A (en) User day-ahead load prediction method of self-adaptive model
CN112288140A (en) Keras-based short-term power load prediction method, storage medium and equipment
CN109034500A (en) A kind of mid-term electric load forecasting method of multiple timings collaboration
CN113112085A (en) New energy station power generation load prediction method based on BP neural network
Capuno et al. Very Short‐Term Load Forecasting Using Hybrid Algebraic Prediction and Support Vector Regression
CN112183878B (en) A power load forecasting method combining knowledge graph and neural network
CN117521501A (en) NSGA-based LSTM prediction energy power generation method and system
Yuan et al. Short-term wind speed forecasting using STLSSVM hybrid model
CN113962456B (en) A medium- and long-term load forecasting method taking into account industry correlation

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170721