CN106970370B - 基于混沌神经网络的雷达多目标跟踪优化方法 - Google Patents
基于混沌神经网络的雷达多目标跟踪优化方法 Download PDFInfo
- Publication number
- CN106970370B CN106970370B CN201710278479.9A CN201710278479A CN106970370B CN 106970370 B CN106970370 B CN 106970370B CN 201710278479 A CN201710278479 A CN 201710278479A CN 106970370 B CN106970370 B CN 106970370B
- Authority
- CN
- China
- Prior art keywords
- target
- time
- measurement
- neural network
- moment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 132
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 title claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 192
- 239000011159 matrix material Substances 0.000 claims abstract description 119
- 238000010606 normalization Methods 0.000 claims abstract description 22
- 210000002569 neuron Anatomy 0.000 claims description 100
- 239000012528 membrane Substances 0.000 claims description 24
- 230000014509 gene expression Effects 0.000 claims description 23
- 238000004422 calculation algorithm Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 10
- 230000017105 transposition Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 45
- 238000010586 diagram Methods 0.000 description 18
- 238000009826 distribution Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000004880 explosion Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Artificial Intelligence (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Evolutionary Computation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于混沌神经网络的雷达多目标跟踪优化方法,其主要思路为:依次计算k时刻第t个目标的状态一步预测、k时刻第t个目标的量测预测、k时刻第j'个量测对第t个目标的量测预测新息、k时刻第t个目标的一步预测误差协方差矩阵、k时刻第t个目标的新息协方差矩阵、k时刻第t个目标的卡尔曼增益、k时刻nk×T′维量测—目标关联矩阵、k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵、k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵、k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵、k时刻第t个目标的状态方程和k时刻第t个目标的误差协方差矩阵;令t分别取1至T′,进而得到k时刻T′个目标的误差协方差矩阵,此时雷达根据所述k时刻T′个目标的误差协方差矩阵对T′个目标进行实时跟踪。
Description
技术领域
本发明属于雷达技术领域,特别涉及一种基于混沌神经网络的雷达多目标跟踪优化方法,适用于杂波环境下雷达对多个目标进行实时跟踪。
背景技术
近年来,随着应用环境的复杂多变,要求雷达具有多目标跟踪能力,并能同时实现多目标跟踪;多目标跟踪的基本概念是由Wax于1955年在应用物理杂志的一篇文章中提出来的,之后1964年斯特尔在IEEE上发表一篇名为“监视理论中的最优数据关联问题”的论文成为多目标跟踪的先导,但那时卡尔曼滤波尚未普遍应用,斯特尔采用航迹分叉法解决数据关联问题;20世纪70年代初开始在虚警存在的情况下,利用卡尔曼滤波方法(Kalman)系统地对多目标进行跟踪并处理;1971年Singer提出的最近邻法是解决数据关联最简单的方法,但最近邻法在杂波环境下的正确关联率较低;在此期间,Y.Bar-Shalom起到了举足轻重的作用,他于1975年提出了特别适用于杂波环境下对单目标进行跟踪的概率数据关联算法(PDA),有效解决了杂波环境下的单目标跟踪问题;T.E.Formann和Y.Bar-Shalom等提出了联合概率数据关联算法(JPDA),JPDA将所有的目标和量测进行排列组合,并选择出合理的联合事件计算联合概率,JPDA考虑了来自其他目标的多个量测处在同一目标互联域内的可能性,能够很好地解决杂波环境下一个互联域内多目标的量测问题;但与此同时,JPDA比较复杂,计算量大,并且随着目标数的增长,确认矩阵的拆分会出现组合爆炸的情况;因此,JPDA在工程上实现起来比较困难。
二十世纪80年代,神经网络理论的研究取得了突飞猛进的进展。由于神经网络具有大规模并行处理的能力,良好的自适应性,自组织性及较强的学习、联想等功能,为了解决传统跟踪技术的快速响应与提高精度的矛盾,克服多目标数据关联方法的组合爆炸问题,欧美等发达国家从80年代后期就开始进行基于神经网络的多目标跟踪研究,主要成果是将JPDA方法与Hopfield网络结合的算法,此算法应用Hopfield网络求解最优化问题的思想解决了JPDA方法的组合爆炸问题,但由于Hopfield网络易产生局部极小点的问题限制了跟踪性能。
目前,为了解决传统的Hopfield神经网络优化问题极易陷入局部极小的问题,人们开始将混沌特性引入神经网络,混沌是一种普遍的非线性现象,其行为复杂且类似随机,但存在精致的内在规律,具有随机性、遍历性、规律性等独特的性质。其遍历性特点可作为搜索过程中避免陷入局部极小的一种优化机制。混沌神经网络来求解多目标跟踪中的数据关联问题,克服了用Hopfield网络求解多目标跟踪中的数据关联容易陷入局部极小点及收敛速度慢等缺点。
发明内容
针对上述现有技术存在的不足,本发明的目的在于提出一种基于混沌神经网络的雷达多目标跟踪优化方法,该种基于混沌神经网络的雷达多目标跟踪优化方法能够使算法在混沌搜索阶段保持足够长的时间,为接下来稳定收敛阶段提供一个较好的可能位于全局最优解附近的初始值,使算法保持较高的寻优率;同时保证一个较高的收敛速度,使网络在稳定收敛阶段迅速从位于全局最优解附近的初始值跌落到全局最优解。
为达到上述技术目的,本发明采用如下技术方案予以实现。
一种基于混沌神经网络的雷达多目标跟踪优化方法,包括以下步骤:
步骤1,分别确定雷达跟踪的目标总个数为T′,确定k时刻对应包含的量测总个数为nk,并分别将k-1时刻第t个目标的状态估计记为将k-1时刻第t个目标的状态误差协方差矩阵记为Pt(k-1|k-1),将k-1时刻第t个目标的状态转移矩阵记为Ft(k|k-1),将k时刻第t个目标的量测矩阵记为Ht(k),将k-1时刻第t个目标的过程噪声协方差矩阵记为Qt(k-1),将k时刻第t个目标的量测噪声协方差矩阵记为Rt(k),然后依次计算得到k时刻第t个目标的状态一步预测k时刻第t个目标的量测预测k时刻第j'个量测对第t个目标的量测预测新息vj't(k)、k时刻第t个目标的一步预测误差协方差矩阵Pt(k|k-1)、k时刻第t个目标的新息协方差矩阵St(k)和k时刻第t个目标的卡尔曼增益Kt(k),进而计算得到k时刻nk×T′维量测—目标关联矩阵Ω(k);
其中,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,且k时刻对应包含的量测总个数为k时刻接收到的T′个目标的回波数据总个数,k≥1;T′表示雷达跟踪的目标总个数,nk和T′分别为自然数,t的初始值为1;
步骤2,根据k时刻nk×T′维量测—目标关联矩阵Ω(k),计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵,进而计算k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵;
步骤3,根据k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵和k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵,计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k);
步骤4,根据k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k)和k时刻第t个目标的卡尔曼增益Kt(k),计算得到k时刻第t个目标的状态方程进而计算得到k时刻第t个目标的误差协方差矩阵Pt(k|k);
步骤5,令t分别取1至T′,重复执行至步骤4,进而分别得到k时刻第1个目标的状态方程至k时刻第T′个目标的状态方程以及k时刻第1个目标的误差协方差矩阵P1(k|k)至k时刻第T′个目标的误差协方差矩阵PT′(k|k),并记为k时刻T′个目标的误差协方差矩阵,此时雷达根据所述k时刻T′个目标的误差协方差矩阵对T′个目标进行实时跟踪。
本发明的有益效果:
第一,本发明方法利用联合概率数据关联算法的优势,充分考虑了量测与目标之间的互联属性,通过混沌神经网络计算量测与目标的互联概率,使得该算法能够较大的概率下得到最优化的量测与目标的互联概率。
第二,本发明方法通过对Hopfield神经网络输出电压的时变增益参量动态处理,使算法在混沌搜索阶段保持足够长的时间,为接下来稳定收敛阶段提供一个较好的可能位于全局最优解附近的初始值,使算法保持较高的寻优率,同时保证一个较高的收敛速度,使网络在稳定收敛阶段迅速从位于全局最优解附近的初始值跌落到全局最优解。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明的一种基于混沌神经网络的雷达多目标跟踪优化方法流程图;
图2(a)为三交叉目标真实航线示意图;
图2(b)为三交叉目标情况下量测分布示意图;
图2(c)为使用本发明方法对三交叉目标进行目标跟踪的结果示意图;
图3(a)为四交叉目标真实航线示意图;
图3(b)为四交叉目标情况下量测分布示意图;
图3(c)为使用本发明方法对四交叉目标进行目标跟踪的结果示意图;
图4(a)为五交叉目标真实航线示意图;
图4(b)为五交叉目标情况下量测分布示意图;
图4(c)为使用本发明方法对五交叉目标进行目标跟踪的结果示意图。
具体实施方式
参照图1,为本发明的一种基于混沌神经网络的雷达多目标跟踪优化方法流程图;其中所述基于混沌神经网络的雷达多目标跟踪优化方法,包括以下步骤:
步骤1,分别确定雷达跟踪的目标总个数为T′,确定k时刻对应包含的量测总个数为nk,并分别将k-1时刻第t个目标的状态估计记为将k-1时刻第t个目标的状态误差协方差矩阵记为Pt(k-1|k-1),将k-1时刻第t个目标的状态转移矩阵记为Ft(k|k-1),将k时刻第t个目标的量测矩阵记为Ht(k),将k-1时刻第t个目标的过程噪声协方差矩阵记为Qt(k-1),将k时刻第t个目标的量测噪声协方差矩阵记为Rt(k),然后依次计算得到k时刻第t个目标的状态一步预测k时刻第t个目标的量测预测k时刻第j'个量测对第t个目标的量测预测新息vj't(k)、k时刻第t个目标的一步预测误差协方差矩阵Pt(k|k-1)、k时刻第t个目标的新息协方差矩阵St(k)和k时刻第t个目标的卡尔曼增益Kt(k),进而计算得到k时刻nk×T′维量测—目标关联矩阵Ω(k)。
其中,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,且k时刻对应包含的量测总个数为k时刻接收到的T′个目标的回波数据总个数,k≥1;T′表示雷达跟踪的目标总个数,nk和T′分别为自然数,t的初始值为1。
具体地,分别确定雷达跟踪的目标总个数为T′,确定k时刻对应包含的量测总个数为nk,并分别将k-1时刻第t个目标的状态估计记为将k-1时刻第t个目标的状态误差协方差矩阵记为Pt(k-1|k-1),将k-1时刻第t个目标的状态转移矩阵记为Ft(k|k-1),将k时刻第t个目标的量测矩阵记为Ht(k),将k-1时刻第t个目标的过程噪声协方差矩阵记为Qt(k-1),将k时刻第t个目标的量测噪声协方差矩阵记为Rt(k);其中,t∈{1,2,…,T′},T′表示雷达跟踪的目标总个数,t的初始值为1。
确定Z(k)为k时刻的量测集合,且Z(k)={zj'(k)|j'=1,2,…,nk},nk表示k时刻对应包含的量测总个数,且k时刻对应包含的量测总个数为k时刻接收到的T′个目标的回波数据总个数,k≥1;zj'(k)表示k时刻的量测集合Z(k)中第j'个量测。
则分别计算k时刻第t个目标的状态一步预测其表达式为:
计算k时刻第t个目标的量测预测其表达式为:
然后,分别计算得到k时刻第j'个量测对第t个目标的量测预测新息vj't(k),其表达式为:
计算得到k时刻第t个目标的一步预测误差协方差矩阵Pt(k|k-1),其表达式为:
Pt(k|k-1)=Ft(k|k-1)Pt(k-1|k-1)Ft T(k|k-1)+Qt(k-1)
计算得到k时刻第t个目标的新息协方差矩阵St(k),其表达式为:
St(k)=Ht(k)Pt(k|k-1)Ht T(k)+Rt(k)
计算得到k时刻第t个目标的卡尔曼增益Kt(k),其表达式为:
Kt(k)=Pt(k|k-1)Ht T(k)St -1(k)
其中,Ft(k|k-1)表示k-1时刻第t个目标的状态转移矩阵,表示k-1时刻第t个目标的状态估计,Ht(k)表示k时刻第t个目标的量测矩阵,表示k时刻第t个目标的状态一步预测,zj'(k)表示k时刻的量测集合Z(k)中第j'个量测,表示k时刻第t个目标的量测预测,Rt(k)表示k时刻第t个目标的量测噪声协方差矩阵,Pt(k-1|k-1)表示k-1时刻第t个目标的状态误差协方差矩阵,Qt(k-1)表示k-1时刻第t个目标的过程噪声协方差矩阵,Pt(k|k-1)表示k时刻第t个目标的一步预测误差协方差矩阵,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数。
将雷达跟踪的T′个目标所在区域作为目标跟踪空间,以k时刻T′个目标各自的量测预测分别作为中心,将所述目标跟踪空间对应划分为T′个子空间,该T′个子空间分别为Λ1,Λ2,…,Λt,…,ΛT′,k时刻T′个目标各自的量测预测分别为 表示k时刻第t个目标的量测预测,Λt表示第t个目标的子空间,并将第t个目标的子空间Λt作为对应第t个目标的跟踪波门或第t个目标的相关波门,而且所述T′个子空间存在互相交叠的情形;t∈{1,2,…,T′},T′表示雷达跟踪的目标总个数。
相关波门的设计保证雷达以确定的概率PG对应接收雷达跟踪的T′个目标的回波数据,并将k时刻第j'个量测对第t个目标的量测预测新息记为vj't(k),如果k时刻第j'个量测落入第t个目标的相关波门内,则k时刻第j'个量测对第t个目标的量测预测新息vj't(k)和k时刻第t个目标的新息协方差矩阵St(k)满足下式:
其中,上标T表示转置,上标-1表示求逆操作,vj't(k)表示k时刻第j'个量测对第t个目标的量测预测新息,St(k)表示k时刻第t个目标的新息协方差矩阵,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数;γt表示第t个目标的相关波门值,γt∈[9,16];并且每一个目标的相关波门值由对应量测值的维度以及该量测落入对应目标波门的概率共同决定,其中单个量测的维度是由雷达自由度决定,雷达确定的概率PG为经验值,且PG∈[0.8,1]。
因此,计算得到k时刻nk×T′维量测—目标关联矩阵Ω(k),其表达式为:
其中,wj't(k)表示k时刻第j'个量测落入第t个目标的相关波门内的二进制变量,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,wj't(k)=1表示k时刻第j'个量测落入第t个目标的相关波门内,且满足wj't(k)=0表示k时刻第j'个量测没有落入第t个目标的相关波门内,且不满足上标T表示转置,上标-1表示求逆操作,vj't(k)表示k时刻第j'个量测对第t个目标的量测预测的新息,St(k)表示k时刻第t个目标的新息协方差矩阵,k≥1;γt表示第t个目标的相关波门值。
步骤2,根据k时刻nk×T′维量测—目标关联矩阵Ω(k),计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵,进而计算k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵。
具体地,步骤2的子步骤为:
2a)根据k时刻第j个量测落入第t个目标的相关波门内的二进制变量wjt(k),计算得到k时刻第j个量测与第t个目标互联的有效似然函数其表达式为:
其中,上标T表示转置,上标-1表示求逆操作,j∈{0,1,2,…,nk},t∈{1,2,…,T′},j=0表示k时刻没有量测落入目标的相关波门,nk表示k时刻对应包含的量测总个数,PD为雷达接收正确回波的概率,vjt(k)表示k时刻第j个量测对第t个目标的量测预测的新息,St(k)表示k时刻第t个目标的新息协方差矩阵,k≥1。
2b)令t分别取1至T′,重复执行子步骤2a),进而分别得到k时刻第j个量测与第1个目标互联的有效似然函数至k时刻第j个量测与第T′个目标互联的有效似然函数记为k时刻第j个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵pj(k)。
2c)令j分别取0至nk,依次重复执行子步骤2a)和2b),进而分别得到k时刻第0个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵p0(k)至k时刻第nk个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵记为k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵p(k)。
2d)根据k时刻第j个量测与第t个目标互联的有效似然函数计算k时刻第j个量测与第t个目标互联的归一化函数其表达式为:
其中,j∈{0,1,2,…,nk},t∈{1,2,…,T′},j=0表示k时刻没有量测落入目标的相关波门,nk表示k时刻对应包含的量测总个数。
2e)令j分别取0至nk,重复执行子步骤2d),进而分别得到k时刻第0个量测与第t个目标互联的归一化函数至k时刻第nk个量测与第t个目标互联的归一化函数记为k时刻nk个量测与第t个目标互联的(nk+1)×1维归一化函数矩阵
2f)令t分别取1至T′,依次重复执行子步骤2d)和2e),进而分别得到k时刻nk个量测与第1个目标互联的(nk+1)×1维有效似然函数矩阵至k时刻nk个量测与第T′个目标互联的(nk+1)×1维有效似然函数矩阵记为k时刻nk个量测与T′个目标互联的(nk+1)×T'维有效似然函数矩阵。
步骤3,根据k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵和k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵,计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k)。
具体地,步骤3包括以下子步骤:
3.1联合概率数据关联算法(JPDA)具有以下两个独有的特征,设事件G(X)={变量X在0到1之间,不包含0},则:
特征1
特征2
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,表示k时刻第j个量测与第t个目标的关联概率,表示k时刻第j个量测与第τ个目标互联的关联概率,表示k时刻第j个量测与第t个目标互联的有效似然函数,∩表示求交集操作,表示任意,表示k时刻第l个量测与第τ个目标互联的有效似然函数,∏表示连乘操作,G{·}表示·在(0,1]区间内。
联合概率数据关联算法(JPDA)的两个特征使得k时刻nk个量测与T′个目标具有联合概率数据关联算法(JPDA)的4个约束条件:
一个目标回波信号只能对应属于一个目标;
一个目标只能产生一个目标回波信号;
寻求最佳关联概率。
根据联合概率数据关联算法(JPDA)的4个约束条件,构造Hopfield神经网络,所述Hopfield神经网络包含T′×(nk+1)个神经元,每个神经元分别对应一个量测和一个目标,以及一个内部膜电位状态,并且每个神经元的内部膜电位状态为对应神经元输出函数的输入电压。
然后计算得到Hopfield神经网络的能量函数E,具体为:定义k时刻第njt个神经元的输出电压为并分别将k时刻第njt个神经元的输出电压作为k时刻第j个量测与第t个目标的关联概率将k时刻第j个量测与第t个目标互联的归一化函数作为第njt个神经元的输入电流,进而计算得到Hopfield神经网络的能量函数E,所述Hopfield神经网络的能量函数E是数据关联问题(DAP)的Hopfield神经网络能量函数,其表达式为:
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},表示k时刻第njt个神经元的输出电压,表示k时刻第njτ个神经元的输出电压,njτ=j+1+(τ-1)×T′,njt∈{1,2,…,T′×(nk+1)},表示k时刻第nlτ个神经元的输出电压,nlt=l+1+(t-1)×T′,a表示设定的目标系数,b表示设定的量测系数,c表示设定的概率系数,d表示设定的轻寻优系数,e表示设定的重寻优系数,本实施例中a取值为6,b取值为45,c取值为890,d取值为20,e取值为5;表示第j个量测与第t个目标互联的归一化函数,表示第l个量测与第τ个目标互联的归一化函数,nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,j=0和l=0均表示k时刻没有量测落入目标的相关波门;Hopfield神经网络能量函数中的第一项对应于约束条件2,第二项对应于约束条件3,第三项对应于约束条件1,第四项、第五项分别对应于约束条件4。
3.2初始化:令i表示第i次迭代,i∈{1,2,…,A},i的初始值为1,A为设定的最大迭代次数;本实施例中A=200。
令njt表示第j个量测与第t个目标对应的神经元,njt∈{1,2,…,T′×(nk+1)},njt的初始值为1,njt=j+1+(t-1)×T′。
将混沌特性引入到Hopfield神经网络中,构造混沌神经网络,所述混沌神经网络对应包含T′×(nk+1)个神经元,每个神经元分别对应一个量测和一个目标,以及一个内部膜电位状态,并且每个神经元的内部膜电位状态为对应神经元输出函数的输入电压。
根据Hopfield神经网络的能量函数E与每个神经元内部的膜电位状态u的关系:
其中,表示E对V求导,E表示Hopfield神经网络的能量函数,V表示T′×(nk+1)个神经元的电压输出,表示u对t求导,u表示每个神经元的内部膜电位状态。
3.3计算得到第i次迭代后Hopfield神经网络在第njt个神经元处的动态方程为其表达式为:
其中,τ0表示设定的比例系数,本实施例中τ0=1;λ表示步长,本实施例中λ=0.00001;表示第i-1次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态,即第i次迭代后Hopfield神经网络的第njt个神经元输出函数的输入电压;a表示设定的目标系数,表示k时刻第i-1次迭代后Hopfield神经网络的第njτ个神经元的输出电压,b表示设定的量测系数,表示k时刻第i-1次迭代后Hopfield神经网络的第nlt个神经元的输出电压,c表示设定的概率系数,d表示设定的轻寻优系数,e表示设定的重寻优系数,表示k时刻第i-1次迭代后Hopfield神经网络的第njt个神经元的输出电压,表示第j个量测与第t个目标互联的归一化函数,表示第j个量测与第τ个目标互联的归一化函数。
3.4计算得到k时刻第i次迭代后Hopfield神经网络的第njt个神经元的输出电压为其表达式为:
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,表示第i次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态,j=0和l=0均表示k时刻没有量测落入目标的相关波门,u0为Hopfield神经网络的第njt个神经元的输出电压的增益参数,u0>0,本实施例中u0取值为0.02。
分别令k时刻Hopfield神经网络的T′×(nk+1)个神经元的输出电压集合初始值为Vk(0),令Hopfield神经网络的T′×(nk+1)个神经元的内部膜电位状态集合初始值为u(0),其表达式分别为:
其中,nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,表示在区间[-0.1u0,0.1u0]内服从均匀分布的随机变量,表示第i次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态。
将u0从常数变为时变的变量,进而计算得到第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i)。
具体地,将混沌特性引入到Hopfield神经网络中,建立混沌神经网络,Hopfield神经网络是一个梯度速降系统,它只有局部搜索能力,因而用它来求组合优化问题时,尽管能保证收敛到平衡点,但得到的常常不是全局最优解,而是局部最优解;将混沌特性引入Hopfield神经网络可以克服Hopfield神经网络求解优化问题时易陷入局部最优解的问题。同时,对Hopfield的神经网络进行研究后可知,中的u0对Hopfield网络的动态方程的收敛有着重要的影响,u0过小时,神经元输出函数趋于离散阶跃函,导致动态方程收敛过快,从而不能获得最优解;当u0过大时,又会使神经元输出函数的曲线过于平坦,导致动态方程收敛太慢。所以在网络的混沌搜索阶段有一个较大的u0,使算法在混沌搜索阶段保持较长的时间,为接下来未定收敛阶段提供一个较好的可能位于全局最优解附近的初始值,使算法保持较高的寻优率;而在接下来的稳定收敛阶段有一个较小的u0,保证较高的收敛速度,使网络在稳定收敛阶段迅速从全局最优解附近的初始值跌落到全局最优解;u0为Hopfield神经网络的第n个神经元的输出电压的增益参数;将u0从常数变为时变的变量,进而计算得到第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i),其表达式为:
u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1)))
其中,u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1))),u0(i-1)表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,γ表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i)的衰减因子,0≤γ≤1,本实施例中γ=0.05,exp表示指数函数,ln为对数操作。
3.5计算得到第i次迭代后混沌神经网络在第njt个神经元处的动态方程为
其中,z(i)=(1-β)z(i-1),β表示第i次迭代后混沌神经网络内每个神经元的自反馈连接权值z(i)的参数,0≤β≤1,本实施例中β=0.001;z(i-1)表示第i-1次迭代后混沌神经网络内每个神经元的自反馈连接权值,将z(0)记为混沌神经网络内每个神经元的自反馈连接权值的初始值,z(0)=0.065;τ0表示设定的比例系数,本实施例中τ0=1;λ表示步长,表示第i-1次迭代后混沌神经网络的第njt个神经元的内部膜电位状态,即第i-1次迭代后混沌神经网络的第njτ个神经元输出函数的输入电压;表示k时刻第i-1次迭代后混沌神经网络的第njτ个神经元的输出电压,表示k时刻第i-1次迭代后混沌神经网络的第nlt个神经元的输出电压,表示k时刻第i-1次迭代后混沌神经网络的第njt个神经元的输出电压,表示第j个量测与第t个目标互联的归一化函数,表示第j个量测与第τ个目标互联的归一化函数,I0表示设定的正参数,本实施例中I0=0.5。
3.6计算得到k时刻第i次迭代后混沌神经网络的第njt个神经元的输出电压为
u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1)))
u0(i)表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,β表示第i次迭代后混沌神经网络内每个神经元的自反馈连接权值z(i)的参数,0≤β≤1,本实施例中β=0.001;u0(i-1)表示第i-1次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,u0(i)≥0,u0(i-1)≥0,将u0(0)记为Hopfield神经网络的第njt个神经元的输出电压的增益参数初始值,u0(0)=0.07;γ表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i)的衰减因子,0≤γ≤1,本实施例中γ=0.05。
分别令k时刻混沌神经网络的T′×(nk+1)个神经元的输出电压集合初始值为令混沌神经网络的T′×(nk+1)个神经元的内部膜电位状态集合初始值为其表达式分别为:
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,j=0和l=0均表示k时刻没有量测落入目标的相关波门,表示在区间[-0.1u0,0.1u0]内服从均匀分布的随机变量,表示第i次迭代后混沌神经网络的第njt个神经元的内部膜电位状态,u0表示设定的初始化参数,u0>0,本实施例中u0取值为0.02。
3.7令njt分别取1至T′×(nk+1),返回子步骤3.3,分别得到k时刻第i次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第i次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压记为k时刻第i次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合所述k时刻第i次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合的得到过程为并行处理过程;j∈{0,1,2,…,nk},t∈{1,2,…,T′}。
3.8令i加1,重复执行子步骤3.3至3.7,直到得到k时刻第A次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合所述k时刻第A次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合包含k时刻第A次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第A次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压且至分别达到稳定状态。
然后将所述k时刻第A次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第A次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压分别记为k时刻第0个量测与第1个目标互联的精确概率至k时刻第nk个量测与第T′个目标互联的(nk+1)×T'维精确概率进而得到k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k),其表达式为:
其中,上标T表示转置,表示k时刻第j个量测与第t个目标互联的精确概率。
步骤4,根据k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k)和k时刻第t个目标的卡尔曼增益Kt(k),计算得到k时刻第t个目标的状态方程进而计算得到k时刻第t个目标的误差协方差矩阵Pt(k|k)。
具体地,根据k时刻nk个量测与T′个目标互联的精确概率矩阵B(k),计算得到k时刻第t个目标的状态方程其表达式为:
其中,表示k时刻第t个目标的状态一步预测,Kt(k)表示k时刻第t个目标的卡尔曼增益,vt(k)表示k时刻第t个目标的量测预测的组合新息, 表示k时刻第j'个量测与第t个目标互联的精确概率,vj't(k)表示k时刻第j'个量测对第t个目标的量测预测新息。
进而计算得到k时刻第t个目标的误差协方差矩阵Pt(k|k),其表达式为:
其中,Pt(k|k-1)表示k时刻第t个目标的一步预测误差协方差矩阵,Pt c(k|k)=[I-Kt(k)Ηt(k)]Pt(k|k-1),Ηt(k)表示k时刻第t个目标的量测矩阵,表示k时刻目标t状态的一步预测,Kt(k)表示k时刻第t个目标的卡尔曼增益,上标T表示转置,t∈{1,2,…,T′},T′表示雷达跟踪的目标总个数,表示k时刻没有量测与第t个目标互联的精确概率,j'∈{1,2,…,nk},nk表示k时刻对应包含的量测总个数。
步骤5,令t分别取1至T′,重复执行至步骤4,进而分别得到k时刻第1个目标的状态方程至k时刻第T′个目标的状态方程以及k时刻第1个目标的误差协方差矩阵P1(k|k)至k时刻第T′个目标的误差协方差矩阵PT′(k|k),并记为k时刻T′个目标的误差协方差矩阵,此时雷达根据所述k时刻T′个目标的误差协方差矩阵对T′个目标进行实时跟踪。
至此,本发明的一种基于混沌神经网络的雷达多目标跟踪优化方法结束。
通过以下仿真实验对本发明效果作进一步验证说明。
(一)仿真实验数据说明。
为了验证本发明方法的准确性,通过仿真实验予以证明;实验数据参数如下:目标量测相关参数如下:
(二)仿真结果及分析
本发明的仿真结果分别如图2(a)、图2(b)、图2(c)和图3(a)、图3(b)、图3(c)以及图4(a)、图4(b)、图4(c)所示,图2(a)为三交叉目标真实航线示意图,图2(b)为三交叉目标情况下量测分布示意图,图2(c)为使用本发明方法对三交叉目标进行目标跟踪的结果示意图;图3(a)为四交叉目标真实航线示意图;图3(b)为四交叉目标情况下量测分布示意图,图3(c)为使用本发明方法对四交叉目标进行目标跟踪的结果示意图;图4(a)为五交叉目标真实航线示意图;图4(b)为五交叉目标情况下量测分布示意图,图4(c)为使用本发明方法对五交叉目标进行目标跟踪的结果示意图;其中,在图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)中,横坐标均为x方向位置,单位为m;纵坐标为y方向位置,单位为m。
从图2(b)可以看出,由于目标交叉,多个量测紧密聚集,单靠常规的概率数据互联算法难以将目标航迹进行分离,由图2(c)可以看出,运用本发明方法能够将目标精确分离,保证了较高的跟踪精度。
从图3(b)和图4(b)可以看出,随着雷达跟踪目标数量的增多,量测点迹在目标轨迹交叉的区域分布的非常凌乱,同时夹杂着大量的杂波。此时,如果采用常规的联合概率数据关联算法将会产生大量的联合事件,确认矩阵的拆分会出现组合爆炸的情况,计算复杂度陡增,工程实现成本提高;本发明方法能够通过Hopfield网络在解决组合优化方面的优势,同时加上混沌特性解决Hopfield网络易陷入局部最优解的缺点,使得Hopfield网络易得到全局最优解,以较小的计算复杂度得到k时刻nk个量测与T′个目标互联的精确概率矩阵B(k),图3(b)、图3(c)和图4(b)、图4(c)的仿真实验验证了该处理方法的有效性。
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (2)
1.一种基于混沌神经网络的雷达多目标跟踪优化方法,其特征在于,包括以下步骤:
步骤1,分别确定雷达跟踪的目标总个数为T′,确定k时刻对应包含的量测总个数为nk,并分别将k-1时刻第t个目标的状态估计记为将k-1时刻第t个目标的状态误差协方差矩阵记为Pt(k-1|k-1),将k-1时刻第t个目标的状态转移矩阵记为Ft(k|k-1),将k时刻第t个目标的量测矩阵记为Ht(k),将k-1时刻第t个目标的过程噪声协方差矩阵记为Qt(k-1),将k时刻第t个目标的量测噪声协方差矩阵记为Rt(k),然后依次计算得到k时刻第t个目标的状态一步预测k时刻第t个目标的量测预测k时刻第j'个量测对第t个目标的量测预测新息vj't(k)、k时刻第t个目标的一步预测误差协方差矩阵Pt(k|k-1)、k时刻第t个目标的新息协方差矩阵St(k)和k时刻第t个目标的卡尔曼增益Kt(k),进而计算得到k时刻nk×T′维量测—目标关联矩阵Ω(k);
其中,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,且k时刻对应包含的量测总个数为k时刻接收到的T′个目标的回波数据总个数,k≥1;T′表示雷达跟踪的目标总个数,nk和T′分别为自然数,t的初始值为1;
在步骤1中,所述k时刻第t个目标的状态一步预测k时刻第t个目标的量测预测k时刻第j'个量测对第t个目标的量测预测新息vj't(k)、k时刻第t个目标的一步预测误差协方差矩阵Pt(k|k-1)、k时刻第t个目标的新息协方差矩阵St(k)和k时刻第t个目标的卡尔曼增益Kt(k),进而计算得到k时刻nk×T′维量测—目标关联矩阵Ω(k),其表达式分别:
Pt(k|k-1)=Ft(k|k-1)Pt(k-1|k-1)Ft T(k|k-1)+Qt(k-1)
St(k)=Ht(k)Pt(k|k-1)Ht T(k)+Rt(k)
Kt(k)=Pt(k|k-1)Ht T(k)St -1(k)
其中,wj't(k)表示k时刻第j'个量测落入第t个目标的相关波门内的二进制变量,j'∈{1,2,…,nk},t∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数;wj't(k)=1表示k时刻第j'个量测落入第t个目标的相关波门内,且满足wj't(k)=0表示k时刻第j'个量测没有落入第t个目标的相关波门内,且不满足上标T表示转置,上标-1表示求逆操作,vj't(k)表示k时刻第j'个量测对第t个目标的量测预测的新息,St(k)表示k时刻第t个目标的新息协方差矩阵,k≥1;γt表示第t个目标的相关波门值,上标T表示转置,上标-1表示求逆操作;
步骤2,根据k时刻nk×T′维量测—目标关联矩阵Ω(k),计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵,进而计算k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵;
步骤2的子步骤为:
2a)根据k时刻第j个量测落入第t个目标的相关波门内的二进制变量wjt(k),计算得到k时刻第j个量测与第t个目标互联的有效似然函数其表达式为:
其中,上标T表示转置,上标-1表示求逆操作,j∈{0,1,2,…,nk},t∈{1,2,…,T′},j=0表示k时刻没有量测落入目标的相关波门,nk表示k时刻对应包含的量测总个数,PD为雷达接收正确回波的概率,vjt(k)表示k时刻第j个量测对第t个目标的量测预测的新息,St(k)表示k时刻第t个目标的新息协方差矩阵,k≥1;
2b)令t分别取1至T′,重复执行子步骤2a),进而分别得到k时刻第j个量测与第1个目标互联的有效似然函数至k时刻第j个量测与第T′个目标互联的有效似然函数记为k时刻第j个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵pj(k);
2c)令j分别取0至nk,依次重复执行子步骤2a)和2b),进而分别得到k时刻第0个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵p0(k)至k时刻第nk个量测与T′个目标互联的(nk+1)×1维有效似然函数矩阵记为k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵p(k);
2d)根据k时刻第j个量测与第t个目标互联的有效似然函数计算k时刻第j个量测与第t个目标互联的归一化函数其表达式为:
2e)令j分别取0至nk,重复执行子步骤2d),进而分别得到k时刻第0个量测与第t个目标互联的归一化函数至k时刻第nk个量测与第t个目标互联的归一化函数记为k时刻nk个量测与第t个目标互联的(nk+1)×1维归一化函数矩阵
2f)令t分别取1至T′,依次重复执行子步骤2d)和2e),进而分别得到k时刻nk个量测与第1个目标互联的(nk+1)×1维有效似然函数矩阵至k时刻nk个量测与第T′个目标互联的(nk+1)×1维归一化函数矩阵记为k时刻nk个量测与T′个目标互联的(nk+1)×T'维归一化函数矩阵;
步骤3,根据k时刻nk个量测与T′个目标互联的(nk+1)×T′维有效似然函数矩阵和k时刻nk个量测与T′个目标互联的(nk+1)×T′维归一化矩阵,计算得到k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k);
步骤3的子步骤为:
3.1 计算k时刻nk个量测与T′个目标具有联合概率数据关联算法的4个约束条件:
①
②
③
④
其中,∩表示求交集操作,表示任意,∏表示连乘操作,G{·}表示·在(0,1]区间内;根据联合概率数据关联算法的4个约束条件,构造Hopfield神经网络,所述Hopfield神经网络包含T′×(nk+1)个神经元,每个神经元分别对应一个量测和一个目标,以及一个内部膜电位状态,并且每个神经元的内部膜电位状态为对应神经元输出函数的输入电压;
然后计算得到Hopfield神经网络的能量函数E,具体为:定义k时刻第njt个神经元的输出电压为并分别将k时刻第njt个神经元的输出电压作为k时刻第j个量测与第t个目标的关联概率将k时刻第j个量测与第t个目标互联的归一化函数作为第njt个神经元的输入电流,进而计算得到Hopfield神经网络的能量函数E,其表达式为:
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},表示k时刻第njt个神经元的输出电压,表示k时刻第njτ个神经元的输出电压,njτ=j+1+(τ-1)×T′,njt∈{1,2,…,T′×(nk+1)},表示k时刻第nlτ个神经元的输出电压,nlt=l+1+(t-1)×T′,a表示设定的目标系数,b表示设定的量测系数,c表示设定的概率系数,d表示设定的轻寻优系数,e表示设定的重寻优系数,表示第j个量测与第t个目标互联的归一化函数,表示第l个量测与第τ个目标互联的归一化函数,nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,j=0和l=0均表示k时刻没有量测落入目标的相关波门;
3.2 初始化:令i表示第i次迭代,i∈{1,2,…,A},i的初始值为1,A为设定的最大迭代次数;令njt表示第j个量测与第t个目标对应的神经元,njt∈{1,2,…,T′×(nk+1)},njt的初始值为1,njt=j+1+(t-1)×T′;
根据Hopfield神经网络,构造混沌神经网络,所述混沌神经网络对应包含T′×(nk+1)个神经元,每个神经元分别对应一个量测和一个目标,以及一个内部膜电位状态,并且每个神经元的内部膜电位状态为对应神经元输出函数的输入电压;
3.3 计算得到第i次迭代后Hopfield神经网络在第njt个神经元处的动态方程为其表达式为:
其中,τ0表示设定的比例系数,λ表示步长,表示第i-1次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态,a表示设定的目标系数,表示k时刻第i-1次迭代后Hopfield神经网络的第njτ个神经元的输出电压,b表示设定的量测系数,表示k时刻第i-1次迭代后Hopfield神经网络的第nlt个神经元的输出电压,c表示设定的概率系数,d表示设定的轻寻优系数,e表示设定的重寻优系数,表示k时刻第i-1次迭代后Hopfield神经网络的第njt个神经元的输出电压,表示第j个量测与第t个目标互联的归一化函数,表示第j个量测与第τ个目标互联的归一化函数;
3.4 计算得到k时刻第i次迭代后Hopfield神经网络的第njt个神经元的输出电压为其表达式为:
其中,l∈{0,1,2,…,nk},j∈{0,1,2,…,nk},t∈{1,2,…,T′},τ∈{1,2,…,T′},nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,表示第i次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态,j=0和l=0均表示k时刻没有量测落入目标的相关波门,u0为Hopfield神经网络的第njt个神经元的输出电压的增益参数,u0>0;
计算得到第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i),其表达式为:
u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1)))
其中,u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1))),u0(i-1)表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,γ表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i)的衰减因子,0≤γ≤1,exp表示指数函数,ln为对数操作;
分别令k时刻Hopfield神经网络的T′×(nk+1)个神经元的输出电压集合初始值为Vk(0),令Hopfield神经网络的T′×(nk+1)个神经元的内部膜电位状态集合初始值为u(0),其表达式分别为:
其中,nk表示k时刻对应包含的量测总个数,T′表示雷达跟踪的目标总个数,表示在区间[-0.1u0,0.1u0]内服从均匀分布的随机变量,表示第i次迭代后Hopfield神经网络的第njt个神经元的内部膜电位状态;
3.5 计算得到第i次迭代后混沌神经网络在第njt个神经元处的动态方程为
其中,z(i)=(1-β)z(i-1),β表示第i次迭代后混沌神经网络内每个神经元的自反馈连接权值z(i)的参数,0≤β≤1,z(i-1)表示第i-1次迭代后混沌神经网络内每个神经元的自反馈连接权值,将z(0)记为混沌神经网络内每个神经元的自反馈连接权值的初始值,τ0表示设定的比例系数,λ表示步长,表示第i-1次迭代后混沌神经网络的第njt个神经元的内部膜电位状态,表示k时刻第i-1次迭代后混沌神经网络的第njτ个神经元的输出电压,表示k时刻第i-1次迭代后混沌神经网络的第nlt个神经元的输出电压,表示k时刻第i-1次迭代后混沌神经网络的第njt个神经元的输出电压,表示第j个量测与第t个目标互联的归一化函数,表示第j个量测与第τ个目标互联的归一化函数,I0表示设定的正参数;
3.6 计算得到k时刻第i次迭代后混沌神经网络的第njt个神经元的输出电压为
u0(i)=u0(i-1)/ln(exp(1)+γ(1-u0(i-1)))
其中,u0(i)表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,β表示第i次迭代后混沌神经网络内每个神经元的自反馈连接权值z(i)的参数,0≤β≤1,u0(i-1)表示第i-1次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数,u0(i)≥0,u0(i-1)≥0;将u0(0)记为Hopfield神经网络的第njt个神经元的输出电压的增益参数初始值,γ表示第i次迭代后Hopfield神经网络的第njt个神经元的输出电压的增益参数u0(i)的衰减因子,0≤γ≤1;
分别令k时刻混沌神经网络的T′×(nk+1)个神经元的输出电压集合初始值为令混沌神经网络的T′×(nk+1)个神经元的内部膜电位状态集合初始值为其表达式分别为:
其中,表示在区间[-0.1u0,0.1u0]内服从均匀分布的随机变量,表示第i次迭代后混沌神经网络的第njt个神经元的内部膜电位状态,u0表示设定的初始化参数,u0>0;
3.7 令njt分别取1至T′×(nk+1),返回子步骤3.3,分别得到k时刻第i次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第i次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压记为k时刻第i次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合
3.8 令i加1,重复执行子步骤3.3至3.7,直到得到k时刻第A次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合所述k时刻第A次迭代后混沌神经网络的T′×(nk+1)个神经元的输出电压集合包含k时刻第A次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第A次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压
然后将所述k时刻第A次迭代后混沌神经网络的第1个神经元的输出电压至k时刻第A次迭代后混沌神经网络的第T′×(nk+1)个神经元的输出电压分别记为k时刻第0个量测与第1个目标互联的精确概率至k时刻第nk个量测与第T′个目标互联的(nk+1)×T'维精确概率进而得到k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k),其表达式为:
其中,上标T表示转置,表示k时刻第j个量测与第t个目标互联的精确概率;
步骤4,根据k时刻nk个量测与T′个目标互联的(nk+1)×T'维精确概率矩阵B(k)和k时刻第t个目标的卡尔曼增益Kt(k),计算得到k时刻第t个目标的状态方程进而计算得到k时刻第t个目标的状态误差协方差矩阵Pt(k|k);
步骤5,令t分别取1至T′,重复执行至步骤4,进而分别得到k时刻第1个目标的状态方程至k时刻第T′个目标的状态方程以及k时刻第1个目标的状态误差协方差矩阵P1(k|k)至k时刻第T′个目标的状态误差协方差矩阵PT′(k|k),并记为k时刻T′个目标的状态误差协方差矩阵,此时雷达根据所述k时刻T′个目标的状态误差协方差矩阵对T′个目标实现实时跟踪。
2.如权利要求1所述的一种基于混沌神经网络的雷达多目标跟踪优化方法,其特征在于,在步骤4中,所述k时刻第t个目标的状态方程和所述k时刻第t个目标的状态误差协方差矩阵Pt(k|k),其表达式分别为:
其中,表示k时刻第t个目标的状态一步预测,Kt(k)表示k时刻第t个目标的卡尔曼增益,vt(k)表示k时刻第t个目标的量测预测的组合新息, 表示k时刻第j'个量测与第t个目标互联的精确概率,vj't(k)表示k时刻第j'个量测对第t个目标的量测预测新息,Pt(k|k-1)表示k时刻第t个目标的一步预测误差协方差矩阵,Pt c(k|k)=[I-Kt(k)Ηt(k)]Pt(k|k-1),Ηt(k)表示k时刻第t个目标的量测矩阵,表示k时刻目标t状态的一步预测,Kt(k)表示k时刻第t个目标的卡尔曼增益,上标T表示转置,t∈{1,2,…,T′},T′表示雷达跟踪的目标总个数,表示k时刻没有量测与第t个目标互联的精确概率,j'∈{1,2,…,nk},nk表示k时刻对应包含的量测总个数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710278479.9A CN106970370B (zh) | 2017-04-25 | 2017-04-25 | 基于混沌神经网络的雷达多目标跟踪优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710278479.9A CN106970370B (zh) | 2017-04-25 | 2017-04-25 | 基于混沌神经网络的雷达多目标跟踪优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106970370A CN106970370A (zh) | 2017-07-21 |
CN106970370B true CN106970370B (zh) | 2019-10-01 |
Family
ID=59333763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710278479.9A Active CN106970370B (zh) | 2017-04-25 | 2017-04-25 | 基于混沌神经网络的雷达多目标跟踪优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106970370B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107483232A (zh) * | 2017-07-27 | 2017-12-15 | 中国船舶重工集团公司第七二四研究所 | 基于混沌神经网络的雷达协同信息共享分发路径优化方法 |
KR102465960B1 (ko) * | 2017-08-29 | 2022-11-11 | 인하대학교 산학협력단 | 변화점 검출을 활용한 다중클래스 다중물체 추적 방법 |
CN108566178B (zh) * | 2018-04-16 | 2021-08-03 | 武汉理工大学 | 一种非稳态随机机会网络特征值滤波方法 |
CN108414973B (zh) * | 2018-05-08 | 2020-03-13 | 中国人民解放军战略支援部队信息工程大学 | 一种基于神经网络计算的多目标直接定位方法 |
CN109828211A (zh) * | 2018-12-25 | 2019-05-31 | 宁波飞拓电器有限公司 | 一种基于神经网络自适应滤波的应急灯电池soc估计方法 |
CN109816690A (zh) * | 2018-12-25 | 2019-05-28 | 北京飞搜科技有限公司 | 基于深度特征的多目标追踪方法及系统 |
CN109782270B (zh) * | 2018-12-29 | 2022-06-21 | 中国电子科技集团公司第二十研究所 | 一种多传感器多目标跟踪条件下的数据关联方法 |
CN115685128B (zh) * | 2022-11-14 | 2023-04-11 | 中国人民解放军空军预警学院 | 一种机动目标场景下的雷达目标跟踪算法及电子设备 |
CN115880102B (zh) * | 2023-03-08 | 2023-06-09 | 国网福建省电力有限公司 | 一种电能计量方法、系统、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155646A (zh) * | 2014-08-22 | 2014-11-19 | 西安电子科技大学 | 基于多普勒谱特征的海面低速运动目标检测方法 |
US9201141B1 (en) * | 2012-07-13 | 2015-12-01 | Lockheed Martin Corporation | Multiple simultaneous transmit track beams using phase-only pattern synthesis |
CN106054151A (zh) * | 2016-05-23 | 2016-10-26 | 西安电子科技大学 | 基于数据关联算法的雷达多目标跟踪优化方法 |
CN106526584A (zh) * | 2016-09-12 | 2017-03-22 | 西安电子科技大学 | 多雷达系统中目标检测跟踪联合处理方法 |
-
2017
- 2017-04-25 CN CN201710278479.9A patent/CN106970370B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9201141B1 (en) * | 2012-07-13 | 2015-12-01 | Lockheed Martin Corporation | Multiple simultaneous transmit track beams using phase-only pattern synthesis |
CN104155646A (zh) * | 2014-08-22 | 2014-11-19 | 西安电子科技大学 | 基于多普勒谱特征的海面低速运动目标检测方法 |
CN106054151A (zh) * | 2016-05-23 | 2016-10-26 | 西安电子科技大学 | 基于数据关联算法的雷达多目标跟踪优化方法 |
CN106526584A (zh) * | 2016-09-12 | 2017-03-22 | 西安电子科技大学 | 多雷达系统中目标检测跟踪联合处理方法 |
Non-Patent Citations (1)
Title |
---|
基于双基地雷达的多目标快速关联算法的研究;王瑞;《中国优秀硕士学位论文全文数据库信息科技辑》;20111215(第S2期);第19-24、29-31页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106970370A (zh) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106970370B (zh) | 基于混沌神经网络的雷达多目标跟踪优化方法 | |
CN106872955B (zh) | 基于联合概率数据关联算法的雷达多目标跟踪优化方法 | |
CN110223517B (zh) | 基于时空相关性的短时交通流量预测方法 | |
Khan et al. | A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network | |
Al Bataineh et al. | A comparative study of different curve fitting algorithms in artificial neural network using housing dataset | |
Li et al. | Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA | |
CN106054151B (zh) | 基于数据关联算法的雷达多目标跟踪优化方法 | |
CN102853836B (zh) | 一种基于航迹质量的反馈加权融合方法 | |
CN104156984A (zh) | 一种不均匀杂波环境下多目标跟踪的概率假设密度方法 | |
CN110780290B (zh) | 基于lstm网络的多机动目标跟踪方法 | |
Tepecik et al. | A novel hybrid model for inversion problem of atmospheric refractivity estimation | |
CN113486960A (zh) | 基于长短时记忆神经网络的无人机跟踪方法、装置、存储介质及计算机设备 | |
Hou et al. | An end-to-end LSTM-MDN network for projectile trajectory prediction | |
Galib et al. | Deepextrema: A deep learning approach for forecasting block maxima in time series data | |
Liu et al. | Gaussian process upper confidence bounds in distributed point target tracking over wireless sensor networks | |
Zhang et al. | A network traffic prediction model based on quantum inspired PSO and neural network | |
Nikolaev et al. | Time-dependent series variance learning with recurrent mixture density networks | |
Khan et al. | Optimizing the performance of Kalman filter and alpha-beta filter algorithms through neural network | |
Shen et al. | Hybrid CSA optimization with seasonal RVR in traffic flow forecasting | |
Aljumaily | Predicating the Durations of Irregation Channels Projects in Iraq By Using Ann Modelling | |
Ping et al. | Particle filter based time series prediction of daily sales of an online retailer | |
Zhang et al. | An improved back propagation neural network forecasting model using variation fireworks algorithm for short-time traffic flow | |
Xia et al. | Online Optimization and Feedback Elman Neural Network for Maneuvering Target Tracking | |
Zhang | A Network Traffic Prediction Model Based on Quantum Inspired Pso and Wavelet Neural Network | |
Nathanson | Exploration of Reinforcement Learning in Radar Scheduling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |