CN106970180B - Poison reagent leakage monitoring method - Google Patents
Poison reagent leakage monitoring method Download PDFInfo
- Publication number
- CN106970180B CN106970180B CN201710062476.1A CN201710062476A CN106970180B CN 106970180 B CN106970180 B CN 106970180B CN 201710062476 A CN201710062476 A CN 201710062476A CN 106970180 B CN106970180 B CN 106970180B
- Authority
- CN
- China
- Prior art keywords
- sensor
- gas
- controller
- time period
- wireless transceiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 13
- 238000012544 monitoring process Methods 0.000 title claims abstract description 11
- 231100000614 poison Toxicity 0.000 title description 2
- 239000002574 poison Substances 0.000 title 1
- 238000001514 detection method Methods 0.000 claims description 69
- 230000001427 coherent effect Effects 0.000 claims description 27
- 230000009471 action Effects 0.000 claims description 9
- 231100000331 toxic Toxicity 0.000 claims description 9
- 230000002588 toxic effect Effects 0.000 claims description 9
- 150000004008 N-nitroso compounds Chemical class 0.000 claims description 6
- 150000004982 aromatic amines Chemical class 0.000 claims description 6
- 230000000284 resting effect Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 239000003440 toxic substance Substances 0.000 claims description 2
- 231100000167 toxic agent Toxicity 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 231100000572 poisoning Toxicity 0.000 abstract 1
- 230000000607 poisoning effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 56
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0073—Control unit therefor
- G01N33/0075—Control unit therefor for multiple spatially distributed sensors, e.g. for environmental monitoring
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及实验室试剂泄露监测技术领域,尤其是涉及一种检测针对性强、准确度高的毒害试剂泄露监测方法。The invention relates to the technical field of laboratory reagent leakage monitoring, in particular to a toxic reagent leakage monitoring method with strong detection pertinence and high accuracy.
背景技术Background technique
无线传感器网络(Wireless Sensor Networks,WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接。通过无线通信方式形成的一个多跳自组织网络。WSN广泛应用于军事、智能交通、环境监控、医疗卫生等多个领域。Wireless Sensor Networks (WSN) is a distributed sensor network whose extremities are sensors that can sense and inspect the outside world. Sensors in WSN communicate wirelessly, so network settings are flexible, device locations can be changed at any time, and wired or wireless connections to the Internet are possible. A multi-hop self-organizing network formed by wireless communication. WSN is widely used in military, intelligent transportation, environmental monitoring, medical and health and other fields.
实验室环境中,芳胺及其衍生物,N-亚硝基化合物,烷基化剂,稠环芳烃,含硫化合物,苯及其化合物,氟化氢,重氮甲烷等等是常见的挥发性有毒有害试剂,虽然一些单位的实验室实行了有毒有害试剂的专人管理和独立空间存放,但是毕竟试剂是要从仓库中人为取出并且在实验室环境中进行实验操作,因此,在实验过程中由于操作和存放方式的不当而引发的实验室安全事故层出不穷。因此,如果在实验室环境空间内对有毒有害气体进行有效监测是一项重要而困难的工作。In the laboratory environment, aromatic amines and their derivatives, N-nitroso compounds, alkylating agents, condensed aromatic hydrocarbons, sulfur-containing compounds, benzene and its compounds, hydrogen fluoride, diazomethane, etc. are common volatile toxic substances. Hazardous reagents, although some units' laboratories have implemented special personnel management and independent space storage of toxic and harmful reagents, but after all, the reagents must be artificially taken out from the warehouse and subjected to experimental operations in the laboratory environment. Therefore, during the experiment, due to the operation Laboratory safety accidents caused by improper storage methods emerge in an endless stream. Therefore, it is an important and difficult task to effectively monitor toxic and harmful gases in the laboratory environment space.
发明内容SUMMARY OF THE INVENTION
本发明的发明目的是为了克服现有技术中的无法对实验室中的芳胺及其衍生物,N-亚硝基化合物泄漏进行检测的不足,提供了一种检测针对性强、准确度高的毒害试剂泄露监测方法。The purpose of the invention is to overcome the deficiencies in the prior art that the leakage of aromatic amines and their derivatives and N-nitroso compounds in the laboratory cannot be detected, and provides a detection method with strong pertinence and high accuracy. method for monitoring the leakage of toxic reagents.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种毒害试剂泄露监测方法,包括控制器、第一无线收发器、温度传感器、湿度传感器和m个气体检测装置;每个气体检测装置均包括第二无线收发器、单片机和9个气体传感器;控制器分别与第一无线收发器、温度传感器和湿度传感器电连接;每个气体检测装置的单片机分别与第二无线收发器和各个气体传感器电连接;各个气体传感器分别为SB-19-00传感器、SB-AD3-00传感器、TGS-2600传感器、TGS-202传感器、TGS-2620传感器、TGS-242传感器、TGS-813传感器、TGS-2620传感器和SB-42A-00传感器;A method for monitoring leakage of toxic reagents, comprising a controller, a first wireless transceiver, a temperature sensor, a humidity sensor and m gas detection devices; each gas detection device includes a second wireless transceiver, a single-chip microcomputer and 9 gas sensors; The controller is respectively electrically connected with the first wireless transceiver, the temperature sensor and the humidity sensor; the single chip microcomputer of each gas detection device is electrically connected with the second wireless transceiver and each gas sensor respectively; each gas sensor is a SB-19-00 sensor respectively , SB-AD3-00 sensor, TGS-2600 sensor, TGS-202 sensor, TGS-2620 sensor, TGS-242 sensor, TGS-813 sensor, TGS-2620 sensor and SB-42A-00 sensor;
包括如下步骤:It includes the following steps:
(1-1)控制器控制每个传感器工作,第二无线收发器每隔时间T1发送1次各个气体传感器的检测值;(1-1) The controller controls each sensor to work, and the second wireless transceiver sends the detection value of each gas sensor once every time T1;
(1-2)控制器选取温度传感器、湿度传感器和各个气体传感器在前后两个长度均为L的时间段内的检测值;其中,前后两个时间段分别为时间段A和时间段B,L=n×T1,则控制获得时间段A和时间段B内每个传感器的n个检测值;(1-2) The controller selects the detection value of the temperature sensor, the humidity sensor and each gas sensor in the time period with the length of L before and after; wherein, the two time periods before and after are respectively the time period A and the time period B, L=n×T1, then the control obtains n detection values of each sensor in the time period A and the time period B;
(1-3)利用温度传感器和湿度传感器的检测值对每个气体传感器的检测值进行修正处理;(1-3) Correct the detected value of each gas sensor by using the detected value of the temperature sensor and the humidity sensor;
(1-4)判断时间段A和时间段B内每个气体传感器的Sc的相似度;(1-4) Judging the similarity of the Sc of each gas sensor in the time period A and the time period B;
(1-5)控制器利用时间段B内剩余的yi组成每个气体传感器的检测信号I′(t),计算所有气体传感器的I′(t)的平均信号I(t);(1-5) The controller uses the remaining yi in the time period B to form the detection signal I'(t) of each gas sensor, and calculates the average signal I(t) of the I'(t) of all the gas sensors;
(1-6)将I(t)输入相干共振模型中,调整相干共振模型的μ值,使相干共振模型发生共振;(1-6) Input I(t) into the coherent resonance model, adjust the μ value of the coherent resonance model, so that the coherent resonance model resonates;
(1-7)相干共振模型输出互相关系数,若互相关系数在区间[0.85,1.1]内时,控制器做出实验室中有芳胺、其衍生物或N-亚硝基化合物泄漏的判断。(1-7) The coherent resonance model outputs the cross-correlation coefficient. If the cross-correlation coefficient is in the interval [0.85, 1.1], the controller will indicate that there is leakage of aromatic amine, its derivatives or N-nitroso compounds in the laboratory. judge.
本发明的9个气体传感器用于检测泄漏的有毒试剂的挥发气体,9个不同的气体传感器可以全方位锁定有芳胺、其衍生物或N-亚硝基化合物的挥发气体,采用温度和湿度传感器的检测值对每个气体传感器的检测值进行修正处理,可有效消除温湿度基线变化所造成的传感器信号波动,提高了检测的准确度;相似度处理进一步提高了检测的准确度。The 9 gas sensors of the present invention are used to detect the volatile gas of leaked toxic reagents, and 9 different gas sensors can lock the volatile gas of aromatic amine, its derivatives or N-nitroso compounds in all directions, using temperature and humidity The detection value of the sensor is corrected for the detection value of each gas sensor, which can effectively eliminate the sensor signal fluctuation caused by the change of the temperature and humidity baseline, and improve the detection accuracy; the similarity processing further improves the detection accuracy.
作为优选,步骤(1-1)包括如下步骤:As preferably, step (1-1) comprises the steps:
控制器控制温度传感器和湿度传感器开始检测;控制器通过第一无线收发器发送开始工作的指令,每个气体检测装置的第二无线收发器收到指令后,每个气体检测装置的单片机控制各个气体传感器开始检测,单片机控制第二无线收发器每隔时间T1发送1次各个气体传感器的检测值。The controller controls the temperature sensor and the humidity sensor to start detection; the controller sends an instruction to start working through the first wireless transceiver, and after the second wireless transceiver of each gas detection device receives the instruction, the single-chip microcomputer of each gas detection device controls each gas detection device. The gas sensor starts to detect, and the single-chip microcomputer controls the second wireless transceiver to send the detection value of each gas sensor once every time T1.
作为优选,步骤(1-3)包括如下步骤:As preferably, step (1-3) comprises the steps:
对于时间段A和时间段B内的每个气体传感器的每个检测值S101均进行如下处理:The following processing is performed for each detection value S101 of each gas sensor in the time period A and the time period B:
设定温度传感器和湿度传感器的检测值分别为S102和S103;Set the detection values of the temperature sensor and the humidity sensor as S102 and S103 respectively;
控制器利用公式计算每个气体传感器修正后的检测值Sc。The controller utilizes the formula Calculate the corrected detection value Sc for each gas sensor.
作为优选,步骤(1-4)包括如下步骤:As preferably, step (1-4) comprises the steps:
设定时间段A的每个Sc为xi,时间段B的每个Sc为yi,i=1,2,…,n;Set each Sc of time period A as x i , and each Sc of time period B as y i , i=1,2,...,n;
利用公式计算两个时间段对应Sc的相似度;Use the formula Calculate the similarity of Sc corresponding to the two time periods;
若si<1,则将与si对应的yi删除;其中,为时间段A内所有Sc的平均值,是时间段B内所有Sc的平均值。If s i < 1, delete y i corresponding to s i ; among them, is the average value of all Sc in time period A, is the average of all Scs in time period B.
作为优选,所述相干共振模型为Preferably, the coherent resonance model is
其中,VT是模型触发动作阈值电位,VR是触发单元动作完成之后的回复电位,μτ是模型触发动作后静息状态参量,VR<VT,ξ(t)高斯随机激励参量,V(t)是相干共振模型的实时电位,μ是相干共振模型的调整系数,τ是相干共振模型的静息常数,V(t+)是相干共振模型在t+时刻的实时电位,V2(t)是V(t)的平方,μ2τ是μ2与τ的乘积。Among them, V T is the model trigger action threshold potential, VR is the recovery potential after the trigger unit action is completed, μτ is the resting state parameter after the model trigger action, VR < V T , ξ( t ) Gaussian random excitation parameter, V (t) is the real-time potential of the coherent resonance model, μ is the adjustment coefficient of the coherent resonance model, τ is the resting constant of the coherent resonance model, V(t + ) is the real-time potential of the coherent resonance model at time t + , V 2 ( t) is the square of V(t) and μ 2 τ is the product of μ 2 and τ.
作为优选,还包括设于实验室中的m个椭圆形轨道,各个气体检测装置分别位于各个椭圆形轨道上;每个气体检测装置均包括壳体,壳体内设有永磁铁,每个椭圆形轨道上均设有若干个间隔排列的电磁铁;控制器分别与各个电磁铁连接;Preferably, it also includes m elliptical orbits set in the laboratory, and each gas detection device is located on each elliptical orbit; each gas detection device includes a housing, and a permanent magnet is arranged in the There are several electromagnets arranged at intervals on the track; the controller is respectively connected with each electromagnet;
在每个气体检测装置的工作过程中,控制器控制气体检测装置所在的椭圆形轨道上的电磁铁依次通电,使各个电磁铁与永磁铁之间依次产生吸引力,使气体检测装置在椭圆形轨道上移动。各个椭圆形轨道一端均靠近实验室的试验台,另一端远离实验室的试验台。During the working process of each gas detection device, the controller controls the electromagnets on the elliptical track where the gas detection device is located to be energized in turn, so that each electromagnet and the permanent magnet generate attraction force in turn, so that the gas detection device is in the oval shape. move on track. Each elliptical track has one end close to the laboratory test bench and the other end away from the laboratory test bench.
因此,本发明具有如下有益效果:检测针对性强,灵敏度高,准确度高。Therefore, the present invention has the following beneficial effects: strong detection pertinence, high sensitivity and high accuracy.
附图说明Description of drawings
图1是本发明的一种原理框图;Fig. 1 is a kind of principle block diagram of the present invention;
图2是本发明的一种流程图。Figure 2 is a flow chart of the present invention.
图中:控制器1、第一无线收发器2、温度传感器3、湿度传感器4、气体检测装置5、第二无线收发器51、单片机52、气体传感器53。In the figure: a controller 1 , a first wireless transceiver 2 , a temperature sensor 3 , a humidity sensor 4 , a gas detection device 5 , a second wireless transceiver 51 , a microcontroller 52 , and a gas sensor 53 .
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
如图1所示的实施例是一种毒害试剂泄露监测方法,包括控制器1、第一无线收发器2、温度传感器3、湿度传感器4和10个气体检测装置5;每个气体检测装置均包括第二无线收发器51、单片机52和9个气体传感器53;控制器分别与第一无线收发器、温度传感器和湿度传感器电连接;每个气体检测装置的单片机分别与第二无线收发器和各个气体传感器电连接;各个气体传感器分别为SB-19-00传感器、SB-AD3-00传感器、TGS-2600传感器、TGS-202传感器、TGS-2620传感器、TGS-242传感器、TGS-813传感器、TGS-2620传感器和SB-42A-00传感器;The embodiment shown in FIG. 1 is a method for monitoring the leakage of toxic reagents, comprising a controller 1, a first wireless transceiver 2, a temperature sensor 3, a humidity sensor 4 and 10 gas detection devices 5; each gas detection device is It includes a second wireless transceiver 51, a single-chip microcomputer 52 and nine gas sensors 53; the controller is electrically connected with the first wireless transceiver, temperature sensor and humidity sensor respectively; the single-chip microcomputer of each gas detection device is respectively connected with the second wireless transceiver and the humidity sensor. Each gas sensor is electrically connected; each gas sensor is SB-19-00 sensor, SB-AD3-00 sensor, TGS-2600 sensor, TGS-202 sensor, TGS-2620 sensor, TGS-242 sensor, TGS-813 sensor, TGS-2620 sensor and SB-42A-00 sensor;
包括如下步骤:It includes the following steps:
步骤100,传感器开始工作,第二无线收发器发送各个气体传感器的检测值;Step 100, the sensor starts to work, and the second wireless transceiver sends the detection value of each gas sensor;
控制器控制温度传感器和湿度传感器开始检测;控制器通过第一无线收发器发送开始工作的指令,每个气体检测装置的第二无线收发器收到指令后,每个气体检测装置的单片机控制各个气体传感器开始检测,单片机控制第二无线收发器每隔时间1秒发送1次各个气体传感器的检测值;The controller controls the temperature sensor and the humidity sensor to start detection; the controller sends an instruction to start working through the first wireless transceiver, and after the second wireless transceiver of each gas detection device receives the instruction, the single-chip microcomputer of each gas detection device controls each gas detection device. The gas sensor starts to detect, and the single-chip microcomputer controls the second wireless transceiver to send the detection value of each gas sensor every 1 second;
步骤200,选取时间段A和时间段B的检测值Step 200, select the detection values of time period A and time period B
控制器选取温度传感器、湿度传感器和各个气体传感器在前后两个长度均为L=30分钟的时间段内的检测值;其中,前后两个时间段分别为时间段A和时间段B,则控制获得时间段A和时间段B内每个传感器的1800个检测值;The controller selects the detection values of the temperature sensor, the humidity sensor and each gas sensor in the time period with the length of L=30 minutes before and after; wherein, the two time periods before and after are respectively the time period A and the time period B, then the control Obtain 1800 detection values of each sensor in time period A and time period B;
步骤300,利用温度传感器和湿度传感器的检测值对每个气体传感器的检测值进行修正处理;Step 300, using the detected values of the temperature sensor and the humidity sensor to correct the detected value of each gas sensor;
对于时间段A和时间段B内的每个气体传感器的每个检测值S101均进行如下处理:The following processing is performed for each detection value S101 of each gas sensor in the time period A and the time period B:
设定温度传感器和湿度传感器的检测值分别为S102和S103;Set the detection values of the temperature sensor and the humidity sensor as S102 and S103 respectively;
控制器利用公式计算每个气体传感器修正后的检测值Sc。The controller utilizes the formula Calculate the corrected detection value Sc for each gas sensor.
步骤400,判断时间段A和时间段B内每个气体传感器的Sc的相似度;Step 400, judging the similarity of the Sc of each gas sensor in the time period A and the time period B;
设定时间段A的每个Sc为xi,时间段B的每个Sc为yi,i=1,2,…,n;Set each Sc of time period A as x i , and each Sc of time period B as y i , i=1,2,...,n;
利用公式计算两个时间段对应Sc的相似度;Use the formula Calculate the similarity of Sc corresponding to the two time periods;
若si<1,则将与si对应的yi删除;其中,为时间段A内所有Sc的平均值,是时间段B内所有Sc的平均值。If s i < 1, delete y i corresponding to s i ; among them, is the average value of all Sc in time period A, is the average of all Scs in time period B.
步骤500,控制器利用时间段B内剩余的yi组成每个气体传感器的检测信号I′(t),计算所有气体传感器的I′(t)的平均信号I(t);Step 500, the controller uses the remaining yi in the time period B to form the detection signal I'(t) of each gas sensor, and calculates the average signal I(t) of the I'(t) of all the gas sensors;
步骤600,将I(t)输入相干共振模型中,调整相干共振模型的μ值,使相干共振模型发生共振;Step 600, input I(t) into the coherent resonance model, adjust the μ value of the coherent resonance model, so that the coherent resonance model resonates;
相干共振模型为The coherent resonance model is
其中,VT是模型触发动作阈值电位,VR是触发单元动作完成之后的回复电位,μτ是模型触发动作后静息状态参量,VR<VT,ξ(t)高斯随机激励参量,V(t)是相干共振模型的实时电位,μ是相干共振模型的调整系数,τ是相干共振模型的静息常数,V(t+)是相干共振模型在t+时刻的实时电位,V2(t)是V(t)的平方,μ2τ是μ2与τ的乘积。Among them, V T is the model trigger action threshold potential, VR is the recovery potential after the trigger unit action is completed, μτ is the resting state parameter after the model trigger action, VR < V T , ξ( t ) Gaussian random excitation parameter, V (t) is the real-time potential of the coherent resonance model, μ is the adjustment coefficient of the coherent resonance model, τ is the resting constant of the coherent resonance model, V(t + ) is the real-time potential of the coherent resonance model at time t + , V 2 ( t) is the square of V(t) and μ 2 τ is the product of μ 2 and τ.
步骤700,相干共振模型输出互相关系数,若互相关系数在区间[0.85,1.1]内时,控制器做出实验室中有芳胺、其衍生物或N-亚硝基化合物泄漏的判断。In step 700, the coherent resonance model outputs the cross-correlation coefficient. If the cross-correlation coefficient is within the interval [0.85, 1.1], the controller determines that there is leakage of aromatic amines, derivatives thereof or N-nitroso compounds in the laboratory.
还包括设于实验室中的m个椭圆形轨道,各个气体检测装置分别位于各个椭圆形轨道上;每个气体检测装置均包括壳体,壳体内设有永磁铁,每个椭圆形轨道上均设有若干个间隔排列的电磁铁;控制器分别与各个电磁铁连接;It also includes m elliptical tracks arranged in the laboratory, and each gas detection device is located on each elliptical track; each gas detection device includes a housing, and a permanent magnet is arranged in the housing, and each elliptical track is There are several electromagnets arranged at intervals; the controller is respectively connected with each electromagnet;
在每个气体检测装置的工作过程中,控制器控制气体检测装置所在的椭圆形轨道上的电磁铁依次通电,使各个电磁铁与永磁铁之间依次产生吸引力,使气体检测装置在椭圆形轨道上移动。During the working process of each gas detection device, the controller controls the electromagnets on the elliptical track where the gas detection device is located to be energized in turn, so that each electromagnet and the permanent magnet generate attraction force in turn, so that the gas detection device is in the oval shape. move on track.
应理解,本实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。It should be understood that this embodiment is only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710062476.1A CN106970180B (en) | 2017-01-24 | 2017-01-24 | Poison reagent leakage monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710062476.1A CN106970180B (en) | 2017-01-24 | 2017-01-24 | Poison reagent leakage monitoring method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106970180A CN106970180A (en) | 2017-07-21 |
CN106970180B true CN106970180B (en) | 2019-06-25 |
Family
ID=59334770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710062476.1A Expired - Fee Related CN106970180B (en) | 2017-01-24 | 2017-01-24 | Poison reagent leakage monitoring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106970180B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108956875B (en) * | 2018-07-03 | 2020-10-27 | 浙江农林大学 | Laboratory safety monitoring system and method based on Internet of things |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588030A (en) * | 2004-07-09 | 2005-03-02 | 大连理工大学 | Portable gas detection analyzer with temperature and humidity compensation function |
CN101814112A (en) * | 2010-01-11 | 2010-08-25 | 北京世纪高通科技有限公司 | Method and device for processing data |
US7916275B2 (en) * | 2007-09-19 | 2011-03-29 | Asml Netherlands B.V. | Methods of characterizing similarity or consistency in a set of entities |
CN103412099A (en) * | 2013-08-01 | 2013-11-27 | 浙江工商大学 | Device and method for detecting pawpaw storage time |
CN104713985A (en) * | 2013-12-17 | 2015-06-17 | 徐通 | Wireless sensor-based mine environment harmful gas detection system |
CN104981688A (en) * | 2013-05-29 | 2015-10-14 | 罗斯蒙特分析公司 | Hydrogen sulfide gas detector with humidity and temperature compensation |
CN105136985A (en) * | 2015-08-12 | 2015-12-09 | 浙江工商大学 | Detection system and detection method for volatile benzene gas concentration in experimental environment |
CN204925068U (en) * | 2015-07-17 | 2015-12-30 | 成都汉康信息产业有限公司 | Carbon discharges intensity monitor sensor installation device |
-
2017
- 2017-01-24 CN CN201710062476.1A patent/CN106970180B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588030A (en) * | 2004-07-09 | 2005-03-02 | 大连理工大学 | Portable gas detection analyzer with temperature and humidity compensation function |
US7916275B2 (en) * | 2007-09-19 | 2011-03-29 | Asml Netherlands B.V. | Methods of characterizing similarity or consistency in a set of entities |
CN101814112A (en) * | 2010-01-11 | 2010-08-25 | 北京世纪高通科技有限公司 | Method and device for processing data |
CN104981688A (en) * | 2013-05-29 | 2015-10-14 | 罗斯蒙特分析公司 | Hydrogen sulfide gas detector with humidity and temperature compensation |
CN103412099A (en) * | 2013-08-01 | 2013-11-27 | 浙江工商大学 | Device and method for detecting pawpaw storage time |
CN104713985A (en) * | 2013-12-17 | 2015-06-17 | 徐通 | Wireless sensor-based mine environment harmful gas detection system |
CN204925068U (en) * | 2015-07-17 | 2015-12-30 | 成都汉康信息产业有限公司 | Carbon discharges intensity monitor sensor installation device |
CN105136985A (en) * | 2015-08-12 | 2015-12-09 | 浙江工商大学 | Detection system and detection method for volatile benzene gas concentration in experimental environment |
Also Published As
Publication number | Publication date |
---|---|
CN106970180A (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106774009B (en) | Harmful influence based on nonlinear model reveals method for early warning | |
Kim et al. | Heat of absorption of CO2 with aqueous solutions of MEA: new experimental data | |
CN102770820A (en) | Robot | |
CN105841661A (en) | Bridge dynamic health real-time monitoring device | |
Hamzehie et al. | Experimental and theoretical study of carbon dioxide solubility in aqueous solution of potassium glycinate blended with piperazine as new absorbents | |
BE1026852B1 (en) | Method for detecting leaks in a gas network under pressure or under vacuum and gas network | |
CN106970180B (en) | Poison reagent leakage monitoring method | |
CN108881326A (en) | Determine method, system, medium and the equipment of exception of network traffic behavior | |
CN106645593B (en) | Harmful influence poisons reagent leak hunting method | |
KR20170123594A (en) | Method for tracking odor emission using unmanned air vehicle in real-time | |
CN111949927A (en) | A Water Pollution Traceability Method Based on Four-point Symmetrical Emergency Monitoring Network | |
CN105843140A (en) | Underground pipeline monitoring system for oil exploitation | |
CN107305209B (en) | Leak detection method for volatile toxic reagents based on LEIF model | |
BR112022004061A2 (en) | System and method for crop monitoring and management | |
WO2019108831A3 (en) | Multi-sensor gas sampling detection system for radical gases and short-lived molecules and method of use | |
JP2005516222A5 (en) | ||
CN111257519A (en) | Leakage source identification device and method in building space based on sensor array and impulse response principle | |
Eggels et al. | Infotaxis in a turbulent 3D channel flow | |
CN103929808A (en) | A method for localizing gas sources based on maximum likelihood in wireless sensor networks | |
EP4085246C0 (en) | DEVICE FOR DETECTING THE PRESENCE OF POLLENS IN THE AIR, AND CORRESPONDING DETECTION METHOD | |
CN107643368A (en) | A kind of sensor sensitivity factor acquisition method and terminal device | |
CN111103401A (en) | Continuous monitoring system for smoke emission | |
KR20160121286A (en) | Method for tracking odor emission using unmanned air vehicle in real-time | |
CN105841662A (en) | Sewage treatment system capable of realizing real-time monitoring | |
Freshour et al. | Quantifying amine permeation sources with acid neutralization: calibrations and amines measured in coastal and continental atmospheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190625 |
|
CF01 | Termination of patent right due to non-payment of annual fee |