CN106967012B - A kind of styrene oxidation method - Google Patents

A kind of styrene oxidation method Download PDF

Info

Publication number
CN106967012B
CN106967012B CN201610022722.6A CN201610022722A CN106967012B CN 106967012 B CN106967012 B CN 106967012B CN 201610022722 A CN201610022722 A CN 201610022722A CN 106967012 B CN106967012 B CN 106967012B
Authority
CN
China
Prior art keywords
titanium
molecular sieve
catalyst bed
sieve
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610022722.6A
Other languages
Chinese (zh)
Other versions
CN106967012A (en
Inventor
林民
史春风
朱斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201610022722.6A priority Critical patent/CN106967012B/en
Publication of CN106967012A publication Critical patent/CN106967012A/en
Application granted granted Critical
Publication of CN106967012B publication Critical patent/CN106967012B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained

Abstract

The present invention relates to field of fine chemical, specifically disclose a kind of styrene oxidation method, it is included under oxidation reaction condition, make containing styrene, the reaction feed of oxidant and optional solvent flows successively through the 1st catalyst bed to the n-th catalyst bed, the integer that n is 2 or more, at least one Titanium Sieve Molecular Sieve is filled in the catalyst bed, this method further includes by the 1st catalyst bed in reaction feed to during the n-th catalyst bed, to the 1st catalyst bed to introducing at least one carrying object between at least a pair of adjacent catalyst bed between the n-th catalyst bed, so that on the basis of the flow direction of reaction feed, this is in adjacent catalyst bed, it is higher than the superficial velocity of the reaction stream in the catalyst bed of upstream positioned at the superficial velocity of reaction stream in the catalyst bed in downstream.In the single trip use service life that Titanium Sieve Molecular Sieve can effectively be extended according to the method for the present invention, the effective rate of utilization and target product selectivity of oxidant are improved, such as Styryl oxide selectivity.

Description

A kind of styrene oxidation method
Technical field
The present invention relates to a kind of styrene oxidation methods.
Background technique
Styryl oxide can be used as the diluent of epoxy resin, UV absorbent, fumet and organic synthesis, pharmacy, perfume (or spice) Expect that the important intermediate of industry, such as Styryl oxide add bata-phenethyl alcohol made from hydrogen to be the master of attar of rose, caryophyllus oil, neroli oil Ingredient is wanted, and is widely used in synthetic food, tobacco, soap and cosmetic essence.In recent years, both at home and abroad to bata-phenethyl alcohol and doctor The demand sharp increase of medicine levamisol causes Styryl oxide on domestic and international market the situation that supply falls short of demand occur, this gives The research for preparing Styryl oxide brings vast potential for future development.
Styryl oxide is industrially mainly synthesized by halogenohydrin method, is also had and is closed on a small quantity with hydrogen peroxide epoxidation vinyl benzene At.Halogenohydrin method epoxidizing method is simple and direct, but material consumption and energy consumption are all very high, seriously polluted, is urgency production technology to be modified. The method of hydrogen peroxide catalyzed epoxidation vinyl benzene Styryl oxide, i.e., hydrogen peroxide catalyzed epoxidation vinyl benzene have peace Entirely, economy, non-environmental-pollution, it is environmentally friendly the advantages that, but need corresponding catalyst.Studying at present more is titanium silicon molecule Sieve/H2O2Epoxidation process.Such as S.B.Kumar (J.Catal.1995,156:163-166) report makees catalyst, dilute with TS-1 H2O2(25%) make oxidant, epoxidation is carried out to styrene;(the Journal of Dalian University of Technology Total 2002,42 (5): 535- such as Li Gang 538) make catalyst with the TS-1 that cheap raw material synthesizes and epoxidation etc. is carried out to styrene.
When using hydrogen peroxide catalyzed epoxidation vinyl benzene, if using Titanium Sieve Molecular Sieve as catalyst, Neng Gouti The conversion ratio of hyperoxia agent and the selectivity of desirable oxidation product.But with the extension in reaction time, the catalysis of Titanium Sieve Molecular Sieve Activity can be on a declining curve, and desirable oxidation selectivity of product is caused to be substantially reduced.When reaction carries out in fixed bed reactors, Since titanium molecular sieve catalysis activity reduces, needs to regenerate Titanium Sieve Molecular Sieve in reactor or outside reactor, cause Reactor down-time, to influence production efficiency and improve the operating cost of device.
Therefore, for using Titanium Sieve Molecular Sieve as catalyst epoxidation vinyl benzene, how to extend as catalysis In the single trip use service life of the Titanium Sieve Molecular Sieve of agent, reducing regeneration frequency is the key that improve production efficiency and reduce operating cost ring One of section.
Summary of the invention
The purpose of the present invention is to provide a kind of styrene oxidation method, this method is able to extend the one way of Titanium Sieve Molecular Sieve Service life.
The present invention provides a kind of styrene oxidation method, this method is included under oxidation reaction condition, makes containing benzene second The reaction feed of alkene, at least one oxidant and optional at least one solvent flows successively through the 1st catalyst bed to the n-th catalysis Agent bed, the integer that n is 2 or more are filled at least one Titanium Sieve Molecular Sieve in the catalyst bed, this method further include Reaction feed by the 1st catalyst bed to during the n-th catalyst bed, to the 1st catalyst bed to the n-th catalyst bed it Between at least a pair of adjacent catalyst bed between introduce at least one carrying object so that using the flow direction of reaction feed as base Standard, this is in adjacent catalyst bed, and the superficial velocity of reaction stream is higher than positioned at upper in the catalyst bed in downstream The superficial velocity of reaction stream in the catalyst bed of trip.
In the single trip use service life that Titanium Sieve Molecular Sieve can effectively be extended according to the method for the present invention, reduce Titanium Sieve Molecular Sieve Regeneration frequency extends the terminal life of Titanium Sieve Molecular Sieve.
Specific embodiment
Detailed description of the preferred embodiments below.It should be understood that described herein specific Embodiment is merely to illustrate and explain the present invention, and is not intended to restrict the invention.
The present invention provides a kind of styrene oxidation method, this method is included under oxidation reaction condition, makes containing benzene second The reaction feed of alkene, at least one oxidant and optional at least one solvent flows successively through the 1st catalyst bed to the n-th catalysis Agent bed, the integer that n is 2 or more are filled at least one Titanium Sieve Molecular Sieve in the catalyst bed.Herein, " at least one Kind " indicate one or more kinds of;" optional " expression " with or without ".
In the present invention, n is the integer between 2 to 50, be preferably selected from 2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19 or 20,2,3,4,5,6,7,8,9 or 10 are more preferably selected from, further preferably selected from 2,3,4 or 5, such as 2。
In the present invention, statement " reaction feed flows successively through the 1st to the n-th catalyst bed " is referred to from the 1st catalyst bed Layer to the n-th catalyst bed successively constitutes the glide path of the reaction feed, but this does not imply that the reaction feed Do not have any alternatively to flow through the 1st to the n-th catalyst bed.In fact, start since entry into the 1st catalyst bed, react into Material (such as its composition or character) can change because styrene oxidation etc. occurs, and thus lose its conduct The initial composition or character of reaction raw materials.In consideration of it, understand to meet those skilled in the art to the routine of reaction raw materials, In context of the invention, the reaction feed for flowing through each catalyst bed is generally known as reaction mass.Moreover, flowing through difference Catalyst bed when, which (such as because react or introduce new material, such as carries as various factors Fluid) and change, cause the reaction mass (such as its composition or character) for flowing through different catalysts bed general Also it is different.The present invention pays close attention to superficial velocity of each reaction mass when flowing through its corresponding catalyst bed.
It according to the method for the present invention, further include passing through the 1st catalyst bed to the n-th catalyst bed phase in reaction feed Between, at least one is introduced to the 1st catalyst bed between at least a pair of adjacent catalyst bed between the n-th catalyst bed Kind carrying object, so that this is to the catalyst bed in adjacent catalyst bed, positioned at downstream on the basis of the flow direction of reaction feed The superficial velocity of reaction stream is higher than the superficial velocity of the reaction stream in the catalyst bed of upstream in layer.
In the present invention, the superficial velocity is (with kg/ (m2S) count) it refers in the unit time through a certain catalyst bed The mass flow (in terms of kg/s) and a certain cross-sectional area of the catalyst bed of the whole reaction mass of layer are (with m2Meter) ratio. For example, the superficial velocity for flowing through the reaction mass of the 1st catalyst bed is v1, refer in the unit time through the 1st catalyst The mass flow (in terms of kg/s) and a certain cross-sectional area of the catalyst bed of the reaction mass of bed whole process are (with m2Meter) ratio Value.Here, " cross-sectional area " is generally referred to as average traversal area for simplifying the angle that the present invention describes.Moreover, So-called " average traversal area " refers to the total catalyst admission space of the catalyst bed (with m3Meter) and the catalyst bed For layer along the ratio of the length (in terms of m) in reaction mass flowing direction, this is obvious to those skilled in the art.For Isometrical catalyst bed, the average traversal area is cross-sectional area.In addition, the present invention is to flowing through each catalyst bed The superficial velocity (absolute value) of reaction mass do not have particular/special requirement, can directly be applicable in it is those of conventionally known in the art, such as The superficial velocity (absolute value) for flowing through the reaction mass of the 1st catalyst bed generally can be in 0.001-200kg/ (m2S) In range, but is not limited thereto.
From making the more excellent angle of the technology of the present invention effect, to the 1st catalyst bed to the n-th catalyst bed it Between at least a pair of adjacent catalyst bed between introduce at least one carrying object so that using the flow direction of reaction feed as base Standard, the superficial velocity of reaction stream is expressed as v in the catalyst bed in downstreamm, anti-in the catalyst bed of upstream The superficial velocity of logistics is answered to be expressed as vm-1, the introduction volume of the carrying object makes vm/vm-1=1.5-15, more preferable vm/vm-1= 2-10, further preferred vm/vm-1=2-5, m are the arbitrary integer in [2, n] section, that is, select 2,3 ..., it is any one in n A integer;Also, as n=2, m=2.For example, in m=2, preferably v2/v1=1.5-15, more preferable v2/v1=2-10, into The preferred v of one step2/v1=2-5.
According to the method for the present invention, the 1st to the n-th catalyst bed can be all set in the same reactor, The differential responses region for constituting the reactor, also can be set individually in n reactor, constitute n different reactors, or Person is set in two or more (up to n-1) reactors in the way of any combination, constitutes multi-reaction-area domain and more The combination of reactor.
According to the method for the present invention, the 1st to the n-th catalyst bed can continuously be connected, and be thus integrally formed formula and urge Agent bed, can also there are separated places with any pair wherein or between multipair adjacent catalyst bed, thus constitute more Segmentation catalyst bed.The separated place can be the inner space of reactor, be can according to need at this time in the inner space The one or more non-catalytic beds (such as the bed being made of inactive filler described below) of middle setting or inner member (example Such as fluid distributor, catalyst bed supporting member, heat exchanger) etc., thus to styrene oxidation of the invention into Row is more flexible to be adjusted.
According to the method for the present invention, the 1st to the n-th catalyst bed along the reaction feed glide path successively It is connected in series, constitutes upstream-downstream relationship, wherein the 1st catalyst bed is located at most upstream, the n-th catalyst bed is located at most downstream. Even so, a portion or whole catalyst bed can spatially be arranged side by side, as long as ensure it is described react into Material successively flowing is by wherein.
According to the method for the present invention, the 1st to the n-th catalyst bed can respectively contain one or more catalyst beds Layer.If can be series connection between the multiple catalyst bed, or parallel connection is even containing multiple catalyst beds It connects, can also be series connection and the combination being connected in parallel.For example, when the multiple catalyst bed is divided into multiple groups, every group Interior catalyst bed can be to be connected in series and/or be connected in parallel, and can connect between each group for series connection and/or parallel connection It connects.
According to the method for the present invention, the 1st to the n-th catalyst bed respectively can be fluidized bed, expanded bed, slurry bed system Or the catalyst bed form that fixed bed etc. is conventionally known in the art, but from convenient for styrene oxidation of the present invention implementation angle Degree sets out, the preferred fixed bed of the 1st to the n-th catalyst bed.
According to the method for the present invention, in the 1st to the n-th catalyst bed, respectively it is filled at least one titanium silicon point Son sieve.Titanium Sieve Molecular Sieve is the general name that titanium atom replaces a kind of zeolite of a part of silicon atom in lattice framework, can use chemistry Formula xTiO2·SiO2It indicates.The content of titanium atom in Titanium Sieve Molecular Sieve is not particularly limited in the present invention, can be this field Conventional selection.Specifically, x can be 0.0001-0.05, preferably 0.01-0.03, more preferably 0.015-0.025.
The Titanium Sieve Molecular Sieve can be the common Titanium Sieve Molecular Sieve with various topological structures, such as: the titanium silicon Molecular sieve can be selected from Titanium Sieve Molecular Sieve (such as TS-1), Titanium Sieve Molecular Sieve (such as TS-2), the BEA structure of MEL structure of MFI structure Titanium Sieve Molecular Sieve (such as Ti-Beta), the Titanium Sieve Molecular Sieve (such as Ti-MCM-22) of MWW structure, the Titanium Sieve Molecular Sieve of MOR structure Titanium Sieve Molecular Sieve (such as Ti-MCM- of the Titanium Sieve Molecular Sieve (such as Ti-TUN) of (such as Ti-MOR), TUN structure, two-dimentional hexagonal structure 41, Ti-SBA-15) and other structures Titanium Sieve Molecular Sieve (such as Ti-ZSM-48).The Titanium Sieve Molecular Sieve is preferably selected from MFI Titanium Sieve Molecular Sieve, the Titanium Sieve Molecular Sieve of MEL structure, the two-dimentional Titanium Sieve Molecular Sieve of hexagonal structure and the titanium silicon of BEA structure of structure Molecular sieve, the more preferably Titanium Sieve Molecular Sieve of MFI structure, such as titanium-silicon molecular sieve TS-1 and/or hollow Titanium Sieve Molecular Sieve.The sky Heart Titanium Sieve Molecular Sieve is the Titanium Sieve Molecular Sieve of MFI structure, and the crystal grain of the Titanium Sieve Molecular Sieve is hollow structure, the hollow structure The radical length of chamber portion is 5-300 nanometers, and the Titanium Sieve Molecular Sieve is in 25 DEG C, P/P0=0.10, adsorption time is 1 hour Under conditions of the benzene adsorbance that measures be at least 70 milligrams per grams, the adsorption isotherm of the nitrogen absorption under low temperature of the Titanium Sieve Molecular Sieve and There are hysteresis loops between desorption isotherm.The hollow Titanium Sieve Molecular Sieve, which is commercially available, (such as to be commercially available from Hunan and builds feldspar Change limited liability company the trade mark be HTS molecular sieve), can also the method according to disclosed in CN1132699C be prepared.
According to the method for the present invention, at least partly Titanium Sieve Molecular Sieve is titanium-silicon molecular sieve TS-1, the Titanium Sieve Molecular Sieve TS- 1 urface silicon titanium is not less than body phase silicon titanium ratio, can be further improved oxidant effective rate of utilization in this way, and can further prolong The single trip use service life of long Titanium Sieve Molecular Sieve.Preferably, the ratio of the urface silicon titanium and the body phase silicon titanium ratio be 1.2 with On.It is highly preferred that the ratio of the urface silicon titanium and the body phase silicon titanium ratio is 1.2-5.It is further preferred that the surface Silicon titanium is than being 1.5-4.5 (such as 2.5-4.5) with the ratio of the body phase silicon titanium ratio.It is further preferred that the surface silicon titanium Than being 2-3 with the ratio of the body phase silicon titanium ratio.Molar ratio of the silicon titanium than referring to silica and titanium oxide, the surface silicon Titanium ratio is measured using X-ray photoelectron spectroscopy, and the body phase silicon titanium ratio uses x-ray fluorescence spectrometry.
According to the method for the present invention, at least partly Titanium Sieve Molecular Sieve is titanium-silicon molecular sieve TS-1, the Titanium Sieve Molecular Sieve TS- 1 is prepared using method comprising the following steps:
(A) inorganic silicon source is dispersed in the aqueous solution containing titanium source and alkali source template, and optionally supplements water, obtained Dispersion liquid, in the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is 100:(0.5-8): (5-30): (100- 2000), the inorganic silicon source is with SiO2Meter, the titanium source is with TiO2Meter, the alkali source template is with OH-Or N meter is (in the alkali When source template contains nitrogen, in terms of N;In the alkali source template not Nitrogen element, with OH-Meter);
(B) optionally, by the dispersion liquid in 15-60 DEG C of standing 6-24h;
(C) dispersion liquid that step (A) obtains or the dispersion liquid that step (B) obtains sequentially are undergone in sealing reaction kettle Stage (1), stage (2) and stage (3) carry out crystallization, and the stage (1) is in 80-150 DEG C of crystallization 6-72 hours (h), stage (2) cooling To after not higher than 70 DEG C and residence time at least 0.5h, the stage (3) is warming up to 120-200 DEG C of crystallization 6-96h again.
In the present invention, " optionally " indicates inessential, it can be understood as " with or without ", " including or not including ".
The alkali source template can be usually used various templates during synthesis of titanium silicon molecular sieve, such as: The alkali source template can be one or more of quaternary ammonium base, aliphatic amine and aliphatic hydramine.The quaternary ammonium base It can be various organic level Four ammonium alkali, the aliphatic amine can be various NH3In at least one hydrogen by aliphatic alkyl The compound that (such as alkyl) is formed after replacing, the aliphatic hydramine can be various NH3In at least one hydrogen by hydroxyl Aliphatic group (such as alkyl) replace after the compound that is formed.
Specifically, the alkali source template can be the aliphatic amine and formula of the quaternary ammonium base, Formula II expression that indicate selected from Formulas I One or more of the aliphatic hydramine that III is indicated.
In Formulas I, R1、R2、R3And R4Respectively C1-C4Alkyl, including C1-C4Straight chained alkyl and C3-C4Branched alkane Base, R1、R2、R3And R4Specific example can include but is not limited to methyl, ethyl, n-propyl, isopropyl, normal-butyl, Zhong Ding Base, isobutyl group or tert-butyl.
R5(NH2)n(Formula II)
In Formula II, n is an integer of 1 or 2.When n is 1, R5For C1-C6Alkyl, including C1-C6Straight chained alkyl and C3-C6 Branched alkyl, specific example can include but is not limited to methyl, ethyl, n-propyl, isopropyl, normal-butyl, sec-butyl, different Butyl, tert-butyl, n-pentyl, neopentyl, isopentyl, tertiary pentyl and n-hexyl.When n is 2, R5For C1-C6Alkylidene, including C1-C6Straight-chain alkyl-sub and C3-C6Branched alkylidene, specific example can include but is not limited to methylene, ethylidene, Sub- n-propyl, sub- normal-butyl, sub- n-pentyl or sub- n-hexyl.
(HOR6)mNH(3-m)(formula III)
In formula III, m R6It is identical or different, respectively C1-C4Alkylidene, including C1-C4Straight-chain alkyl-sub and C3- C4Branched alkylidene, specific example can include but is not limited to methylene, ethylidene, sub- n-propyl and sub- normal-butyl;M is 1,2 or 3.
The specific example of the alkali source template can include but is not limited to: tetramethylammonium hydroxide, tetraethyl hydroxide Ammonium, tetrapropylammonium hydroxide (the various isomers including tetrapropylammonium hydroxide, such as four n-propyl ammonium hydroxide and tetra isopropyl Ammonium hydroxide), tetrabutylammonium hydroxide (the various isomers including tetrabutylammonium hydroxide, such as 4-n-butyl ammonium hydroxide and Four isobutyl group ammonium hydroxide), ethamine, n-propylamine, n-butylamine, di-n-propylamine, butanediamine, hexamethylene diamine, monoethanolamine, diethanol amine One or more of with triethanolamine.Preferably, the alkali source template is tetraethyl ammonium hydroxide, tetrapropyl hydrogen-oxygen Change one or more of ammonium and tetrabutylammonium hydroxide.It is highly preferred that the alkali source template is tetrapropyl hydroxide Ammonium.
The titanium source can be inorganic titanium salt and/or organic titanate, preferably organic titanate.The inorganic titanium salt can Think TiCl4、Ti(SO4)2And TiOCl2One or more of;The organic titanate can be general formula R7 4TiO4Table The compound shown, wherein R7For the alkyl with 1-6 carbon atom, it is however preferred to have the alkyl of 2-4 carbon atom.
The inorganic silicon source can be silica gel and/or silica solution, preferably silica gel.SiO in the silica solution2Quality hundred Dividing content can be 10% or more, preferably 15% or more, more preferably 20% or more.In preparation according to the preferred embodiment Titanium Sieve Molecular Sieve when, do not use organic silicon source, such as organosilan and organosiloxane.
In the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is preferably 100:(1-6): (8-25): (200-1500), more preferably 100:(2-5): (10-20): (400-1000).
The dispersion liquid that step (A) obtains, which can be sent directly into step (C), carries out crystallization.Preferably, step (A) is obtained Dispersion liquid be sent into step (B) in 15-60 DEG C at a temperature of stand 6-24h.It is walked between step (A) and step (C) Suddenly (B) can significantly improve the urface silicon titanium of the titanium-silicon molecular sieve TS-1 finally prepared, so that the Titanium Sieve Molecular Sieve finally prepared Urface silicon titanium be not less than body phase silicon titanium ratio, the catalytic performance of the Titanium Sieve Molecular Sieve finally prepared can be significantly improved in this way, prolonged Its long single trip use service life, and improve oxidant effective rate of utilization.Generally, by being arranged between step (A) and step (C) Step (B), the urface silicon titanium of the Titanium Sieve Molecular Sieve finally prepared and the ratio of body phase silicon titanium ratio can be in the ranges of 1.2-5 It is interior, preferably in the range of 1.5-4.5 (such as in the range of 2.5-4.5), more preferably in the range of 2-3.The standing is more It is preferred that 20-50 DEG C at a temperature of carry out, as carried out at a temperature of 25-45 DEG C.
In step (B), when being stood, dispersion liquid can be placed in sealing container, open container can also be placed in In stood.Preferably, step (B) carries out in a sealed container, in this way can to avoid during standing into dispersion liquid It is introduced into foreign matter or moieties volatilization in dispersion liquid is caused to be lost.
After the completion of step (B) described standing, directly the dispersion liquid through standing can be sent into reaction kettle and carry out crystallization, It is sent into reaction kettle after dispersion liquid through standing being carried out redisperse and carries out crystallization, be preferably sent into reaction after progress redisperse In kettle, the dispersing uniformity for carrying out the dispersion liquid of crystallization can be further improved in this way.The method of the redisperse can be conventional The combination of one or more of method, such as stirring, ultrasonic treatment and oscillation.The duration of the redisperse is with energy It forms the dispersion liquid through standing subject to uniform dispersion liquid, generally can be 0.1-12h, such as 0.5-2h.The redisperse can To carry out at ambient temperature, as carried out at a temperature of 15-40 DEG C.
In step (C), temperature is adjusted to the heating rate of each phase temperature and rate of temperature fall can use according to specific The type of crystallization device selected, be not particularly limited.In general, raising the temperature to stage (1) crystallization temperature Heating rate can be 0.1-20 DEG C/min, preferably 0.1-10 DEG C/min, more preferably 1-5 DEG C/min.By stage (1) temperature The rate of temperature fall spent to stage (2) temperature can be for 1-50 DEG C/min, and preferably 2-20 DEG C/min, more preferably 5-10 DEG C/ min.By stage (2) temperature to stage (3) crystallization temperature heating rate can be 1-50 DEG C/min, preferably 2-40 DEG C/ Min, more preferably 5-20 DEG C/min.
In step (C), the crystallization temperature in stage (1) is preferably 110-140 DEG C, more preferably 120-140 DEG C, further excellent It is selected as 130-140 DEG C.The crystallization time in stage (1) is preferably 6-24h, more preferably 6-8h.The temperature in stage (2) is preferably not Higher than 50 DEG C.The residence time in stage (2) is preferably at least 1h, more preferably 1-5h.The stage crystallization temperature of (3) is preferably 140-180 DEG C, more preferably 160-170 DEG C.The crystallization time in stage (3) is preferably 12-20h.
In step (C), in a preferred embodiment, the crystallization temperature in stage (1) is lower than the crystallization temperature of stage (3) Degree, can be further improved the catalytic performance of the Titanium Sieve Molecular Sieve of preparation in this way.Preferably, the crystallization temperature in stage (1) compares the stage (3) crystallization temperature is 10-50 DEG C low.It is highly preferred that the crystallization temperature in stage (1) is 20-40 lower than the crystallization temperature in stage (3) ℃.In step (C), in another preferred embodiment, the crystallization time in stage (1) is less than the crystallization time of stage (3), It can be further improved the catalytic performance of the Titanium Sieve Molecular Sieve finally prepared in this way.Preferably, the crystallization time in stage (1) compares the stage (3) the short 5-24h of crystallization time.It is highly preferred that the crystallization time in stage (1) is 6-12h shorter than the crystallization time in stage (3), such as Short 6-8h.In step (C), both preferred embodiments be may be used alone, can also be used in combination, and preferably combination makes With that is, the crystallization temperature and crystallization time in stage (1) and stage (3) meet the requirements of both preferred embodiments simultaneously.
In step (C), in another preferred embodiment, the temperature in stage (2) is not higher than 50 DEG C, and when stopping Between be at least 0.5h, such as 0.5-6h, can be further improved the catalytic performance of the Titanium Sieve Molecular Sieve finally prepared in this way.Preferably, The residence time in stage (2) is at least 1h, such as 1-5h.The preferred embodiment can be with aforementioned two kinds of preferred embodiments Be used separately, can also be applied in combination, preferably be applied in combination, i.e., the crystallization temperature and crystallization time in stage (1) and stage (3) with And the stage (2) temperature and the residence time meet the requirements of above-mentioned three kinds of preferred embodiments simultaneously.
Titanium Sieve Molecular Sieve can be recycled from the mixture that step (C) crystallization obtains using conventional method.It specifically, can be with After the mixture that step (C) crystallization obtains optionally is filtered and washed, solid matter is dried and is roasted, thus Obtain Titanium Sieve Molecular Sieve.The drying and the roasting can carry out under normal conditions.Generally, the drying can be in ring Border temperature (such as 15 DEG C) is to carrying out at a temperature of 200 DEG C.The drying can be under environmental pressure (generally 1 standard atmospheric pressure) It carries out, can also carry out at reduced pressure.The duration of the drying can according to dry temperature and pressure and Dry mode is selected, and is not particularly limited.For example, temperature is preferably 80- when the drying carries out under ambient pressure 150 DEG C, more preferably 100-120 DEG C, dry duration are preferably 0.5-5h, more preferably 1-3h.The roasting can be with 300-800 DEG C at a temperature of carry out, preferably carry out at a temperature of 500-700 DEG C, more preferably 550-650 DEG C at a temperature of Carry out, further preferably 550-600 DEG C at a temperature of carry out.The duration of the roasting can be according to the temperature roasted Degree selection, generally can be 2-12h, preferably 2-5h.The roasting carries out preferably in air atmosphere.
According to the method for the present invention, at least partly Titanium Sieve Molecular Sieve is preferably modified Titanium Sieve Molecular Sieve, in this way can be into one Step promotes the catalytic performance of Titanium Sieve Molecular Sieve.The Titanium Sieve Molecular Sieve of the modification refers to the Titanium Sieve Molecular Sieve of experience modification, In contrast, the Titanium Sieve Molecular Sieve for not undergoing modification is unmodified Titanium Sieve Molecular Sieve.The modification includes following Step: by as the Titanium Sieve Molecular Sieve of raw material with containing nitric acid (that is, HNO3) and at least one peroxide modification liquid contact. Titanium Sieve Molecular Sieve as raw material refers to the Titanium Sieve Molecular Sieve of the raw material as modification, can be for without going through the modification The Titanium Sieve Molecular Sieve of processing, or live through the modification but need to carry out the titanium silicon of the modification again Molecular sieve.
Method according to the invention it is possible to which whole Titanium Sieve Molecular Sieve live through above-mentioned modification (that is, Titanium Sieve Molecular Sieve For modified Titanium Sieve Molecular Sieve), or part Titanium Sieve Molecular Sieve lives through above-mentioned modification (that is, Titanium Sieve Molecular Sieve is Modified Titanium Sieve Molecular Sieve and unmodified Titanium Sieve Molecular Sieve).Preferably, on the basis of the total amount of Titanium Sieve Molecular Sieve, at least 50 The Titanium Sieve Molecular Sieve of weight % or more is modified Titanium Sieve Molecular Sieve, and the Titanium Sieve Molecular Sieve of more preferably at least 60 weight % or more is Modified Titanium Sieve Molecular Sieve, such as on the basis of the total amount of the Titanium Sieve Molecular Sieve, the content of the Titanium Sieve Molecular Sieve of the modification It can be 5-95 weight %, preferably 20-90 weight %, more preferably 40-80 weight %.
In the modification, peroxide can be selected from hydrogen peroxide, hydroperoxides and peracid.In the present invention, hydrogen Peroxide refers to that substance obtained from a hydrogen atom in hydrogen peroxide molecule is replaced by organic group, peracid refer to molecule Contain the organic oxacid of-O-O- key in structure.
In the modification, the specific example of the peroxide be can include but is not limited to: hydrogen peroxide, ethylbenzene Hydrogen peroxide, tert-butyl hydroperoxide, cumyl hydroperoxide, cyclohexyl hydroperoxide, Peracetic acid and Perpropionic Acid.It is preferred that Ground, the peroxide are hydrogen peroxide.The hydrogen peroxide can be peroxide existing in a variety of manners commonly used in the art Change hydrogen.
Can be 1 as the Titanium Sieve Molecular Sieve of raw material and the molar ratio of the peroxide in the modification: 0.01-5, preferably 1:0.05-3, more preferably 1:0.1-2.The dosage of the nitric acid can be according to the use of the peroxide Amount is selected.Generally, the molar ratio of the peroxide and the nitric acid can be 1:0.01-50, preferably 1:0.1- 20, more preferably 1:0.2-10, further preferably 1:0.5-5, particularly preferably 1:0.6-3.5, such as 1:0.7-1.2, it is described Titanium Sieve Molecular Sieve is in terms of silica.
In the modification liquid, the concentration of the peroxide and nitric acid respectively can be 0.1-50 weight %.From further The angle for improving the catalytic performance of the Titanium Sieve Molecular Sieve of the modification finally prepared is set out, preferably 0.5-25 weight %.More preferably Ground, in the modification liquid, the concentration of the peroxide and nitric acid is respectively 5-15 weight %.
The solvent of the modification liquid can be the common various solvents that can dissolve nitric acid and the peroxide simultaneously.It is excellent Selection of land, the solvent of the modification liquid are water.
In the modification, as raw material Titanium Sieve Molecular Sieve and modification liquid can 10-350 DEG C at a temperature of into Row contact.From the angle of the catalytic performance for the Titanium Sieve Molecular Sieve for further increasing the modification finally prepared, the contact is excellent It is contacted at a temperature of being selected in 20-300 DEG C.It is highly preferred that it is described contact 50-250 DEG C at a temperature of carry out.It is further excellent Selection of land, it is described contact 60-200 DEG C at a temperature of carry out.It is further preferred that it is described contact 70-150 DEG C at a temperature of It carries out.The duration of the contact can be 1-10h, preferably 3-5h.In the modification, by the titanium as raw material The pressure in container that si molecular sieves are contacted with the modification liquid can be selected according to Contact Temperature, can be environment Pressure, or pressurization.It generally, will be in the container that contacted as the Titanium Sieve Molecular Sieve of raw material with the modification liquid Pressure can be 0-5MPa, and the pressure is gauge pressure.Preferably, under pressure by as the Titanium Sieve Molecular Sieve of raw material with The modification liquid contact.It is highly preferred that in closed container under self-generated pressure by as the Titanium Sieve Molecular Sieve of raw material with it is described Modification liquid contact.
In the modification, as the Titanium Sieve Molecular Sieve of raw material and the exposure level of the modification liquid preferably so that, Using on the basis of the Titanium Sieve Molecular Sieve as raw material, in ultraviolet-visible spectrum, modified Titanium Sieve Molecular Sieve 230-310nm it Between the peak area of absorption peak reduce by 2% or more, the hole of modified Titanium Sieve Molecular Sieve, which holds, reduces 1% or more.Modified titanium silicon point The peak area of absorption peak of the son sieve between 230-310nm preferably reduces 2-30%, more preferably reduction 2.5-15%, further excellent Choosing reduces 3-10%, still more preferably reduction 3-6%.The hole of modified Titanium Sieve Molecular Sieve holds preferred reduction 1-20%, more excellent Choosing reduces 1.5-10%, further preferably reduction 2-5%.The Kong Rong is using static determination of nitrogen adsorption.
In using various commercial plants of the Titanium Sieve Molecular Sieve as catalyst, as Ammoximation reaction, hydroxylating and In epoxidation reaction device, usually after device runs a period of time, the catalytic activity of catalyst declines, and needs to carry out in device Or ex-situ regeneration, when being difficult to obtain satisfied activity being regenerated, need to draw off catalyst from device (that is, More catalyst changeout), and the current processing method of the catalyst (that is, drawing off agent or dead catalyst) that draws off is usually to accumulate to bury, On the one hand valuable land resource and inventory space are occupied, another aspect Titanium Sieve Molecular Sieve production cost is higher, directly discarded Without also resulting in great waste.By these draw off after agent (that is, the Titanium Sieve Molecular Sieve drawn off) is regenerated with styrene and Oxidant contacts under oxidation reaction condition, still is able to obtain preferable catalytic performance, can especially obtain higher oxidation Agent effective rate of utilization.Therefore, according to the method for the present invention, at least partly described Titanium Sieve Molecular Sieve is preferably through regenerated with titanium silicon Molecular sieve draws off agent as the reaction unit (in addition to styrene oxidation device) of catalyst.It is described draw off agent can for from It is various to use Titanium Sieve Molecular Sieve as the agent that draws off drawn off in the reaction unit of catalyst, such as can be for from oxidation reaction apparatus In draw off draw off agent.Specifically, it is described draw off agent be Ammoximation reaction device draw off agent, hydroxylating device unloads Agent and epoxidation reaction device draw off one or more of agent out.More specifically, described, to draw off agent can be hexamethylene Ketone oxamidinating reaction unit draw off agent, phenol hydroxylation reaction unit draws off drawing off for agent and propylene ring oxidation reaction device One or more of agent.
The regenerated condition of agent progress will be drawn off to be not particularly limited, choosing appropriate can be carried out according to the source for drawing off agent It selects, such as: high-temperature roasting and/or solvent washing.
It is different according to its source through the regenerated activity for drawing off agent.Generally, through the regenerated activity for drawing off agent It can be the 5-95% of activity (that is, activity of fresh Titanium Sieve Molecular Sieve) of Titanium Sieve Molecular Sieve when fresh.Preferably, through again The raw activity for drawing off agent can be active 10-90% of Titanium Sieve Molecular Sieve when fresh, further preferably fresh When active 30-50%, be still more preferably active 35-45% when fresh.The fresh Titanium Sieve Molecular Sieve Activity generally 90% or more, usually 95% or more.
The activity measures by the following method: respectively will be through regenerated agent and the fresh Titanium Sieve Molecular Sieve of drawing off as hexamethylene Ketone oxamidinating reaction catalyst, the condition of the Ammoximation reaction are as follows: Titanium Sieve Molecular Sieve, 36 weight % ammonium hydroxide (with NH3Meter), The hydrogen peroxide of 30 weight % is (with H2O2Meter), the tert-butyl alcohol and cyclohexanone by weight 1:7.5:10:7.5:10, at atmosheric pressure In 80 DEG C of reaction 2h.Calculate separately using through it is regenerated draw off agent and fresh Titanium Sieve Molecular Sieve as catalyst when cyclohexanone conversion Rate, and using it as through the regenerated activity for drawing off agent and fresh Titanium Sieve Molecular Sieve, wherein the conversion ratio of cyclohexanone= [mole of the cyclohexanone of (mole of the unreacted cyclohexanone of the mole-of the cyclohexanone of addition)/addition] × 100%.
According to the method for the present invention, described to draw off the raw material that agent be modified Titanium Sieve Molecular Sieve, it can also be used as not Modified Titanium Sieve Molecular Sieve uses.Preferably, in the modification, the Titanium Sieve Molecular Sieve as raw material draws off agent to be described, The single trip use service life can further be extended in this way, and with it is non-modified draw off agent compared with, Styryl oxide can be significantly improved Selectivity and styrene conversion rate.
According to the method for the present invention, the 1st to the n-th catalyst bed is respectively filled at least one titanium silicon point above-mentioned Son sieve.The type for the Titanium Sieve Molecular Sieve loaded in different catalysts bed can be identical, or different.Also, it is each A kind of Titanium Sieve Molecular Sieve above-mentioned can also be only loaded in a catalyst bed, can also be filled according to the relative scale arbitrarily needed Fill out one or more kinds of Titanium Sieve Molecular Sieve above-mentioned.
Preferably, the Titanium Sieve Molecular Sieve of the 1st catalyst bed filling is hollow Titanium Sieve Molecular Sieve, n-th catalysis The Titanium Sieve Molecular Sieve of agent bed (that is, residual catalyst bed) filling is the Titanium Sieve Molecular Sieve in addition to hollow Titanium Sieve Molecular Sieve, such as Titanium Sieve Molecular Sieve selected from other MFI structures can further delay the deactivation rate of Titanium Sieve Molecular Sieve in this way.It is highly preferred that The Titanium Sieve Molecular Sieve of the 1st catalyst bed filling is hollow Titanium Sieve Molecular Sieve, the titanium silicon of the n-th catalyst bed filling Molecular sieve is titanium-silicon molecular sieve TS-1.The deactivation rate of Titanium Sieve Molecular Sieve can not only further be delayed in this way, extend titanium silicon point The single trip use service life of son sieve, but also can be further improved desirable oxidation selectivity of product.
According to the method for the present invention, Titanium Sieve Molecular Sieve above-mentioned can be Titanium Sieve Molecular Sieve original powder, or molding titanium Si molecular sieves, preferably molding Titanium Sieve Molecular Sieve.Molding Titanium Sieve Molecular Sieve typically contains the Titanium Sieve Molecular Sieve as active constituent With the carrier as binder, wherein the content of Titanium Sieve Molecular Sieve can be conventional selection.Generally, with the molding titanium silicon On the basis of the total amount of molecular sieve, the content of Titanium Sieve Molecular Sieve can be 5-95 weight %, preferably 10-95 weight %, more preferably For 70-90 weight %;The content of the carrier can be 5-95 weight %, preferably 5-90 weight %, more preferably 10-30 weight Measure %.The carrier of the molding Titanium Sieve Molecular Sieve can be conventional selection, such as aluminium oxide and/or silica.Prepare the molding The method of Titanium Sieve Molecular Sieve is it is known in the art, being no longer described in detail herein.The granular size of the molding Titanium Sieve Molecular Sieve It is not particularly limited, can be made appropriate choice according to concrete shape.Generally, the average grain of the molding Titanium Sieve Molecular Sieve Diameter can be 4-10000 microns, preferably 5-5000 microns, more preferably 40-4000 microns, such as 100-2000 microns.It is described Average grain diameter is volume average particle size, can be measured using laser particle analyzer.
According to the method for the present invention, the amount (matter for the Titanium Sieve Molecular Sieve respectively loaded in the 1st to the n-th catalyst bed Amount) it can be identical, or it is different.According to a kind of embodiment, when m takes the arbitrary integer in section [2, n], Wm-1/Wm For 0.1-20, Wm-1/WmPreferably 0.5 or more, more preferably 1 or more, further preferably 2 or more.Here, Wm-1For m-1 The quality of the catalyst loaded in catalyst bed, WmQuality for the catalyst loaded in m catalyst bed.Wm-1/WmIt is excellent 15 are selected as hereinafter, more preferably 10 or less.It is further preferred that Wm-1/WmFor 2-8:1.It is molding titanium silicon in the catalyst When molecular sieve, Wm-1And WmIt is determined by the content of Titanium Sieve Molecular Sieve in the molding Titanium Sieve Molecular Sieve.In addition, each catalyst bed The amount of the catalyst loaded in layer can according to need (such as production capacity) and rationally determine that there is no particular limitation herein.
According to the method for the present invention, the total amount of Titanium Sieve Molecular Sieve is (that is, the titanium loaded in the 1st to the n-th catalyst bed The total amount of si molecular sieves) it can be selected according to the specific treating capacity of system.Generally, the total amount of the catalyst makes benzene The weight (hourly) space velocity (WHSV) of ethylene (component as the reaction feed) can be 0.1-100h-1, preferably 2-80h-1, more preferably 10-50h-1
According to the method for the present invention, in the 1st to the n-th catalyst bed other than loading the Titanium Sieve Molecular Sieve, Inactive filler can also be further loaded as needed.It can be loaded in whole the 1st to the n-th catalyst beds The inactive filler can also load described nonactive fill out in one or more of described 1st to the n-th catalyst bed Material.Inactive filler is loaded in catalyst bed to be adjusted the amount of catalyst in catalyst bed, thus to anti- The speed answered is adjusted.For some catalyst bed, when loading inactive filler, the inactive filler Content can be 5-95 weight %, for the total amount of the catalyst and inactive filler that load in the catalyst bed. Here, the inactive filler refer to styrene oxidation without or the not no filler of catalytic activity substantially, in this field Conventionally known, specific example can include but is not limited to: one or both of quartz sand, ceramic ring and potsherd More than.
According to the present invention, the reaction feed (refers in particular to that the reaction before the 1st catalyst bed will be entered in the present invention Material) contain styrene, oxidant and optional solvent.
The oxidant can for it is common it is various can be by the substance of styrene oxidation.Preferably, the oxidant is Peroxide can be selected from hydrogen peroxide, hydroperoxides and peracid.The specific example of the peroxide may include but not It is limited to: hydrogen peroxide, tert-butyl hydroperoxide, dicumyl peroxide, ethylbenzene hydroperoxide, cyclohexyl hydroperoxide, peroxide second Acid and Perpropionic Acid.Preferably, the oxidant is hydrogen peroxide, can further decrease separation costs in this way.The peroxide Changing hydrogen can be hydrogen peroxide existing in a variety of manners commonly used in the art.The oxidant can individually a kind of use, It can be applied in combination with two or more.
The amount for the styrene that the dosage of the oxidant can include according to the reaction feed is selected.Generally, In the reaction feed, the molar ratio of the oxidant and the styrene can be 0.1-10:1.It is ring in target product When oxygen vinylbenzene, from the angle for the selectivity for further increasing Styryl oxide, the oxidant and the styrene Molar ratio is preferably 0.1-2:1, more preferably 0.2-1.5:1, such as 0.5-1.2:1.
According to the method for the present invention, the reaction feed can also further contain solvent, preferably to control reaction Speed.The type of the solvent is not particularly limited in the present invention, and the solvent can be common in styrene oxidation Various solvents.Preferably, the solvent is water, C1-C10Alcohol, C3-C10Ketone, C2-C10Nitrile and C1-C6Carboxylic acid in It is at least one.Preferably, the solvent is C1-C6Alcohol, C3-C8Ketone and C2-C5One or more of nitrile.It is more excellent Selection of land, the solvent are one or both of methanol, ethyl alcohol, acetonitrile, normal propyl alcohol, isopropanol, the tert-butyl alcohol, isobutanol and acetone More than.It is further preferred that the solvent is one or more of methanol, acetonitrile, acetone and tert-butyl alcohol.These solvents Can individually a kind of use, can also be used with combination of two or more.
The dosage of the solvent is not particularly limited in the present invention, can be selected according to the amount of styrene and oxidant It selects.Generally, in the reaction feed, the molar ratio of the solvent and the styrene can be 1-100:1, preferably 2-80:1.
According to the method for the present invention, the oxidation reaction condition can be selected according to the set goal oxidation product. Specifically, the oxidation reaction condition in each catalyst bed may be the same or different (preferably identical), respectively can wrap Include: reaction pressure (in terms of gauge pressure) is 0-3MPa, and preferably 0.1-2.5MPa, reaction temperature is 0-120 DEG C, preferably 20-80 DEG C of (example Such as 30-60 DEG C).
According to the method for the present invention, by the styrene oxidation carried out in the 1st to the n-th catalyst bed, Obtain the reaction discharging containing target product such as Styryl oxide.Here, the reaction discharging refers in particular to just leave n-th catalysis Reaction mass after agent bed.
According to the method for the present invention, it optionally includes as needed and isolates the styrene oxygen from reaction discharging The step of compound such as Styryl oxide, acquisition off-gas stream.Here, the off-gas stream can without further separation and It is rendered as the mixture containing unreacted reactant, byproduct of reaction and solvent, it can also be by further separating For individual unreacted reactant, byproduct of reaction and solvent, these can directly as off-gas stream use without Want any purification processes.As separation method, can directly be applicable in this field for this purpose and it is conventional use of those, do not have There is special restriction.Moreover, a part circulation that the unreacted reactant and solvent isolated can be used as reaction feed makes With.
According to the method for the present invention, it by any pair into the 1st to the n-th catalyst bed or multipair adjacent urges Separated place introducing carrying object (as previously described) between agent bed flows through whole catalysis in the separated place downstream to increase Thus the overall circulation of the reaction mass of agent bed can increase accordingly the superficial velocity of each reaction mass, to meet this hair Bright aforementioned regulation.For example, when n is 2, by being introduced to the separated place between the 1st catalyst bed and the 2nd catalyst bed Carrying object, can increase the overall circulation for flowing through the reaction mass of the 2nd catalyst bed, thus increase accordingly the 2nd catalysis The superficial velocity of reaction mass in agent bed, to meet aforementioned regulation of the invention.
There is no particular limitation for introduction volume and incorporation way of the present invention to the carrying object, if its can (1) with from The reaction mass that catalyst bed in the separated place immediately upstream comes out is in the direct downstream in the separated place entering Catalyst bed before, in or after the process, be uniformly mixed, and (2) make each reaction mass superficial velocity meet this The aforementioned regulation of invention.
According to the method for the present invention, the carrying object can be the outflow of solvent, non-active gas and catalyst bed The combination of one or more of object.The effluent of the bed of the catalyst refers to from the 1st catalyst to the n-th catalyst A catalyst bed in bed or the effluent of multiple catalyst beds outflow, the preferably catalyst bed of most downstream Effluent.The effluent of catalyst bed can be used directly as carrying object without isolation, can also isolate target product (such as Styryl oxide) is used as carrying object afterwards.According to the method for the present invention, the carrying object is more preferably from most downstream Target product (such as Styryl oxide) remaining logistics afterwards, such as previously described tail are isolated in the effluent of catalyst bed Gas logistics.
Fluid distributor etc. can be set in the separated place, thus favorably by any mode known in the art In the uniform introducing of carrying object.As needed, before introducing the separated place, the carrying object can by heat exchange (such as Cooling) or pressurization etc. pretreatment.
The present invention will be described in detail with reference to embodiments, but the range being not intended to limit the present invention.
In following embodiment and comparative example, used reagent is commercially available reagent, and pressure is gauge pressure.
In following embodiment and comparative example, the content of each ingredient in the reaction solution that is obtained using gas chromatography analysis, Following formula is respectively adopted on the basis of this and calculates styrene conversion rate, oxidant effective rate of utilization and Styryl oxide selection Property:
Styrene conversion rate (%)=[(mole of the unreacted styrene of the mole-of the styrene of addition)/add The mole of the styrene entered] × 100%;
Oxidant effective rate of utilization=[mole/(mole of the oxidant of addition for the Styryl oxide that reaction generates Amount-unreacted oxidant mole)] × 100%;
Styryl oxide selectivity=[mole/(mole of the styrene of addition for the Styryl oxide that reaction generates Amount-unreacted styrene mole)] × 100%.
In following embodiment and comparative example, static nitrogen adsorption method and solid ultraviolet-visible diffuse reflectance spectrum method is respectively adopted The Kong Rong and ultraviolet absorption peak of Titanium Sieve Molecular Sieve after before modified are characterized.Wherein, solid ultraviolet-visible diffuse reflectance spectrum (UV-Vis) analysis carries out on SHIMADZU UV-3100 type ultraviolet-visible spectrometer;Static nitrogen is adsorbed on It is carried out on the 2405 type static state n2 absorption apparatus of ASAP of Micromeritics company.
It is related to below through determining Titanium Sieve Molecular Sieve using following methods in the regenerated embodiment and comparative example for drawing off agent The activity of (including regenerative agent and fresh dose):
By Titanium Sieve Molecular Sieve, 36 weight % ammonium hydroxide (with NH3Meter), the hydrogen peroxide of 30 weight % is (with H2O2Meter), the tert-butyl alcohol With cyclohexanone by weight after=1:7.5:10:7.5:10 mixing at atmosheric pressure after 80 DEG C are stirred to react 2 hours, will be anti- It answers object to filter, liquid phase is analyzed with gas-chromatography, be calculated using the following equation the conversion ratio of cyclohexanone and as titanium The activity of si molecular sieves,
The conversion ratio of cyclohexanone=[(the unreacted cyclohexanone mole of the mole-of the cyclohexanone of addition)/it is added The mole of cyclohexanone] × 100%.
In the embodiment and comparative example of the step of preparation Titanium Sieve Molecular Sieve included below, X-ray diffraction analysis exists It is carried out on Siemens D5005 type X-ray diffractometer, with sample and authentic specimen, the five fingers spread out between 2 θ is 22.5 ° -25.0 ° The crystallinity for penetrating the ratio of the sum of diffracted intensity (peak height) of characteristic peak to indicate sample relative to authentic specimen;Fourier transform Infrared spectrum analysis carries out on 8210 type Fourier infrared spectrograph of Nicolet;Silicon titanium is than referring to silica and titanium oxide Molar ratio, urface silicon titanium are surveyed using the ESCALab250 type x-ray photoelectron spectroscopy of Thermo Scientific company Fixed, body phase silicon titanium ratio is measured using Rigaku Electric Co., Ltd 3271E type Xray fluorescence spectrometer.
Embodiment 1-22 is for illustrating method of the invention.
Embodiment 1
Catalyst used in the present embodiment is titanium-silicon molecular sieve TS-1, referring to Zeolites, 1992, Vol.12 943- The preparation of method described in page 950, the specific method is as follows.
(20 DEG C) at room temperature mix 22.5g tetraethyl orthosilicate with 7.0g as the tetrapropylammonium hydroxide of template It closes, and 59.8g distilled water is added, it is molten in normal pressure and 60 DEG C of hydrolysis 1.0h, the hydrolysis for obtaining tetraethyl orthosilicate after being stirred Liquid.With vigorous stirring, it is slowly added into the hydrating solution by 1.1g butyl titanate and 5.0g anhydrous isopropyl alcohol institute The solution of composition obtains clear colloid by gained mixture in 75 DEG C of stirring 3h.It is anti-that this colloid is placed in stainless steel sealing It answers in kettle, places 36h in 170 DEG C of at a temperature of constant temperature, obtain the mixture of crystallization product.Obtained mixture is filtered, is received After collecting obtained solid matter water used wash, in 110 DEG C of dry 60min, then in 500 DEG C of roasting 6h, Titanium Sieve Molecular Sieve is obtained TS-1, titanium oxide content are 2.8 weight %.
By Catalyst packing in isometrical fixed bed reactors, catalyst bed is formed, wherein the quantity of catalyst bed Be 2 layers, the catalyst loaded in two catalyst beds it is identical in quality, between two layers of catalyst bed be arranged carrying object enter Mouthful and liquid distributor, liquid distributor be used for the carrying object being sent by carrying object entrance and first catalyst bed Effluent after mixing, is sent into second catalyst bed.
By styrene, as the hydrogen peroxide (in the form of the hydrogen peroxide of 30 weight % provide) of oxidant and as solvent Methanol be mixed to form reaction raw materials, by reaction raw materials from bottom be sent into fixed bed reactors in and flow through catalyst bed, with With Titanium Sieve Molecular Sieve haptoreaction.Wherein, the molar ratio of styrene and hydrogen peroxide is 1:1.1, mole of styrene and methanol Than for 1:4.Temperature in reactor is 30 DEG C, controls the pressure in fixed bed reactors for 0.5MPa, benzene in reaction process The weight (hourly) space velocity (WHSV) of ethylene is 20h-1
The reaction mixture exported from reactor is flashed and distilled, collects styrene, methanol, water and epoxy respectively Vinylbenzene exports Styryl oxide.The styrene of recycling and methanol are heated to 30 DEG C as carrying object after mixing to send Enter between first catalyst bed and the second catalyst bed, the feeding amount of carrying object is so that v2/v1=2, v1It is urged for first The superficial velocity of reaction stream, v in agent bed2For the superficial velocity of reaction stream in second catalyst bed.
The composition of the reaction mixture exported from second catalyst bed in reaction process using gas-chromatography monitoring, And styrene conversion rate, oxidant effective rate of utilization and Styryl oxide selectivity are calculated, it is anti-under the reaction time listed by table 1 The result that the reaction mixture for answering device to export determines is listed in table 1.
Embodiment 2
Using method same as Example 1 by styrene oxidation, the difference is that, the titanium-silicon molecular sieve TS-1 used uses Following methods preparation.
First butyl titanate is dissolved in alkali source template tetrapropylammonium hydroxide solution, silica gel is then added and (is purchased from Qingdao silica gel factory), dispersion liquid is obtained, in the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is 100:4:12: 400, silicon source is with SiO2Meter, titanium source is with TiO2Meter, alkali source template is in terms of N.Above-mentioned dispersion liquid is sealed in beaker using sealed membrane It is stood for 24 hours after mouthful room temperature (being 25 DEG C, similarly hereinafter), followed by magnetic agitation in 35 DEG C of stirring 2h, is allowed to disperse again.It will weigh Dispersion liquid after new dispersion is transferred in sealing reaction kettle, and in 140 DEG C of experience first stage crystallization 6h, then mixture cools down After stopping 2h to 30 DEG C of experience second stage, continue in sealing reaction kettle in 170 DEG C of at a temperature of experience phase III crystallization 12h (wherein, by the heating rate of room temperature to first stage crystallization temperature be 2 DEG C/min, by first stage crystallization temperature to The rate of temperature fall of second stage treatment temperature is 5 DEG C/min, by second stage treatment temperature to the liter of phase III crystallization temperature Warm rate is 10 DEG C/min), without filtering and washing step after gained crystallization product is taken out, directly in 110 DEG C of drying 2h, so Afterwards in 550 DEG C of roasting 3h, molecular sieve is obtained.Titanium-silicon molecular sieve TS-1 one prepared by the XRD crystalline phase figure and embodiment 1 of gained sample It causes, what is illustrated is the titanium-silicon molecular sieve TS-1 with MFI structure;In Fourier Transform Infrared Spectroscopy figure, in 960cm-1It is attached Closely there is absorption peak, show that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, titanium oxide content is 3.5 weight %, surface Silicon titanium ratio/body phase silicon titanium ratio be 2.58 (embodiment 1 prepare Titanium Sieve Molecular Sieve in, urface silicon titanium/body phase silicon titanium ratio is 1.05)。
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 3
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, The crystallization temperature of phase III is also 140 DEG C.Titanium-silicon molecular sieve TS-1 prepared by the XRD crystalline phase figure and embodiment 1 of gained sample Unanimously, what is illustrated is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby occur Absorption peak shows that titanium has entered framework of molecular sieve, and in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 4.21, oxidation Ti content is 3.1 weight %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 4
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, The crystallization temperature of first stage is 110 DEG C.Titanium-silicon molecular sieve TS-1 one prepared by the XRD crystalline phase figure and embodiment 1 of gained sample It causes, what is illustrated is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby inhale Peak is received, shows that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 2.37, titanium oxide Content is 3.2 weight %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 5
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, the The crystallization time in one stage is 12h.The XRD crystalline phase figure of gained sample is consistent with titanium-silicon molecular sieve TS-1 prepared by embodiment 1, says It is bright that obtain is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby there is absorption peak, Show that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 3.78, titanium oxide content For 3.4 weight %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 6
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, the Two-stage is to be cooled to 70 DEG C of stop 2h.Titanium-silicon molecular sieve TS-1 one prepared by the XRD crystalline phase figure and embodiment 1 of gained sample It causes, what is illustrated is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby inhale Peak is received, shows that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 2.75, titanium oxide Content is 3.1 weight %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 7
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, the Two-stage is to be cooled to 30 DEG C of stop 0.2h.Titanium-silicon molecular sieve TS-1 one prepared by the XRD crystalline phase figure and embodiment 1 of gained sample It causes, what is illustrated is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby inhale Peak is received, shows that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 1.14, titanium oxide Content is 3.1 weight %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 8
Using method same as Example 2 by styrene oxidation, the difference is that, when preparing titanium-silicon molecular sieve TS-1, no By second stage.The XRD crystalline phase figure of gained sample is consistent with titanium-silicon molecular sieve TS-1 prepared by embodiment 1, illustrates It is the TS-1 molecular sieve with MFI structure;In 960cm in fourier-transform infrared spectrogram-1Nearby there is absorption peak, shows titanium Into framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 1.08, and titanium oxide content is 2.5 weights Measure %.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 9
Using method same as Example 2 by styrene oxidation, the difference is that, aqueous dispersions are not stood at room temperature 12h, but be sent directly into reaction kettle and carry out crystallization.The titanium of XRD crystalline phase figure and 1 step of embodiment (1) preparation of gained sample Silicalite TS-1 is consistent, and what is illustrated is the titanium-silicon molecular sieve TS-1 with MFI structure;Fourier Transform Infrared Spectroscopy figure In, in 960cm-1Nearby there is absorption peak, show that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, titanium oxide content is 3.5 weight %, urface silicon titanium/body phase silicon titanium ratio are 1.18.
The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is listed in table 1.
Embodiment 10
Using method same as Example 1 by styrene oxidation, the difference is that, titanium-silicon molecular sieve TS-1 is being used as catalysis Following methods are used to be modified processing before agent.
By the titanium-silicon molecular sieve TS-1 of step (1) preparation and contain HNO3(HNO3Mass concentration 10%) and peroxidating be The aqueous solution mixing of hydrogen (mass concentration of hydrogen peroxide is 7.5%), obtained mixture is stirred in closed container at 70 DEG C Reaction 5h is mixed, the temperature of obtained reaction mixture, which is cooled to room temperature, to be filtered, by obtained solid matter in 120 DEG C of dryings To constant weight, modified Titanium Sieve Molecular Sieve is obtained.Wherein, titanium-silicon molecular sieve TS-1 is with SiO2Meter, Titanium Sieve Molecular Sieve and hydrogen peroxide Molar ratio be 1:0.1.Compared with raw material Titanium Sieve Molecular Sieve, in the UV-Vis spectrum of the Titanium Sieve Molecular Sieve of obtained modification The peak area of absorption peak between 230-310nm reduces 3.5%, is held by the hole of static determination of nitrogen adsorption and reduces 2.6%.By table The result that the reaction mixture that reactor exports under 1 reaction time listed determines is listed in table 1.
Embodiment 11
Using method same as Example 2 by styrene oxidation, the difference is that, titanium-silicon molecular sieve TS-1 is being used as catalysis Following methods are used to be modified processing before agent.
By the titanium-silicon molecular sieve TS-1 of preparation and contain HNO3(HNO3Mass concentration 10%) and hydrogen peroxide (peroxide be Change the mass concentration of hydrogen as aqueous solution mixing 7.5%), obtained mixture is stirred to react in closed container at 70 DEG C 5h, the temperature of obtained reaction mixture, which is cooled to room temperature, to be filtered, and obtained solid matter is dry to perseverance at 120 DEG C Weight, obtains modified Titanium Sieve Molecular Sieve.Wherein, titanium-silicon molecular sieve TS-1 is with SiO2Meter, Titanium Sieve Molecular Sieve and hydrogen peroxide rub You are than being 1:0.1.Compared with raw material Titanium Sieve Molecular Sieve, in 230- in the UV-Vis spectrum of the Titanium Sieve Molecular Sieve of obtained modification The peak area of absorption peak between 310nm reduces 3.4%, is held by the hole of static determination of nitrogen adsorption and reduces 2.7%.It is arranged by table 1 The result that the reaction mixture that reactor exports under reaction time out determines is listed in table 1.
Embodiment 12
Using method same as in Example 10 by styrene oxidation, the difference is that, in modification, what it is as raw material is Through the regenerated titanium-silicon molecular sieve TS-1 drawn off from phenol hydroxylation reaction unit, (titanium-silicon molecular sieve TS-1 is used and implementation The identical method of example 1 preparation, the titanium-silicon molecular sieve TS-1 drawn off 570 DEG C at a temperature of in air atmosphere roast 5h and again Raw, the activity after regeneration is 35%, 96%) activity when fresh is.Compared with raw material Titanium Sieve Molecular Sieve, the titanium of obtained modification The peak area of absorption peak in the UV-Vis spectrum of si molecular sieves between 230-310nm reduces 3.3%, by static nitrogen adsorption method The hole of measurement, which holds, reduces 2.8%.The result that the reaction mixture that reactor exports under the reaction time listed by table 1 determines is in table It is listed in 1.
Embodiment 13
Using method identical with embodiment 12 by styrene oxidation, unlike, by embodiment 12 as raw material Through the regenerated titanium-silicon molecular sieve TS-1 drawn off from phenol hydroxylation reaction unit as catalyst.The reaction listed by table 1 The result that the reaction mixture that reactor exports under time determines is listed in table 1.
Comparative example 1
Using method same as Example 1 by styrene oxidation, unlike, not in first catalyst bed and the Carrying object is introduced between two catalyst beds.The reaction mixture that reactor exports under the reaction time listed by table 1 determines Result listed in table 1.
Method of the invention is used it can be seen from the result of table 1, can effectively extend the single trip use of Titanium Sieve Molecular Sieve Service life reduces the regeneration frequency of Titanium Sieve Molecular Sieve, extends the terminal life of Titanium Sieve Molecular Sieve.
Table 1
Embodiment 14
The hollow titanium that the present embodiment is HTS as the trade mark for being available from Hunan Jianchang Petrochemical Co., Ltd of catalyst Si molecular sieves, titanium oxide content are 2.5 weight %.
By Catalyst packing in isometrical fixed bed reactors, catalyst bed is formed, wherein the quantity of catalyst bed It is 2 layers, the weight ratio of the loadings of first catalyst bed and second catalyst bed is 2:1.In two layers of catalyst bed Carrying object entrance and liquid distributor be set between layer, carrying object of the liquid distributor for that will be sent by carrying object entrance with The effluent of first catalyst bed after mixing, is sent into second catalyst bed.
By styrene, as the hydrogen peroxide (in the form of the hydrogen peroxide of 40 weight % provide) of oxidant and as solvent Acetone be mixed to form reaction raw materials, by reaction raw materials from bottom be sent into fixed bed reactors in and flow through catalyst bed, with With Titanium Sieve Molecular Sieve haptoreaction.Wherein, the molar ratio of styrene and hydrogen peroxide is 1:0.5, mole of styrene and acetone Than for 1:6.Temperature in reactor is 35 DEG C, controls the pressure in fixed bed reactors for 1.5MPa, benzene in reaction process The weight (hourly) space velocity (WHSV) of ethylene is 45h-1
The reaction mixture exported from reactor is flashed and distilled, collects styrene, acetone and epoxy benzene respectively Ethane exports Styryl oxide.The styrene of recycling and acetone are directly sent (for 25 DEG C) as carrying object after mixing Enter between first catalyst bed and the second catalyst bed, the feeding amount of carrying object is so that v2/v1=5, v1It is urged for first The superficial velocity of reaction stream, v in agent bed2For the superficial velocity of reaction stream in second catalyst bed.
The composition of the reaction mixture exported from second catalyst bed in reaction process using gas-chromatography monitoring, And styrene conversion rate, oxidant effective rate of utilization and Styryl oxide selectivity are calculated, it is anti-under the reaction time listed by table 2 The result that the reaction mixture for answering device to export determines is listed in table 2.
Embodiment 15
Using method identical with embodiment 14 by styrene oxidation, unlike, in first catalyst bed and the The loadings of two catalyst beds with embodiment 14 under the same conditions, filling is using real in second catalyst bed Apply the titanium-silicon molecular sieve TS-1 of the method preparation of example 1.The reaction mixture that reactor exports under the reaction time listed by table 2 is true Fixed result is listed in table 2.
Embodiment 16
Using method identical with embodiment 15 by styrene oxidation, unlike, in first catalyst bed and the Under conditions of the loadings of two catalyst beds remain unchanged, hollow Titanium Sieve Molecular Sieve be used as catalyst before use with Lower method is modified processing;And the titanium silicon molecule of modification prepared by embodiment 10 is loaded in second catalyst bed Sieve.
By hollow Titanium Sieve Molecular Sieve and contain HNO3(HNO3Mass concentration be 10%) and hydrogen peroxide (hydrogen peroxide Mass concentration is aqueous solution mixing 5%), obtained mixture is stirred under 120 DEG C of pressure itselfs in closed container anti- 4h is answered, the temperature of obtained reaction mixture, which is cooled to room temperature, to be filtered, and obtained solid matter is dry to perseverance at 120 DEG C Weight, obtains modified Titanium Sieve Molecular Sieve.Wherein, hollow Titanium Sieve Molecular Sieve is with SiO2Meter, Titanium Sieve Molecular Sieve and hydrogen peroxide rub You are than being 1:0.4.Compared with raw material Titanium Sieve Molecular Sieve, in 230- in the UV-Vis spectrum of the Titanium Sieve Molecular Sieve of obtained modification The peak area of absorption peak between 310nm reduces 4.6%, is held by the hole of static determination of nitrogen adsorption and reduces 3.8%.It is arranged by table 2 The result that the reaction mixture that reactor exports under reaction time out determines is listed in table 2.
Table 2
Embodiment 17
Titanium-silicon molecular sieve TS-1 used in the present embodiment is prepared using following methods.
First butyl titanate is dissolved in alkali source template tetrapropylammonium hydroxide solution, silica gel is then added and (is purchased from Qingdao silica gel factory), dispersion liquid is obtained, in the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is 100:2:10: 600, silicon source is with SiO2Meter, titanium source is with TiO2Meter, alkali source template is in terms of N.Above-mentioned dispersion liquid is close using sealed membrane in beaker It is honored as a queen in 40 DEG C of standing 10h, is stirred 0.5h at 25 DEG C followed by magnetic agitation, is allowed to disperse again.It will disperse again Dispersion liquid afterwards is transferred in sealing reaction kettle, and in 130 DEG C of experience first stage crystallization 8h, mixture is then cooled to 50 DEG C After undergoing second stage to stop 5h, continue in sealing reaction kettle in 170 DEG C of at a temperature of experience phase III crystallization 16h (its In, it is 1 DEG C/min by the heating rate of room temperature to first stage crystallization temperature, by first stage crystallization temperature to second-order The rate of temperature fall of section treatment temperature is 10 DEG C/min, by second stage treatment temperature to the heating rate of phase III crystallization temperature For 20 DEG C/min), then exist without filtering and washing step directly in 120 DEG C of drying 3h after gained crystallization product is taken out 2h is roasted at 580 DEG C, obtains molecular sieve.Titanium-silicon molecular sieve TS-1 one prepared by the XRD crystalline phase figure and embodiment 1 of gained sample It causes, what is illustrated is the titanium-silicon molecular sieve TS-1 with MFI structure;In Fourier Transform Infrared Spectroscopy figure, in 960cm-1It is attached Closely there is absorption peak, show that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, urface silicon titanium/body phase silicon titanium ratio is 2.25, titanium oxide content is 2.6 weight %.
By Catalyst packing in isometrical fixed bed reactors, catalyst bed is formed, wherein the quantity of catalyst bed It is 2 layers, first catalyst bed loads hollow Titanium Sieve Molecular Sieve (identical as embodiment 14), second catalyst bed filling The weight of the loadings of titanium-silicon molecular sieve TS-1 prepared by embodiment 17, first catalyst bed and second catalyst bed Than for 8:1.Carrying object entrance and liquid distributor are set between two layers of catalyst bed, and liquid distributor is used for will be by carrying The effluent of carrying object and first catalyst bed that fluid inlet is sent into after mixing, is sent into second catalyst bed In.
Styrene, the tert-butyl hydroperoxide as oxidant and the acetonitrile as solvent are mixed to form reaction raw materials, Reaction raw materials are sent into fixed bed reactors from bottom and flow through catalyst bed, with Titanium Sieve Molecular Sieve haptoreaction.Its In, the molar ratio of styrene and tert-butyl hydroperoxide is 1:1, and the molar ratio of styrene and acetonitrile is 1:8.Temperature in reactor Degree is 50 DEG C, control the pressure in fixed bed reactors for 2.0MPa in reaction process, and the weight (hourly) space velocity (WHSV) of styrene is 20h-1
The reaction mixture exported from reactor is flashed and distilled, collects styrene, acetonitrile and epoxy benzene respectively Ethane exports Styryl oxide.The styrene of recycling and acetonitrile are heated to 50 DEG C as carrying object after mixing to be sent into Between first catalyst bed and the second catalyst bed, the feeding amount of carrying object is so that v2/v1=3.5, v1It is urged for first The superficial velocity of reaction stream, v in agent bed2For the superficial velocity of reaction stream in second catalyst bed.
The composition of the reaction mixture exported from second catalyst bed in reaction process using gas-chromatography monitoring, And styrene conversion rate, oxidant effective rate of utilization and Styryl oxide selectivity are calculated, it is anti-under the reaction time listed by table 3 The result that the reaction mixture for answering device to export determines is listed in table 3.
Embodiment 18
Using method identical with embodiment 17 by styrene oxidation, the difference is that, first catalyst bed and second A catalyst bed loads the titanium-silicon molecular sieve TS-1 of the preparation of embodiment 16.Reactor is defeated under the reaction time listed by table 3 The result that reaction mixture out determines is listed in table 3.
Embodiment 19
Using method identical with embodiment 17 by styrene oxidation, the difference is that, first catalyst bed and second A catalyst bed is loaded through regenerated titanium-silicon molecular sieve TS-1 (titanium silicon point drawn off from propylene ring oxidation reaction device Son sieve TS-1 using method identical with embodiment 17 preparation, the Titanium Sieve Molecular Sieve drawn off 580 DEG C at a temperature of in air gas 3h is roasted in atmosphere and is regenerated, and the activity after regeneration is 40%, 95%) activity when fresh is.The reaction time listed by table 3 The result that the reaction mixture of lower reactor output determines is listed in table 3.
Embodiment 20
Using method identical with embodiment 19 by styrene oxidation, the difference is that, through regenerated titanium-silicon molecular sieve TS-1 Before as catalyst, processing is modified using following methods.
With contain HNO3(HNO3Mass concentration 15%) and hydrogen peroxide be (mass concentration of hydrogen peroxide is 8%) Aqueous solution mixing, is stirred to react 3h at 150 DEG C in closed container for obtained mixture, the temperature of obtained reaction mixture It is cooled to room temperature and is filtered, obtained solid matter is dry to constant weight at 120 DEG C, obtain modified Titanium Sieve Molecular Sieve.Its In, titanium-silicon molecular sieve TS-1 is with SiO2The molar ratio of meter, Titanium Sieve Molecular Sieve and hydrogen peroxide is 1:2.With raw material Titanium Sieve Molecular Sieve It compares, the peak area of the absorption peak in the UV-Vis spectrum of the Titanium Sieve Molecular Sieve of obtained modification between 230-310nm is reduced 5.3%, held by the hole of static determination of nitrogen adsorption and reduces 4.8%.The reaction that reactor exports under the reaction time listed by table 3 The result that mixture determines is listed in table 3.
Table 3
Embodiment 21
Titanium-silicon molecular sieve TS-1 used in the present embodiment is prepared using following methods.
First butyl titanate is dissolved in alkali source template tetrapropylammonium hydroxide solution, silica gel is then added and (is purchased from Qingdao silica gel factory), dispersion liquid is obtained, in the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is 100:5:18: 1000, silicon source is with SiO2Meter, titanium source is with TiO2Meter, alkali source template is in terms of N.Above-mentioned dispersion liquid is utilized into sealed membrane in beaker In 45 DEG C of standing 8h after sealing;Dispersion liquid through standing is transferred in sealing reaction kettle, it is brilliant in 140 DEG C of experience first stage Change 6h, after mixture is then cooled to 40 DEG C of experience second stage stop 1h, continues in sealing reaction kettle in 160 DEG C of temperature The lower experience phase III crystallization 12h of degree (it is wherein, 5 DEG C/min by the heating rate of room temperature to first stage crystallization temperature, By first stage crystallization temperature to second stage treatment temperature rate of temperature fall be 5 DEG C/min, by second stage treatment temperature to The heating rate of phase III crystallization temperature be 5 DEG C/min), by gained crystallization product take out after without filtering and washing step, Directly in 110 DEG C of drying 2h, 3h is then roasted at 550 DEG C, obtains molecular sieve.The XRD crystalline phase figure and embodiment 1 of gained sample The titanium-silicon molecular sieve TS-1 of preparation is consistent, and what is illustrated is the titanium-silicon molecular sieve TS-1 with MFI structure;Fourier transform is red In external spectrum figure, in 960cm-1Nearby there is absorption peak, shows that titanium has entered framework of molecular sieve, in the Titanium Sieve Molecular Sieve, surface Silicon titanium ratio/body phase silicon titanium ratio is 2.71, and titanium oxide content is 4.3 weight %.
By Catalyst packing in isometrical fixed bed reactors, catalyst bed is formed, wherein the quantity of catalyst bed It is 2 layers, first catalyst bed loads hollow Titanium Sieve Molecular Sieve (identical as embodiment 14), second catalyst bed filling The weight of the loadings of titanium-silicon molecular sieve TS-1 prepared by embodiment 21, first catalyst bed and second catalyst bed Than for 4:1.Carrying object entrance and liquid distributor are set between two layers of catalyst bed, and liquid distributor is used for will be by carrying The effluent of carrying object and first catalyst bed that fluid inlet is sent into after mixing, is sent into second catalyst bed In.
Styrene, the cumyl hydroperoxide as oxidant and the acetonitrile as solvent are mixed to form reaction raw materials, Reaction raw materials are sent into fixed bed reactors from bottom and flow through catalyst bed, with Titanium Sieve Molecular Sieve haptoreaction.Its In, the molar ratio of styrene and cumyl hydroperoxide is 1:1, and the molar ratio of styrene and acetonitrile is 1:6.Temperature in reactor Degree is 60 DEG C, control the pressure in fixed bed reactors for 1.8MPa in reaction process, and the weight (hourly) space velocity (WHSV) of styrene is 15h-1
The reaction mixture exported from reactor is flashed and distilled, collects styrene, acetonitrile and epoxy benzene respectively Ethane exports Styryl oxide.The styrene of recycling and acetonitrile are uniformly mixed and are heated to sending after 60 DEG C as carrying object Enter between first catalyst bed and the second catalyst bed, the feeding amount of carrying object is so that v2/v1=4, v1It is urged for first The superficial velocity of reaction stream, v in agent bed2For the superficial velocity of reaction stream in second catalyst bed.
The composition of the reaction mixture exported from second catalyst bed in reaction process using gas-chromatography monitoring, And styrene conversion rate, oxidant effective rate of utilization and Styryl oxide selectivity are calculated, it is anti-under the reaction time listed by table 4 The result that the reaction mixture for answering device to export determines is listed in table 4.
Embodiment 22
Using method identical with embodiment 21 by styrene oxidation, the difference is that, it is loaded in second catalyst bed Titanium Sieve Molecular Sieve be the Titanium Sieve Molecular Sieve prepared using method same as Example 1.It is anti-under the reaction time listed by table 4 The result that the reaction mixture for answering device to export determines is listed in table 4.
Table 4
The preferred embodiment of the present invention has been described above in detail, still, during present invention is not limited to the embodiments described above Detail within the scope of the technical concept of the present invention can be with various simple variants of the technical solution of the present invention are made, this A little simple variants all belong to the scope of protection of the present invention.
It is further to note that specific technical features described in the above specific embodiments, in not lance In the case where shield, can be combined in any appropriate way, in order to avoid unnecessary repetition, the present invention to it is various can No further explanation will be given for the combination of energy.
In addition, various embodiments of the present invention can be combined randomly, as long as it is without prejudice to originally The thought of invention, it should also be regarded as the disclosure of the present invention.

Claims (66)

1. a kind of styrene oxidation method, this method are included under oxidation reaction condition, make containing styrene, at least one oxidation The reaction feed of agent and optional at least one solvent flows successively through the 1st catalyst bed to the n-th catalyst bed, and n is 2 or more Integer, at least one Titanium Sieve Molecular Sieve is filled in the catalyst bed, this method further includes in reaction feed by the 1st Catalyst bed is to during the n-th catalyst bed, to the 1st catalyst bed at least a pair of of phase between the n-th catalyst bed At least one carrying object is introduced between adjacent catalyst bed, so that this urges adjacent on the basis of the flow direction of reaction feed In agent bed, the superficial velocity positioned at reaction stream in the catalyst bed in downstream is higher than in the catalyst bed of upstream The superficial velocity of reaction stream.
2. according to the method described in claim 1, wherein, the superficial velocity table of reaction stream in the catalyst bed in downstream It is shown as vm, the superficial velocity of reaction stream is expressed as v in the catalyst bed of upstreamm-1, the introduction volume of the carrying object makes Obtain vm/vm-1=1.5-15, m are the arbitrary integer in [2, n] section.
3. according to the method described in claim 2, wherein, the introduction volume of the carrying object makes vm/vm-1=2-10.
4. according to the method described in claim 2, wherein, the introduction volume of the carrying object makes vm/vm-1=2-5.
5. method described in any one of -4 according to claim 1, wherein the carrying object is selected from solvent, non-active gas And the effluent of catalyst bed.
6. method described in any one of -4 according to claim 1, wherein the carrying object is the 1st catalyst bed to n-th It is located at the effluent of the catalyst bed of most downstream in catalyst bed.
7. method described in any one of -4 according to claim 1, wherein the carrying object be from the 1st catalyst bed to It is located in the effluent of the catalyst bed of most downstream in n-th catalyst bed remaining after isolating target product Styryl oxide Logistics.
8. method described in any one of -4 according to claim 1, wherein at least partly Titanium Sieve Molecular Sieve is modified titanium silicon Molecular sieve, the Titanium Sieve Molecular Sieve of the modification are to undergo the Titanium Sieve Molecular Sieve of modification, and the modification includes by conduct The Titanium Sieve Molecular Sieve of raw material is contacted with the modification liquid containing nitric acid and at least one peroxide.
9. according to the method described in claim 8, wherein, Titanium Sieve Molecular Sieve and institute in the modification, as raw material The molar ratio of peroxide is stated as 1:0.01-5, the molar ratio of the peroxide and the nitric acid is 1:0.01-50, the titanium Si molecular sieves are in terms of silica.
10. according to the method described in claim 9, wherein, as the Titanium Sieve Molecular Sieve of raw material and mole of the peroxide Than for 1:0.05-3, the molar ratio of the peroxide and the nitric acid is 1:0.1-20.
11. according to the method described in claim 9, wherein, as the Titanium Sieve Molecular Sieve of raw material and mole of the peroxide Than for 1:0.1-2, the molar ratio of the peroxide and the nitric acid is 1:0.2-10.
12. the method according to any one of claim 9-11, wherein mole of the peroxide and the nitric acid Than for 1:0.5-5.
13. the method according to any one of claim 9-11, wherein mole of the peroxide and the nitric acid Than for 1:0.6-3.5.
14. according to the method described in claim 8, wherein, in the modification liquid, the concentration of the peroxide and nitric acid is respectively For 0.1-50 weight %.
15. according to the method for claim 14, wherein the concentration of the peroxide and nitric acid is respectively 0.5-25 weight Measure %.
16. according to the method for claim 14, wherein the concentration of the peroxide and nitric acid is respectively 5-15 weight Measure %.
17. according to the method described in claim 8, wherein, Titanium Sieve Molecular Sieve and institute in the modification, as raw material State modification liquid 10-350 DEG C at a temperature of contacted, it is described contact pressure be 0-5MPa container in carry out, the pressure Power is gauge pressure, and the duration of the contact is 1-10 hours.
18. according to the method for claim 17, wherein as the Titanium Sieve Molecular Sieve of raw material and the modification liquid in 20-300 It is contacted at a temperature of DEG C.
19. according to the method for claim 17, wherein as the Titanium Sieve Molecular Sieve of raw material and the modification liquid in 50-250 It is contacted at a temperature of DEG C.
20. according to the method for claim 17, wherein as the Titanium Sieve Molecular Sieve of raw material and the modification liquid in 60-200 It is contacted at a temperature of DEG C.
21. according to the method for claim 17, wherein the duration of the contact is 3-5 hours.
22. according to the method described in claim 8, wherein, the peroxide be selected from hydrogen peroxide, tert-butyl hydroperoxide, Cumyl hydroperoxide, ethylbenzene hydroperoxide, cyclohexyl hydroperoxide, Peracetic acid and Perpropionic Acid.
23. according to the method described in claim 8, wherein, Titanium Sieve Molecular Sieve and institute in the modification, as raw material The exposure level for stating modification liquid makes, using on the basis of the Titanium Sieve Molecular Sieve as raw material, in ultraviolet-visible spectrum, modified The peak area of absorption peak of the Titanium Sieve Molecular Sieve between 230-310nm reduces by 2% or more;The Kong Rong of modified Titanium Sieve Molecular Sieve subtracts Few 1% or more, the Kong Rong are using static determination of nitrogen adsorption.
24. according to the method for claim 23, wherein absorption peak of the modified Titanium Sieve Molecular Sieve between 230-310nm Peak area reduce 2-30%.
25. according to the method for claim 23, wherein absorption peak of the modified Titanium Sieve Molecular Sieve between 230-310nm Peak area reduce 2.5-15%.
26. according to the method for claim 23, wherein absorption peak of the modified Titanium Sieve Molecular Sieve between 230-310nm Peak area reduce 3-10%.
27. according to the method for claim 23, wherein absorption peak of the modified Titanium Sieve Molecular Sieve between 230-310nm Peak area reduce 3-6%.
28. according to the method for claim 23, wherein the hole of modified Titanium Sieve Molecular Sieve, which holds, reduces 1-20%.
29. according to the method for claim 23, wherein the hole of modified Titanium Sieve Molecular Sieve, which holds, reduces 1.5-10%.
30. according to the method for claim 23, wherein the hole of modified Titanium Sieve Molecular Sieve, which holds, reduces 2-5%.
31. method described in any one of -4 according to claim 1, wherein at least partly Titanium Sieve Molecular Sieve is from least A kind of reaction unit draws off agent, it is described draw off agent be Ammoximation reaction device draw off agent, hydroxylating device is drawn off Agent and epoxidation reaction device draw off agent.
32. method described in any one of -4 according to claim 1, wherein at least partly Titanium Sieve Molecular Sieve is titanium silicon molecule Sieve TS-1, the urface silicon titanium of the titanium-silicon molecular sieve TS-1 is not less than body phase silicon titanium ratio, the silicon titanium ratio refer to silica with The molar ratio of titanium oxide, the urface silicon titanium are measured using X-ray photoelectron spectroscopy, and the body phase silicon titanium ratio is penetrated using X Line fluorescence spectrum method for measuring.
33. according to the method for claim 32, wherein the ratio of the urface silicon titanium and the body phase silicon titanium ratio is More than 1.2.
34. according to the method for claim 32, wherein the ratio of the urface silicon titanium and the body phase silicon titanium ratio is 1.2-5。
35. according to the method for claim 32, wherein the ratio of the urface silicon titanium and the body phase silicon titanium ratio is 1.5-4.5。
36. method described in any one of -4 according to claim 1, wherein at least partly Titanium Sieve Molecular Sieve is titanium silicon molecule TS-1 is sieved, the titanium-silicon molecular sieve TS-1 is prepared using method comprising the following steps:
(A) inorganic silicon source is dispersed in the aqueous solution containing titanium source and alkali source template, and optionally supplements water, dispersed Liquid, in the dispersion liquid, silicon source: titanium source: alkali source template: the molar ratio of water is 100:(0.5-8): (5-30): (100- 2000), the inorganic silicon source is with SiO2Meter, the titanium source is with TiO2Meter, the alkali source template is with OH-Or N meter;
(B) optionally, by the dispersion liquid 15-60 DEG C standing 6-24 hours;
(C) dispersion liquid that step (A) obtains or the dispersion liquid that step (B) obtains sequentially are undergone into the stage in sealing reaction kettle (1), stage (2) and stage (3) carry out crystallization, the stage (1) 80-150 DEG C crystallization 6-72 hours, the stage (2) is cooled to not high In 70 DEG C and the residence time is at least 0.5 hour, and the stage (3) is warming up to 120-200 DEG C, then crystallization 6-96 hours.
37. according to the method for claim 36, wherein stage (1) crystallization at 110-140 DEG C.
38. according to the method for claim 36, wherein stage (1) crystallization at 120-140 DEG C.
39. according to the method for claim 36, wherein stage (1) crystallization at 130-140 DEG C.
40. according to the method for claim 36, wherein crystallization 6-8 hours stage (1).
41. according to the method for claim 36, wherein the stage (2) is cooled to not higher than 70 DEG C and the residence time is that 1-5 is small When.
42. according to the method for claim 36, wherein the stage (3) is warming up to 140-180 DEG C.
43. according to the method for claim 36, wherein the stage (3) is warming up to 160-170 DEG C.
44. according to the method for claim 36, wherein crystallization 12-20 hours stage (3).
45. according to the method for claim 36, wherein stage (1) and stage (3) meet one of the following conditions or two Person:
Condition 1: the crystallization temperature in stage (1) is lower than the crystallization temperature of stage (3);
Condition 2: the crystallization time in stage (1) is less than the crystallization time of stage (3).
46. according to the method for claim 45, wherein the crystallization temperature in stage (1) is lower than the crystallization temperature in stage (3) 10-50℃。
47. according to the method for claim 45, wherein the crystallization temperature in stage (1) is lower than the crystallization temperature in stage (3) 20-40℃。
48. according to the method for claim 45, wherein the crystallization time in stage (1) is 5- shorter than the crystallization time in stage (3) 24 hours.
49. according to the method for claim 45, wherein the crystallization time in stage (1) is 6- shorter than the crystallization time in stage (3) 12 hours.
50. according to the method for claim 36, wherein the stage (2) is cooled to not higher than 50 DEG C, and the residence time is at least 1 hour.
51. according to the method for claim 36, wherein the titanium source is inorganic titanium salt and/or organic titanate;The alkali Source template is one or more of quaternary ammonium base, aliphatic amine and aliphatic hydramine;The inorganic silicon source be silica gel and/ Or silica solution.
52. method according to claim 51, wherein the alkali source template is quaternary ammonium base.
53. method according to claim 51, wherein the alkali source template is tetrapropylammonium hydroxide.
54. method according to claim 51, wherein the inorganic titanium salt is TiCl4、Ti(SO4)2And TiOCl2In one Kind is two or more;The organic titanate is selected from general formula R7 4TiO4The compound of expression, R7Selected from 2-4 carbon atom Alkyl.
55. method described in any one of -4 according to claim 1, wherein the titanium silicon point of the 1st catalyst bed filling Son sieve is hollow Titanium Sieve Molecular Sieve, and the Titanium Sieve Molecular Sieve of the n-th catalyst bed filling is titanium-silicon molecular sieve TS-1.
56. method according to claim 55, wherein Wm-1/WmFor 0.1-20, Wm-1To be loaded in m-1 catalyst bed Catalyst quality, WmQuality for the catalyst loaded in m catalyst bed, m are any whole in [2, n] section Number.
57. method according to claim 55, wherein Wm-1/WmFor 2-8:1.
58. method described in any one of -4 according to claim 1, wherein mole of the oxidant and the styrene Than for 0.1-10:1.
59. method according to claim 58, wherein the molar ratio of the oxidant and the styrene is 0.1-2:1.
60. method according to claim 58, wherein the molar ratio of the oxidant and the styrene is 0.2-1.5: 1。
61. method described in any one of -4 according to claim 1, wherein the oxidant is selected from peroxide.
62. method described in any one of -4 according to claim 1, wherein the oxidant is selected from hydrogen peroxide, tert-butyl Hydrogen peroxide, ethylbenzene hydroperoxide, cumyl hydroperoxide, cyclohexyl hydroperoxide, Peracetic acid and Perpropionic Acid.
63. method described in any one of -4 according to claim 1, wherein the oxidation reaction condition includes: that temperature is 0- 120℃;Pressure is 0-3MP, and the pressure is gauge pressure.
64. method according to claim 63, wherein the oxidation reaction condition includes: that temperature is 20-80 DEG C.
65. method according to claim 63, wherein the oxidation reaction condition includes: that temperature is 30-60 DEG C.
66. method according to claim 63, wherein the oxidation reaction condition includes: that pressure is 0.1-2.5MPa.
CN201610022722.6A 2016-01-14 2016-01-14 A kind of styrene oxidation method Active CN106967012B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610022722.6A CN106967012B (en) 2016-01-14 2016-01-14 A kind of styrene oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610022722.6A CN106967012B (en) 2016-01-14 2016-01-14 A kind of styrene oxidation method

Publications (2)

Publication Number Publication Date
CN106967012A CN106967012A (en) 2017-07-21
CN106967012B true CN106967012B (en) 2019-02-01

Family

ID=59334750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610022722.6A Active CN106967012B (en) 2016-01-14 2016-01-14 A kind of styrene oxidation method

Country Status (1)

Country Link
CN (1) CN106967012B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675903A (en) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 Catalyst system and improved method for producing ethylbenzene by liquid phase alkylation of benzene and ethylene
CN113429544A (en) * 2021-03-19 2021-09-24 南通新纳希新材料有限公司 Method for synthesizing epoxy resin by olefin oxidation
CN115724809A (en) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 Method for preparing styrene oxide
CN116199650A (en) * 2021-12-01 2023-06-02 中国石油化工股份有限公司 Ethylbenzene oxidation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169098A (en) * 1976-01-27 1979-09-25 Davy Powergas Gmbh Process for utilization of the reaction heat generated by the catalytic oxidation of o-xylene
CN1754866A (en) * 2004-09-28 2006-04-05 中国石油化工股份有限公司 Styrene catalytic oxidation method
CN102757406A (en) * 2011-04-26 2012-10-31 中国石油化工股份有限公司 Styrene epoxidation method for preparing styrene oxide
CN103288611A (en) * 2012-02-29 2013-09-11 中国石油化工股份有限公司 Method for oxidizing styrene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169098A (en) * 1976-01-27 1979-09-25 Davy Powergas Gmbh Process for utilization of the reaction heat generated by the catalytic oxidation of o-xylene
CN1754866A (en) * 2004-09-28 2006-04-05 中国石油化工股份有限公司 Styrene catalytic oxidation method
CN102757406A (en) * 2011-04-26 2012-10-31 中国石油化工股份有限公司 Styrene epoxidation method for preparing styrene oxide
CN103288611A (en) * 2012-02-29 2013-09-11 中国石油化工股份有限公司 Method for oxidizing styrene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钛硅分子筛(TS)催化氧化苯乙烯的研究;徐成华 等;《石油与天然气化工》;19991231;第28卷(第1期);第1-3页

Also Published As

Publication number Publication date
CN106967012A (en) 2017-07-21

Similar Documents

Publication Publication Date Title
CN106967012B (en) A kind of styrene oxidation method
CN106631936B (en) A method of producing dimethyl sulfone
CN107235868B (en) A kind of sulfide oxidation method
CN106967010B (en) A kind of chloropropene method for oxidation
CN106631930B (en) A kind of sulfide oxidation method
CN109251193A (en) The method for preparing propene carbonate
CN105523974A (en) Preparation method for dimethyl sulfone
CN106966872A (en) A kind of aromatic oxidation process
CN107879355B (en) Modified with noble metals Titanium Sieve Molecular Sieve and its preparation method and application and a kind of method of alkene direct oxidation
CN108250161A (en) Allylic alcohol method
CN106631932B (en) A kind of sulfide oxidation method
CN104557632B (en) Method for preparing dimethyl sulfoxide
CN107556218B (en) A kind of sulfide oxidation method
CN106631929B (en) A method of producing dimethyl sulfone
CN109593033A (en) A kind of method of oxidizing cyclohexanone
CN106967011B (en) A kind of method of olefin oxidation
CN108794359A (en) A method of dimethyl sulfoxide (DMSO) is produced by hydrogen sulfide
CN108794362A (en) A method of dimethyl sulfoxide (DMSO) is produced by hydrogen sulfide
CN106631934B (en) A kind of preparation method of sulfoxide
CN107235871B (en) A kind of sulfide oxidation method
CN107556219B (en) A kind of preparation method of sulfone
CN108794361A (en) A method of dimethyl sulfone is produced by hydrogen sulfide
CN112742470B (en) Core-shell structure titanium-silicon material, preparation method thereof and method for producing ketoxime through macromolecular ketone ammoximation reaction
CN106631935B (en) Method that is a kind of while producing dimethyl sulfone and acetone
CN112744838A (en) Titanium-silicon molecular sieve, preparation method thereof and method for producing ketoxime by macromolecular ketone ammoximation reaction

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant