CN106966755A - 一种高孔隙率水溶性陶瓷型芯及其制备方法 - Google Patents

一种高孔隙率水溶性陶瓷型芯及其制备方法 Download PDF

Info

Publication number
CN106966755A
CN106966755A CN201710177975.5A CN201710177975A CN106966755A CN 106966755 A CN106966755 A CN 106966755A CN 201710177975 A CN201710177975 A CN 201710177975A CN 106966755 A CN106966755 A CN 106966755A
Authority
CN
China
Prior art keywords
parts
ceramic core
raw material
water
soluble ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710177975.5A
Other languages
English (en)
Other versions
CN106966755B (zh
Inventor
董寅生
朱文杰
邵里良
周长军
唐荣俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINGHUA XINGDONG CAST STEEL Co Ltd
Southeast University
Original Assignee
XINGHUA XINGDONG CAST STEEL Co Ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINGHUA XINGDONG CAST STEEL Co Ltd, Southeast University filed Critical XINGHUA XINGDONG CAST STEEL Co Ltd
Priority to CN201710177975.5A priority Critical patent/CN106966755B/zh
Publication of CN106966755A publication Critical patent/CN106966755A/zh
Application granted granted Critical
Publication of CN106966755B publication Critical patent/CN106966755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高孔隙率水溶性陶瓷型芯及其制备方法,所述水溶性陶瓷型芯主要由以下重量份原料制成:电熔刚玉粉80‑100份,NaCl 3‑10份,K2CO3 9‑20份,活性炭粉1‑3份。相对于现有技术,本发明技术具有以下优势:本发明在水溶性陶瓷型芯配料中加入造孔材料,提高了陶瓷型芯的孔隙率,降低了致密度,可提高型芯在水中的溶解速度。

Description

一种高孔隙率水溶性陶瓷型芯及其制备方法
技术领域
本发明涉及一种高孔隙率水溶性陶瓷型芯及其制备方法,属于精密铸造技术领域。
背景技术
轻量化是实现节能减排的重要途径,采用轻质材料和轻体结构是实现轻量化的两个主要途径,因此,装备的轻量化涉及材料和结构两个方面。在材料方面,近年来,传统的钢、铁铸件正在逐步减少份额,以铝、镁合金为代表的轻质合金铸件的应用、发展取得了长足的进步;在结构方面,以往通过多个零件组合实现的功能逐渐采用单一零件来实现,以铸代锻、以铸代铆减少了零件数量,降低装备重量,同时也提高了装备的可靠性。
但是,这些变化通常使零件具有更复杂的外形和异形结构的内腔,给铸件生产带来新的挑战。一方面,由于铝、镁合金浇注温度低,采用树脂砂芯形成内腔时,浇注后型芯的溃散性差,清理时不易出砂;另一方面,复杂内腔通常需要由多个型芯组合才能形成,工艺设计复杂,所需工装多,而且型芯组合时产生的偏差,影响铸件的精度。
采用水溶性型芯能够很好地解决上述的这些问题,且在铸件浇注时不产生有害气体,清理时方便快捷,铸件成形后可采用水力清理将型芯溶解去除,得到具有洁净光滑内表面和良好尺寸精度的铸件,无机械振动,不会带来噪音,同时节省劳力并改善铸造车间的环境卫生。
目前使用较广泛的水溶性型芯有尿素型芯、水溶性盐芯。但都有较显著的缺点:尿素型芯表面质量差、发气量大,易产生气孔缺陷;而盐芯的低强度、低耐热性和易脆性等特点使其在合金精密铸造中的应用受到极大的限制。以耐火材料为主体的水溶性陶瓷型芯具有较高的机械强度、耐火度和化学稳定性,同时,具有较好的水溶性,可以有效地避免苛刻的脱芯条件对铝合金铸件造成的损害,因此在铝合金精密铸造中得到大量的应用。
以耐火材料为主体的水溶性陶瓷型芯,有望获得较高的机械强度、耐火度和化学稳定性,以及较好的水溶性。这类水溶性陶瓷型芯主要以难溶耐火材料如氧化铝、硅酸锆、二氧化硅等为基材,可溶性无机盐(氯化物、碳酸盐或硫酸盐等)为粘结剂,通过相应的成型工艺制成。但由于通常采用压制成形,以及在型芯烧结过程中无机盐熔化产生的致密化效应,影响了型芯在水中的溃散性。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供了一种高孔隙率水溶性陶瓷型芯及其制备方法。
技术方案:为实现上述目的,本发明提供了一种高孔隙率水溶性陶瓷型芯,其主要由以下重量份原料制成:
电熔刚玉粉80-100份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
优选,所述的高孔隙率水溶性陶瓷型芯主要由以下重量份原料制成:
电熔刚玉粉100份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
优选,所述的高孔隙率水溶性陶瓷型芯主要由以下重量份原料制成:
电熔刚玉粉80份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
优选,所述电熔刚玉粉的粒度为300目,活性炭的粒度为200目。
本发明还提供了所述高孔隙率水溶性陶瓷型芯的制备方法,将所述原料压制成形后,再烧结,即得到所述水溶性陶瓷型芯。
优选,所述高孔隙率水溶性陶瓷型芯的制备方法,包括以下步骤:取各原料,烘干,然后按照设定的比例混合,将混好的原料压制成型,脱模,得到坯体,最后将压制好的坯体试样埋入工业氧化铝填料,按照设定的加热速度升温烧结,即得型芯。
具体的制备方法包括以下步骤:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭粉放入烘箱中,在140℃-150℃的温度2.5h-3h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉、NaCl、K2CO3和活性炭粉;
(3)将称量好的原料装入行星式球磨机的球磨罐,在350-380r/min的转速下球磨1.5h-2h;
(4)将混好的原料压制成型,成型工艺为在6MPa-8MPa的压力下保压90s-120s,然后进行脱模,得到坯体;
(5)将压制好的坯体试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1-1.5小时,得到型芯。
技术效果:相对于现有技术,本发明技术具有以下优势:本发明在水溶性陶瓷型芯配料中加入造孔材料,提高了陶瓷型芯的孔隙率,降低了致密度,可提高型芯在水中的溶解速度。
具体实施方式
根据下述实施例,可以更好地理解本发明。而本领域的技术人员容易理解,实施例所描述的具体试验结果仅用于说明本发明,而不应当也不会限制权利要求书中所描述的本发明。
实施例1:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭放入烘箱中,在140℃的温度3h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉80份,NaCl 5份,K2CO315份,活性炭2份;
(3)将称量好的原料装入行星式球磨机的球磨罐,在350r/min的转速下球磨1.5h;
(4)将混好的原料压制成型,成型工艺为在6MPa的压力下保压120s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1小时,得到型芯。
所得型芯孔隙率为39.9%。
实施例2:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭放入烘箱中,在150℃的温度2.5hh烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉90份,NaCl 10份,K2CO320份,活性炭1份;
(3)将称量好的原料装入行星式球磨机的球磨罐,在380r/min的转速下球磨2h;
(4)将混好的原料压制成型,成型工艺为在8MPa的压力下保压90s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1.5小时,得到型芯。
所得型芯孔隙率为40.00%。
实施例3:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭放入烘箱中,在145℃的温度2.8h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉100份,NaCl 8份,K2CO310份,活性炭1份;
(3)将称量好的原料装入行星式球磨机的球磨罐,在350r/min的转速下球磨1.8h;
(4)将混好的原料压制成型,成型工艺为在7MPa的压力下保压110s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1小时,得到型芯。
所得型芯孔隙率为35.60%。
实施例4:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭放入烘箱中,在148℃的温度3h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉85份,NaCl 3份,K2CO320份,活性炭3份;
(3)将称量好的原料装入行星式球磨机的球磨罐,在360r/min的转速下球磨2h;
(4)将混好的原料压制成型,成型工艺为在7MPa的压力下保压100s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1.2小时,得到型芯。
所得型芯孔隙率为39.7%。
实施例5:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭放入烘箱中,在150℃的温度3h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉80份,NaCl 10份,K2CO39份,活性炭1份;
(3)将称量好的原料装入行星式球磨机的球磨罐,在370r/min的转速下球磨2h;
(4)将混好的原料压制成型,成型工艺为在8MPa的压力下保压100s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1.4小时,得到型芯。
所得型芯经孔隙率为37.6%。。
对比例
采用同实施例3的原料组成和工艺,不加入活性炭制备型芯:
(1)将电熔刚玉粉、NaCl和K2CO3放入烘箱中,在145℃的温度2.8h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉100份,NaCl 8份,K2CO310份。
(3)将称量好的原料装入行星式球磨机的球磨罐,在350r/min的转速下球磨1.8h;
(4)将混好的原料压制成型,成型工艺为在7MPa的压力下保压110s,然后进行脱模,得到坯体;
(5)将压制好的试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1小时,得到型芯。
所得型芯孔隙率为30.2%。
可见,本发明所制备的陶瓷,其孔隙率明显提高。

Claims (7)

1.一种高孔隙率水溶性陶瓷型芯,其特征在于,其主要由以下重量份原料制成:
电熔刚玉粉80-100份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
2.根据权利要求1所述的高孔隙率水溶性陶瓷型芯,其特征在于,其主要由以下重量份原料制成:
电熔刚玉粉100份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
3.根据权利要求1所述的高孔隙率水溶性陶瓷型芯,其特征在于,其主要由以下重量份原料制成:
电熔刚玉粉80份,NaCl 3-10份,K2CO3 9-20份,活性炭粉1-3份。
4.根据权利要求1所述的高孔隙率水溶性陶瓷型芯,其特征在于,所述电熔刚玉粉的粒度为300目,活性炭的粒度为200目。
5.权利要求1-4任一项所述的高孔隙率水溶性陶瓷型芯的制备方法,其特征在于,将所述原料压制成形后,再烧结,即得到所述水溶性陶瓷型芯。
6.根据权利要求5所述的高孔隙率水溶性陶瓷型芯的制备方法,其特征在于,包括以下步骤:取各原料,烘干,然后按照设定的比例混合,将混好的原料压制成型,脱模,得到坯体,最后将压制好的坯体试样埋入工业氧化铝填料,按照设定的加热速度升温烧结,即得型芯。
7.根据权利要求5所述的高孔隙率水溶性陶瓷型芯的制备方法,其特征在于,包括以下步骤:
(1)将电熔刚玉粉、NaCl、K2CO3和活性炭粉放入烘箱中,在140℃-150℃的温度2.5h-3h烘干;
(2)按预先设定的比例称取烘干的电熔刚玉粉、NaCl、K2CO3和活性炭粉;
(3)将称量好的原料装入行星式球磨机的球磨罐,在350-380r/min的转速下球磨1.5h-2h;
(4)将混好的原料压制成型,成型工艺为在6MPa-8MPa的压力下保压90s-120s,然后进行脱模,得到坯体;
(5)将压制好的坯体试样埋入工业氧化铝填料,按照90℃/小时-100℃/小时的加热速度升温,在725℃烧结1-1.5小时,得到型芯。
CN201710177975.5A 2017-03-23 2017-03-23 一种高孔隙率水溶性陶瓷型芯及其制备方法 Active CN106966755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710177975.5A CN106966755B (zh) 2017-03-23 2017-03-23 一种高孔隙率水溶性陶瓷型芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710177975.5A CN106966755B (zh) 2017-03-23 2017-03-23 一种高孔隙率水溶性陶瓷型芯及其制备方法

Publications (2)

Publication Number Publication Date
CN106966755A true CN106966755A (zh) 2017-07-21
CN106966755B CN106966755B (zh) 2020-10-09

Family

ID=59329794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710177975.5A Active CN106966755B (zh) 2017-03-23 2017-03-23 一种高孔隙率水溶性陶瓷型芯及其制备方法

Country Status (1)

Country Link
CN (1) CN106966755B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299009A (zh) * 2018-03-23 2018-07-20 东南大学 一种利用木质材料制备的水溶性陶瓷型芯及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840219A (en) * 1988-03-28 1989-06-20 Foreman Robert W Mixture and method for preparing casting cores and cores prepared thereby
US5127461A (en) * 1989-10-31 1992-07-07 Ube Industries, Ltd. Water soluble cores, process for producing them and process for die casting metal using them
CN105693254A (zh) * 2016-02-03 2016-06-22 中国航空工业集团公司北京航空材料研究院 一种水溶性陶瓷型芯材料和制备水溶性陶瓷型芯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840219A (en) * 1988-03-28 1989-06-20 Foreman Robert W Mixture and method for preparing casting cores and cores prepared thereby
US5127461A (en) * 1989-10-31 1992-07-07 Ube Industries, Ltd. Water soluble cores, process for producing them and process for die casting metal using them
CN105693254A (zh) * 2016-02-03 2016-06-22 中国航空工业集团公司北京航空材料研究院 一种水溶性陶瓷型芯材料和制备水溶性陶瓷型芯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299009A (zh) * 2018-03-23 2018-07-20 东南大学 一种利用木质材料制备的水溶性陶瓷型芯及其制备方法

Also Published As

Publication number Publication date
CN106966755B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN106927798A (zh) 一种水溶性陶瓷型芯及其制备方法
CN105693254B (zh) 一种水溶性陶瓷型芯材料和制备水溶性陶瓷型芯的方法
CN106866124A (zh) 一种水溶性陶瓷型芯及其制备方法
CN109734425B (zh) 一种复相陶瓷铸型的激光选区快速成型方法及其产品
CN102861873A (zh) 一种齿轮的铸造方法
CN108275988B (zh) 一种改进的硅基陶瓷型芯制备方法
CN102786295A (zh) 一种水溶性陶瓷型芯及其制备方法
WO2017114065A1 (zh) 一种环保铸造材料的制备方法
CN105127374B (zh) 一种钛及钛合金铸造用复合型芯及其制备方法
CN110240471A (zh) 一种水溶性陶瓷型芯及其制备方法
Choi et al. Application of dual coating process and 3D printing technology in sand mold fabrication
CN100469731C (zh) 采用氧化铝空心球的复合氧化铝陶瓷型芯材料及成型制备工艺
CN108296417A (zh) 一种用于激光烧结和纳米3d打印技术的覆膜砂及其制备方法
CN106830958A (zh) 一种低铝低导热耐碱浇注料
KR20080093799A (ko) 인베스트먼트 주조용 석고계 매몰제
JP2013071169A (ja) 精密鋳造用セラミック中子と、その製造方法
CN106904990A (zh) 一种高孔隙率水溶性陶瓷型芯及其制备方法
CN106966755A (zh) 一种高孔隙率水溶性陶瓷型芯及其制备方法
CN109020607A (zh) 一种除尘灰陶粒砂及其制备方法与应用
JPH03146240A (ja) 水溶性中子及びその製造方法
CN107737880A (zh) 一种水溶性陶瓷型芯及其制备方法
CN108299009A (zh) 一种利用木质材料制备的水溶性陶瓷型芯及其制备方法
JP6317995B2 (ja) 精密鋳造鋳型製造用スラリーのフィラー材及びそれを用いて得られたスラリー並びに精密鋳造鋳型
CN106083005A (zh) 高孔隙率易脱除硅基陶瓷型芯制备方法
CN107010933A (zh) 一种熔模铸件用型芯的浆料制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant