CN106953573A - 一种无刷双馈电机的速度辨识方法 - Google Patents

一种无刷双馈电机的速度辨识方法 Download PDF

Info

Publication number
CN106953573A
CN106953573A CN201710146092.8A CN201710146092A CN106953573A CN 106953573 A CN106953573 A CN 106953573A CN 201710146092 A CN201710146092 A CN 201710146092A CN 106953573 A CN106953573 A CN 106953573A
Authority
CN
China
Prior art keywords
feed motor
brushless dual
angle
frequency converter
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710146092.8A
Other languages
English (en)
Inventor
刘铁军
金维宇
夏小华
鲁纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Li'neng Science & Technology Co Ltd
Original Assignee
Hunan Li'neng Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Li'neng Science & Technology Co Ltd filed Critical Hunan Li'neng Science & Technology Co Ltd
Priority to CN201710146092.8A priority Critical patent/CN106953573A/zh
Publication of CN106953573A publication Critical patent/CN106953573A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提出了一种无刷双馈电机的速度辨识方法,该方法在静止坐标系下,根据无刷双馈电机原理,将控制侧电流变换到功率侧,通过功率侧电流与变换到功率侧的控制侧电流的夹角构造误差,并通过PI调节器进行闭环控制,最后获得了异步运行状态下,电机转速和位置角。本方法辨识出的电机转速角可以用于无刷双馈电机启动过程的转速显示与流程控制,同时位置角可以作为变频器无速度传感器闭环控制状态下转子位置较辨识的初始角,由于在进入闭环控制前已经获得了转子位置初始角,提高了变频器闭环控制情况下速度辨识的收敛速度,使得无速度传感器位置辨识算法的难度降低,能够快速跟踪转子位置并进入稳定状态。

Description

一种无刷双馈电机的速度辨识方法
技术领域
本发明涉及电子技术领域,特别涉及一种无刷双馈电机的速度辨识方法。
背景技术
高压无刷双馈电机应用在变频调速领域,主要是利用具有两套定子绕组的特点,一套高压定子绕组为功率绕组,一般接高压电网,另一套为低压定子绕组为控制绕组,接一般接低压变频器,高压无刷双馈电机调速时通过低压变频装置调节控制绕组电源频率达到调速目的。当其用作电动机时,一般通过在控制绕组串接三相电阻启动或直接短接控制绕组启动,这种启动方式下电机会从零转速运行到同步转速附近,电机运行特性与异步电机类似,因此也称为无刷双馈电机异步启动。这种情况下,同时也称电机转速到达同步转速附近稳定运行的状态为电机异步运行状态。
传统的电机转速获取方式是设置机械传感器对电机的转速进行测量,但传感器测量方式有诸多缺陷。机械传感器的设置增加了系统成本和安装技术要求,且转速的测量因电机参数随工况的变化而变化,还要受到环境因素的影响,所以存在较大误差,且转速误差对电机控制的影响会随温度、振动等因素的增加而增大。如果不用速度传感器,只根据变频器输出的电压、电流信号得到电机的转速进行闭环控制,就可以省去速度传感器,满足电机速度控制的简便性、廉价性和可靠性要求,这也是目前本领域的主流研究方向。
所谓无速度传感器技术,是取消了机械传感器,根据电机运行方程计算得到转速,计算获得的转速可补偿电机参数随温度等的变化,且目前已有技术及成熟产品。国内外学者在这方面做了大量的工作,提出了开环直接辨识、基于转子磁链的MRAS辨识、基于反电势的MRAS辨识、全阶磁通观测器、扩展卡尔曼滤波、高频注入法等多种速度辨识方法。前述方法均是传统的无传感器速度辨识,为改善控制系统性能,许多学者将模糊、神经网络等智能控制技术引入电机的速度辨识中,这是无速度传感器电机控制的研究热点和发展方向。
用智能的方法进行电机速度辨识,最直接的就是利用易于检测的电机定子电压和电流,设计BP神经网络来辨识速度,但这种方法存在着难以确定网络隐层及其节点数目的问题。目前,确定具体的网络结构尚无好方法,仍根据经验试凑。同时,学习算法的收敛速度慢,且收敛速度与初始权的选择有关。
另外,在电机没有安装速度传感器时,由于变频器的速度辨识一般是基于变频器闭环控制情况下设计,此时变频器必须有输出,而电机异步运行时,变频器没有输出。因此在异步运行时,无法获得电机异步启动过程和电机异步运行时的转速和位置角。
发明内容
本发明要解决的技术问题是:提供一种无刷双馈电机的速度辨识方法,其能在电机没有安装速度传感器时,获得电机异步启动或异步运行状态下,电机的转速和位置角,使得无速度传感器位置辨识算法的难度降低,能够快速跟踪转子位置并进入稳定状态。
本发明的解决方案是这样实现的:一种无刷双馈电机的速度辨识方法,用于无刷双馈电机在电机异步启动过程和异步运行状态下的电机速度辨识,其包括以下步骤:
S1、控制器采样功率绕组线电压和控制绕组电流,并进行CLARK变换,将三相静止坐标系下的矢量变换到两相静止坐标系下,设功率绕组电压矢量在两相静止坐标系下(vpal,vpbe),设控制绕组电流矢量在两相静止坐标系下为(ical,icbe),同时通过K/P变换计算功率绕组电压矢量幅值(vpr)和控制绕组电流矢量幅值(icr);
S2、将积分器输出的θ角作为控制绕组PARK变换的变换角,将控制绕组电流从两相静止坐标系变换到两项旋转坐标系,设控制绕组电流矢量变换到功率绕组侧后为(icd,icq);
S3、利用步骤S2中得到的电压矢量(vpal,vpbe)及电流矢量(icd,icq)构造误差err。
本发明的另一技术方案在于在上述基础之上,所述步骤S3具体为:
令err=icq*vpal-icd*vpbe,将该误差作为PI条件器输入,PI调节器输出为:
ω=err×(Kp/+Ki/s)/(vpr*icr)
其中,ω为转子磁场电角频率;
ωr=ω/(Pp+Pc)
其中,ωr为转子旋转角频率,Pp为功率侧极对数,Pc为控制侧极对数;
θ=∫(ω)dt
将θ作为步骤S2中的控制侧电流PARK变换的变换角度。
本发明的另一技术方案在于在上述基础之上,所述速度辨识方法的输出角度为控制侧电压或电流矢量变换到功率侧的旋转变换角度。
本发明的另一技术方案在于在上述基础之上,应用于所述无刷双馈电机的速度辨识方法的控制系统包括无刷双馈电机、变频器以及
预充电电路,与变频器的输入端相连,用于在变频器启动过程中对限制充电电流KM2通过电阻器进行预充电,其中,当变频器母线电压达到预设值后,断开KM2,闭合KM1;
变频器输出接触器KM3,用于连接变频器输出与无刷双馈电机的控制绕组;
变频器异步启动装置,通过接触器KM4与无刷双馈电机的控制绕组相连,所述接触器KM4用于投切异步启动装置的三相电阻;
断路器QF1,用于连接无刷双馈电机的功率绕组和共用电网。
从以上技术方案可以看出,本发明实施例具有以下优点:本发明所述的无刷双馈电机的速度辨识方法,该方法通过功率绕组电压CLARK变换程序、基于辨识角的功率绕组电压矢量的PARK变换程序、控制绕组电流CLARK变换程序、误差构造程序、PI调节,以及积分环节等,在静止坐标系下,根据无刷双馈电机原理,将控制侧电流变换到功率侧,通过功率侧电流与变换到功率侧的控制侧电流的夹角构造误差,并通过PI调节器进行闭环控制,最后获得了异步运行状态下,电机转速和位置角。本方法辨识出的电机转速角可以用于无刷双馈电机启动过程的转速显示与流程控制,同时位置角可以作为变频器无速度传感器闭环控制状态下转子位置较辨识的初始角,由于在进入闭环控制前已经获得了转子位置初始角,提高了变频器闭环控制情况下速度辨识的收敛速度,使得无速度传感器位置辨识算法的难度降低,能够快速跟踪转子位置并进入稳定状态。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明一种实施方式中无刷双馈电机的速度辨识方法的原理图;
图2为图1中所示速度辨识方法的控制系统原理图;
图3为本发明一种实施方式中无刷双馈电机的速度辨识方法在无刷双馈电机启动过程中的速度辨识波形图。
具体实施方式
下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。此外,本领域技术人员根据本文件的描述,可以对本文件中实施例中以及不同实施例中的特征进行相应组合。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例如下,如图1和图2所示,一种无刷双馈电机的速度辨识方法,用于无刷双馈电机在电机异步启动过程和异步运行状态下的电机速度辨识,主要包括功率绕组电压CLARK变换程序、基于辨识角的功率绕组电压矢量的PARK变换程序、控制绕组电流CLARK变换程序、误差构造程序、PI调节,以及积分环节,其包括以下步骤:
S1、控制器采样功率绕组线电压和控制绕组电流,并进行CLARK变换,将三相静止坐标系下的矢量变换到两相静止坐标系下,设功率绕组电压矢量在两相静止坐标系下(vpal,vpbe),设控制绕组电流矢量在两相静止坐标系下为(ical,icbe),同时通过K/P变换计算功率绕组电压矢量幅值(vpr)和控制绕组电流矢量幅值(icr);
S2、将积分器输出的θ角作为控制绕组PARK变换的变换角,将控制绕组电流从两相静止坐标系变换到两项旋转坐标系,设控制绕组电流矢量变换到功率绕组侧后为(icd,icq);
S3、利用步骤S2中得到的电压矢量(vpal,vpbe)及电流矢量(icd,icq)构造误差err;其中,
令err=icq*vpal-icd*vpbe,将该误差作为PI条件器输入,PI调节器输出为:
ω=err×(Kp/+Ki/s)/(vpr*icr)
其中,ω为转子磁场电角频率;
ωr=ω/(Pp+Pc)
其中,ωr为转子旋转角频率,Pp为功率侧极对数,Pc为控制侧极对数;
θ=∫(ω)dt
将θ作为步骤S2中的控制侧电流PARK变换的变换角度。
根据无刷双馈电机结构特点,可以知道
θ=(Pp+Pc)×(θr+θ0),
其中,(θr+θ0)为转子位置角,θ0为转子初始角。
本发明误差构造函数物理意义为异步启动和异步运行时,电机无功电流或励磁电流全部由功率侧提供,控制侧不提供励磁电流,因此应有err=0。
需要说明的是,CLARK变换和PARK变换,为已知的变换方法,其中CLARK变换,将相隔120°的三相对称的交流供电,变换成两相想间隔90°的交流供电。具体变换过程不再赘述。park变换就是将ia,ib,ic电流在α、β轴上的投影,等效到d,q轴上,将定子上的电流都等效到直轴和交轴上去。对于稳态来说,这么一等效之后,iq,id正好就是一个常数了。这样,我们就不用再关注定子三个绕组所产生的旋转磁场,而是关注这个等效之后的直轴和交轴所产生的旋转磁场了。这样做使得在建立转子回路电磁关系的微分方程时,其系数矩阵成为常数矩阵,而不是随着时间和空间量变化的系数矩阵,这样大大化简了分析发电机、电动机的电磁关系的微分方程。在匀速圆周转动的情况下,PARK变换就是通过一定的角度旋转变换,把旋转中的向量变为静止直角坐标系里面的量,即将空间静止坐标系代替旋转坐标系,具体变换过程不再赘述。
优选的是,所述速度辨识方法的输出角度为控制侧电压或电流矢量变换到功率侧的旋转变换角度。
优选的是,如图2所示,应用于所述无刷双馈电机的速度辨识方法的控制系统可以包括无刷双馈电机、变频器以及
预充电电路,与变频器的输入端相连,用于在变频器启动过程中对限制充电电流KM2通过电阻器进行预充电,其中,当变频器母线电压达到预设值后,断开KM2,闭合KM1;
变频器输出接触器KM3,用于连接变频器输出与无刷双馈电机的控制绕组;
变频器异步启动装置,通过接触器KM4与无刷双馈电机的控制绕组相连,所述接触器KM4用于投切异步启动装置的三相电阻;
断路器QF1,用于连接无刷双馈电机的功率绕组和共用电网。
所述无刷双馈电机的异步启动过程为先断开KM3接触器,再闭合KM4,确认KM3断开和KM4闭合后,闭合短路器QF1,QF1闭合后,电机开始异步启动,直到转速接近电机同步转速。
如图3所示,为应用本专利所述无刷双馈电机的速度辨识方法,无刷双馈电机启动过程中的速度辨识波形图,其中,nr-速度传感器转速,nr_obs-辨识转速,从图中可以看出本方法的速度跟踪效果满足现实与进入同步速附近后的控制要求。
从以上技术方案可以看出,本发明实施例具有以下优点:本发明所述的无刷双馈电机的速度辨识方法,该方法在静止坐标系下,根据无刷双馈电机原理,将控制侧电流变换到功率侧,通过功率侧电流与变换到功率侧的控制侧电流的夹角构造误差,并通过PI调节器进行闭环控制,最后获得了异步运行状态下,电机转速和位置角。本方法辨识出的电机转速角可以用于无刷双馈电机启动过程的转速显示与流程控制,同时位置角可以作为变频器无速度传感器闭环控制状态下转子位置较辨识的初始角,由于在进入闭环控制前已经获得了转子位置初始角,提高了变频器闭环控制情况下速度辨识的收敛速度,使得无速度传感器位置辨识算法的难度降低,能够快速跟踪转子位置并进入稳定状态。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种无刷双馈电机的速度辨识方法,用于无刷双馈电机在电机异步启动过程和异步运行状态下的电机速度辨识,其特征在于,包括以下步骤:
S1、控制器采样功率绕组线电压和控制绕组电流,并进行CLARK变换,将三相静止坐标系下的矢量变换到两相静止坐标系下,设功率绕组电压矢量在两相静止坐标系下(vpal,vpbe),设控制绕组电流矢量在两相静止坐标系下为(ical,icbe),同时通过K/P变换计算功率绕组电压矢量幅值(vpr)和控制绕组电流矢量幅值(icr);
S2、将积分器输出的θ角作为控制绕组PARK变换的变换角,将控制绕组电流从两相静止坐标系变换到两项旋转坐标系,设控制绕组电流矢量变换到功率绕组侧后为(icd,icq);
S3、利用步骤S2中得到的电压矢量(vpal,vpbe)及电流矢量(icd,icq)构造误差err。
2.根据权利要求1所述的无刷双馈电机的速度辨识方法,其特征在于,所述步骤S3具体为:
令err=icq*vpal-icd*vpbe,将该误差作为PI条件器输入,PI调节器输出为:
ω=err×(Kp/+Ki/s)/(vpr*icr)
其中,ω为转子磁场电角频率;
ωr=ω/(Pp+Pc)
其中,ωr为转子旋转角频率,Pp为功率侧极对数,Pc为控制侧极对数;
θ=∫(ω)dt
将θ作为步骤S2中的控制侧电流PARK变换的变换角度。
3.根据权利要求1所述的无刷双馈电机的速度辨识方法,其特征在于,所述速度辨识方法的输出角度为控制侧电压或电流矢量变换到功率侧的旋转变换角度。
4.根据权利要求1至3中任一项所述的无刷双馈电机的速度辨识方法,其特征在于,应用于所述无刷双馈电机的速度辨识方法的控制系统包括无刷双馈电机、变频器以及
预充电电路,与变频器的输入端相连,用于在变频器启动过程中对限制充电电流KM2通过电阻器进行预充电,其中,当变频器母线电压达到预设值后,断开KM2,闭合KM1;
变频器输出接触器KM3,用于连接变频器输出与无刷双馈电机的控制绕组;
变频器异步启动装置,通过接触器KM4与无刷双馈电机的控制绕组相连,所述接触器KM4用于投切异步启动装置的三相电阻;
断路器QF1,用于连接无刷双馈电机的功率绕组和共用电网。
CN201710146092.8A 2017-03-13 2017-03-13 一种无刷双馈电机的速度辨识方法 Pending CN106953573A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710146092.8A CN106953573A (zh) 2017-03-13 2017-03-13 一种无刷双馈电机的速度辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710146092.8A CN106953573A (zh) 2017-03-13 2017-03-13 一种无刷双馈电机的速度辨识方法

Publications (1)

Publication Number Publication Date
CN106953573A true CN106953573A (zh) 2017-07-14

Family

ID=59468231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710146092.8A Pending CN106953573A (zh) 2017-03-13 2017-03-13 一种无刷双馈电机的速度辨识方法

Country Status (1)

Country Link
CN (1) CN106953573A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649849A (zh) * 2018-06-13 2018-10-12 新风光电子科技股份有限公司 一种简单的无传感器永磁同步电机速度估测方法
CN109217737A (zh) * 2018-09-26 2019-01-15 湖南利能科技股份有限公司 一种双馈电机的控制系统和方法
CN110350838A (zh) * 2019-07-15 2019-10-18 安徽工业大学 一种基于扩展卡尔曼滤波的无速度传感器bdfim直接转矩控制方法
CN113437916A (zh) * 2021-06-11 2021-09-24 华中科技大学 一种双馈异步电动机控制系统的起动方法和装置
CN114640291A (zh) * 2022-05-19 2022-06-17 希望森兰科技股份有限公司 一种异步电机短时停机转速跟踪启动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239251A (en) * 1989-06-30 1993-08-24 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Brushless doubly-fed motor control system
CN101267174A (zh) * 2008-01-17 2008-09-17 中国矿业大学 无刷双馈电机的启动方法及装置
CN105391356A (zh) * 2015-12-16 2016-03-09 易事特集团股份有限公司 无刷双馈电机启动控制系统和方法
CN105577065A (zh) * 2015-12-31 2016-05-11 易事特集团股份有限公司 无刷双馈电机异步启动方法和装置
CN106410754A (zh) * 2016-10-21 2017-02-15 湖南利能科技股份有限公司 一种缺相检测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239251A (en) * 1989-06-30 1993-08-24 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Brushless doubly-fed motor control system
CN101267174A (zh) * 2008-01-17 2008-09-17 中国矿业大学 无刷双馈电机的启动方法及装置
CN105391356A (zh) * 2015-12-16 2016-03-09 易事特集团股份有限公司 无刷双馈电机启动控制系统和方法
CN105577065A (zh) * 2015-12-31 2016-05-11 易事特集团股份有限公司 无刷双馈电机异步启动方法和装置
CN106410754A (zh) * 2016-10-21 2017-02-15 湖南利能科技股份有限公司 一种缺相检测方法及系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649849A (zh) * 2018-06-13 2018-10-12 新风光电子科技股份有限公司 一种简单的无传感器永磁同步电机速度估测方法
CN109217737A (zh) * 2018-09-26 2019-01-15 湖南利能科技股份有限公司 一种双馈电机的控制系统和方法
CN110350838A (zh) * 2019-07-15 2019-10-18 安徽工业大学 一种基于扩展卡尔曼滤波的无速度传感器bdfim直接转矩控制方法
CN113437916A (zh) * 2021-06-11 2021-09-24 华中科技大学 一种双馈异步电动机控制系统的起动方法和装置
CN113437916B (zh) * 2021-06-11 2022-08-05 华中科技大学 一种双馈异步电动机控制系统的起动方法和装置
CN114640291A (zh) * 2022-05-19 2022-06-17 希望森兰科技股份有限公司 一种异步电机短时停机转速跟踪启动方法
CN114640291B (zh) * 2022-05-19 2022-07-29 希望森兰科技股份有限公司 一种异步电机短时停机转速跟踪启动方法

Similar Documents

Publication Publication Date Title
CN106953573A (zh) 一种无刷双馈电机的速度辨识方法
CN107359837A (zh) 基于滑模观测器和自抗扰控制的永磁同步电机转矩控制系统及方法
CN102223134B (zh) 永磁同步电机伺服系统参数在线辨识的装置与方法
CN109839830A (zh) 一种三相交流电机的功率级模拟控制方法及装置
CN108900131A (zh) 表贴式永磁同步电机低速无位置传感器矢量控制系统与方法
CN110518850A (zh) 内置式永磁同步电机单神经元自适应pid弱磁控制方法
CN108092567A (zh) 一种永磁同步电动机转速控制系统及方法
CN110297182A (zh) 一种模拟开绕组永磁同步电机的电力电子负载系统
CN105577064A (zh) 一种可减少转矩脉动的无刷双馈电机直接转矩控制方法
CN110165962A (zh) 一种直驱永磁同步风力发电系统及其全自抗扰控制方法
CN108494308A (zh) 一种快速锁定异步电机转子频率的控制方法
CN105262393A (zh) 一种采用新型过渡过程的容错永磁电机速度控制方法
CN102647134A (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
CN104481803A (zh) 一种风力发电系统追踪最大输出功率控制方法
CN202068373U (zh) 带参数在线辨识的无速度传感器永磁同步电机矢量控制装置
CN108880384A (zh) 一种无刷双馈感应电机的调制模型预测控制方法及系统
CN106788049A (zh) 基于级联滑模观测器的无速度传感器转矩控制系统及方法
CN108322117A (zh) 无刷双馈电机的控制系统、前馈控制方法及参数辨识方法
CN108696187A (zh) 无轴承同步磁阻电机参数观测的悬浮系统构造方法
CN211429147U (zh) 一种用于永磁同步电机的旋变调零系统
CN109347389A (zh) 一种基于模型预测磁链控制的开关磁阻电机直接转矩控制方法
CN108448971A (zh) 一种无刷双馈发电机的控制系统及模型预测电流控制方法
CN102148603A (zh) 双馈发电机转子初始位置零位偏差的辨识方法及控制装置
CN110165957A (zh) 一种调制异步电机离线参数的辨识方法
CN104935231B (zh) 基于预测方式的感应电机电流控制方法及其电流控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20191220