CN106953330B - 一种用于柔性直流配电网的潮流控制器以及控制方法 - Google Patents

一种用于柔性直流配电网的潮流控制器以及控制方法 Download PDF

Info

Publication number
CN106953330B
CN106953330B CN201710289338.7A CN201710289338A CN106953330B CN 106953330 B CN106953330 B CN 106953330B CN 201710289338 A CN201710289338 A CN 201710289338A CN 106953330 B CN106953330 B CN 106953330B
Authority
CN
China
Prior art keywords
power
flow controller
power flow
output
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710289338.7A
Other languages
English (en)
Other versions
CN106953330A (zh
Inventor
解大
喻松涛
赵祖熠
李岩
李巍巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201710289338.7A priority Critical patent/CN106953330B/zh
Publication of CN106953330A publication Critical patent/CN106953330A/zh
Application granted granted Critical
Publication of CN106953330B publication Critical patent/CN106953330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种用于柔性直流配电网的潮流控制器以及控制方法,包括输入侧和输出侧的两个功率源模型以及潮流控制模块,连接相同电压等级直流配电网,实现直流配电网中潮流大小和方向的控制。本发明实现对实际柔性直流配电网潮流控制器的电压功率特性的模拟,在计算机仿真分析时计算量更小,使大规模的复杂柔性直流配电系统的仿真分析成为可能。

Description

一种用于柔性直流配电网的潮流控制器以及控制方法
技术领域
本发明涉及到直流配电网技术领域,具体地,涉及一种用于柔性直流配电网的潮流控制器以及控制方法。
背景技术
上世纪九十年代,随着电力电子技术的迅速发展,直流配电开始受到关注,美国、欧洲和日本等国家开始了关于数据通信中心直流配电的研究。其他一些特殊应用领域的直流配电技术比如军舰、航空以及混合电动汽车等也日渐成熟。目前,我国高压直流输电技术以及用于通信、船舶、地铁等的低压直流配电技术都已经比较成熟。我国从2009年起开始对柔性直流配电网展开研究,虽然起步较晚,但是研究方向涉及直流配电网从架构到运行的方方面面。
对于某些控制自由度不足的直流配电网络,经常提出了引入直流潮流控制装置的方法。现有的直流潮流控制装置一般包括:变电阻式直流潮流控制器、变电压式直流潮流控制器和DC-DC变流站三种。这些潮流控制器的设计中均大量使用了电力电子开关器件以及电感电容等非线性电气元件。
对于配电网络的规划分析,一般需要应用Simulink、PSCAD等计算机仿真软件对系统进行建模仿真研究,但是随着配电网系统规模的不断增大,其仿真研究需要的运算时间也极大增加,给实际的分析研究带来困难,因而在保证一定精度的前提下,忽略电力电子开关器件的开关特性,可以大量减少仿真计算量,使大规模柔性直流配电网的仿真研究成为可能。
发明内容
针对前面所述的现有技术中的缺陷,本发明的目的是提供一种用于柔性直流配电网的潮流控制器的建模与控制方法,本发明的控制方法能够模拟柔性直流配电网中潮流控制器的电压-功率特性,同时极大减少仿真计算量,节约计算机的运算时间。
为实现上述目的,本发明是根据以下技术方案实现的:
一种用于柔性直流配电网的潮流控制器,基于两侧功率源的功率守恒,功率输入输出关系如式Poutput=Pinput+Ploss,其中Poutput表示潮流控制器的输出侧输出功率,Pinput表示潮流控制器的输入侧输入功率,Ploss表示潮流控制器的损耗功率;
所述潮流控制器的损耗功率Ploss与潮流控制器效率η的关系如Ploss=kloss×Pinput=η×Pinput公式所示,其中kloss表示潮流控制器的损耗系数,潮流控制器效率η在初始化时进行设定,其中kloss=η;
所述潮流控制器接收调度控制指令Pcontrol(k),所述调度控制指令Pcontrol(k)包括潮流控制器的潮流方向及潮流大小;所述控制模块向两个功率源分别发送期望功率值。
上述技术方案中,所述潮流控制器的输入侧、输出侧的功率控制都通过双极性功率源实现。
上述技术方案中,所述潮流控制器设置在同一电压等级的直流配电网间或者直流配电网的线路中。
一种上述用于柔性直流配电网的潮流控制器的控制方法,其特征在于,包括如下步骤:
S1、初始化设定潮流控制器效率η;
S2、根据公式Ploss=kloss×Pinput=η×Pinput,计算经过直流变压器模型的损耗系数kloss
S3、获取调度控制指令Pcontrol(k),若Pcontrol(k)为正则表示潮流控制器的左端为输入端,右端为输出端;若Pcontrol(k)为负则表示潮流控制器的左端为输入端,右端为输出端;
S4、根据测量第k步的可控源输出电压值V(k)及可控电压源的输出电流值I(k),根据公式P(k)=I(k)×V(k)计算潮流控制器的功率值P(k),电流方向为流入可控电压源的方向,P(k)为正时表示模型输出功率,P(k)为负时表示模型消耗功率,根据从期望功率曲线确定潮流控制器左右两侧双极性功率源的期望功率值Pexpect(k);
S5、计算潮流控制器向两侧功率源发送期望功率值Pexpect(k),根据公式ε(k)=Pexpect(k)-P(k)计算期望输出功率与实际输出功率的偏差ε(k),其中k为大于等于1的整数;
S6、继续进行循环计算,当可控电压源的输出功率与期望输出功率值相同时,可控电压源输出电压达到稳定值。
上述技术方案中,步骤S6采用增量式PI调节算法计算功率值,其时域表达式为:
Figure BDA0001281534310000031
其中,kp为比例系数,ki为积分系数,ε(t)为PI差动输入即t时刻实际功率与期望功率的偏差值,τ为时间常数,Vout(t)为PI输出;
将上式离散化为差分方程为:
Figure BDA0001281534310000032
其中,Tsam为采样周期,其中Vout(t)为k步输出电压;
根据增量式控制原理
ΔV(k)=Vi(k)-Vi(k-1)
=kp[ε(k)-ε(k-1)]+kiTsamε(k)
并经过加法运算,计算出此次调节可控电压源的输出电压Vout(k),其中Vout(k)=Vout(k-1)+ΔV(k)。
本发明与现有技术相比,具有如下有益效果:
本发明考虑潮流控制器的损耗功率,基于两侧模型功率的守恒,采用定功率控制能够有效满足输入侧、输出侧功率的平衡,维持系统稳定。
此外,本发明忽略了潮流控制器内部的电力电子开关特性,实现对潮流控制器输入、输出侧的电压-功率特性的模拟,极大减少了仿真分析的运算量,提高了仿真研究的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为潮流控制器的建模原理图。
图2为潮流控制器的控制流程。
图3(a)为仿真过程中潮流控制器两侧的功率状况的仿真曲线图;
图3(b)为潮流控制器左侧正负极端口电压情况的仿真曲线图;
图3(c)为潮流控制器右侧正负极端口电压情况的仿真曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
本发明提出了一种用于柔性直流配电网的潮流控制器及其控制方法,其用于柔性直流配电网的潮流控制器,基于两侧功率源的功率守恒,功率输入输出关系如式Poutput=Pinput+Ploss,其中Poutput表示潮流控制器的输出侧输出功率,Pinput表示潮流控制器的输入侧输入功率,Ploss表示潮流控制器的损耗功率;
所述潮流控制器的损耗功率Ploss与潮流控制器效率η的关系如Ploss=kloss×Pinput=η×Pinput公式所示,其中kloss表示潮流控制器的损耗系数,潮流控制器效率η在初始化时进行设定,其中kloss=η;
所述潮流控制器接收调度控制指令Pcontrol(k),所述调度控制指令Pcontrol(k)包括潮流控制器的潮流方向及潮流大小;所述控制模块向两个功率源分别发送期望功率值。
潮流控制器的输入侧、输出侧的功率控制都通过双极性功率源实现。潮流控制器设置在同一电压等级的直流配电网间或者直流配电网的线路中。根据功能需求潮流控制器模型采用定功率控制。
图2为本发明的潮流控制器的控制流程,如图2所示,本发明的一种用于柔性直流配电网的潮流控制器的控制方法,包括如下步骤:
S1、初始化设定潮流控制器效率η;
S2、根据公式Ploss=kloss×Pinput=η×Pinput,计算经过直流变压器模型的损耗系数kloss
S3、获取调度控制指令Pcontrol(k),若Pcontrol(k)为正则表示潮流控制器的左端为输入端,右端为输出端;若Pcontrol(k)为负则表示潮流控制器的左端为输入端,右端为输出端;
S4、根据测量第k步的可控源输出电压值V(k)及可控电压源的输出电流值I(k),根据公式P(k)=I(k)×V(k)计算潮流控制器的功率值P(k),电流方向为流入可控电压源的方向,P(k)为正时表示模型输出功率,P(k)为负时表示模型消耗功率,根据从期望功率曲线确定潮流控制器左右两侧双极性功率源的期望功率值Pexpect(k);
S5、计算潮流控制器向两侧功率源发送期望功率值Pexpect(k),根据公式ε(k)=Pexpect(k)-P(k)计算期望输出功率与实际输出功率的偏差ε(k),其中k为大于等于1的整数;
S6、继续进行循环计算,当可控电压源的输出功率与期望输出功率值相同时,可控电压源输出电压达到稳定值。
上述技术方案中,步骤S6采用增量式PI调节算法计算功率值,其时域表达式为:
Figure BDA0001281534310000061
其中,kp为比例系数,ki为积分系数,ε(t)为PI差动输入即t时刻实际功率与期望功率的偏差值,τ为时间常数,Vout(t)为PI输出;
将上式离散化为差分方程为:
Figure BDA0001281534310000062
其中,Tsam为采样周期,其中Vout(k)为k步输出电压;
根据增量式控制原理
ΔV(k)=Vi(k)-Vi(k-1)
=kp[ε(k)-ε(k-1)]+kiTsamε(k)
并经过加法运算,计算出此次调节可控电压源的输出电压Vout(k),其中Vout(k)=Vout(k-1)+ΔV(k)。
当Pexpect(k)=P0(k)时,ΔV(k)=0,可控电压源输出电压达到稳定值。
根据上述潮流控制器模型以及控制方法,搭建了潮流控制器的模型,设定潮流控制器的两侧电压等级均为±10kV,其中潮流控制器左侧配电母线电压较低约为±9980V,右侧配电母线电压较高约为±10020V,潮流控制的潮流指令信号为5MW,即潮流控制器从左向右流过潮流5MW,潮流控制器效率为98%。
仿真结果如图3所示,图3(a)展示了仿真过程中潮流控制器两侧的功率状况的仿真曲线图,其中上图中潮流控制器侧吸收功率从初始的2MW,0.5s达到稳定状态的5.1MW,下图中潮流控制器侧输出功率从初始的2MW,0.5s达到稳定状态的5MW,达到98%的传输效率。图3(b)和图3(c)分别展示了潮流控制器左右两侧正负极端口电压情况的仿真曲线图,潮流控制器左侧端口电压由初始状态的±9980V,达到0.5s稳定后的±9940V,由于向高压侧输出功率,而电压进一步降低,潮流控制器右侧的情况则相反,端口电压由初始状态的±10020V,达到0.5s稳定后的±10070V,由于接收了潮流控制器左端低压侧输出的功率,而电压进一步升高。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (2)

1.一种使用用于柔性直流配电网的潮流控制器的控制方法,其特征在于,包括如下步骤:
S1、初始化设定设定潮流控制器效率η;
S2、根据公式Ploss=kloss×Pinput=η×Pinput,计算经过直流变压器模型的损耗系数kloss
S3、获取调度控制指令Pcontrol(k),若Pcontrol(k)为正则表示潮流控制器的左端为输入端,右端为输出端;若Pcontrol(k)为负则表示潮流控制器的左端为输入端,右端为输出端;
S4、根据测量第k次的可控电压源输出电压值V(k)及可控电压源的输出电流值I(k),根据公式P(k)=I(k)×V(k)计算潮流控制器的功率值P(k),电流方向为流入可控电压源的方向,P(k)为正时表示模型输出功率,P(k)为负时表示模型消耗功率,根据期望功率曲线确定潮流控制器左右两侧双极性功率源的期望输出功率Pexpect(k);
S5、计算潮流控制器向两侧功率源发送期望输出功率Pexpect(k),根据公式ε(k)=Pexpect(k)-P(k)计算期望输出功率与实际输出功率的偏差ε(k),其中k为大于等于1的整数;
S6、继续进行循环计算,当可控电压源的输出功率与期望输出功率相同时,可控电压源输出电压达到稳定值;
所述用于柔性直流配电网的潮流控制器的控制方法根据潮流控制器的损耗功率,基于两侧模型功率的守恒,采用定功率控制满足输入侧、输出侧功率的平衡,维持系统稳定;并且忽略潮流控制器内部的电力电子开关特性,实现对潮流控制器输入、输出侧的电压-功率特性的模拟;
其中,所述用于柔性直流配电网的潮流控制器,其特征在于:
基于两侧功率源的功率守恒,功率输入输出关系如式Poutput=Pinput+Ploss,其中Poutput表示潮流控制器的输出侧输出功率,Pinput表示潮流控制器的输入侧输入功率,Ploss表示潮流控制器的损耗功率;
所述潮流控制器的损耗功率Ploss与潮流控制器效率η的关系如Ploss=kloss×Pinput=η×Pinput公式所示,其中kloss表示潮流控制器的损耗系数,潮流控制器效率η在初始化时进行设定,其中kloss=η;
所述潮流控制器接收调度控制指令Pcontrol(k),所述调度控制指令Pcontrol(k)包括潮流控制器的潮流方向及潮流大小;所述控制模块向两个功率源分别发送期望输出功率。
2.根据权利要求1所述的用于柔性直流配电网的潮流控制器的控制方法,其特征在于,步骤S6采用增量式PI调节算法计算功率值,其时域表达式为:
Figure FDA0002932306400000021
其中,kp为比例系数,ki为积分系数,ε(t)为PI差动输入即t时刻实际功率与期望功率的偏差值,τ为时间常数,Vout(t)为PI输出;
将上式离散化为差分方程为:
Figure FDA0002932306400000022
其中,Tsam为采样周期,其中Vout(k)为第k次输出电压,Vi(k)为第k次可控源输出电压值V(k)的离散形式,即指代式子
Figure FDA0002932306400000023
的代式;
根据增量式控制原理
ΔV(k)=Vi(k)-Vi(k-1)
=kp[ε(k)-ε(k-1)]+kiTsamε(k)
并经过加法运算,计算出此次调节可控电压源的输出电压Vout(k),其中Vout(k)=Vout(k-1)+ΔV(k)。
CN201710289338.7A 2017-04-27 2017-04-27 一种用于柔性直流配电网的潮流控制器以及控制方法 Active CN106953330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710289338.7A CN106953330B (zh) 2017-04-27 2017-04-27 一种用于柔性直流配电网的潮流控制器以及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710289338.7A CN106953330B (zh) 2017-04-27 2017-04-27 一种用于柔性直流配电网的潮流控制器以及控制方法

Publications (2)

Publication Number Publication Date
CN106953330A CN106953330A (zh) 2017-07-14
CN106953330B true CN106953330B (zh) 2021-04-02

Family

ID=59477612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710289338.7A Active CN106953330B (zh) 2017-04-27 2017-04-27 一种用于柔性直流配电网的潮流控制器以及控制方法

Country Status (1)

Country Link
CN (1) CN106953330B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212352B (zh) * 2018-09-21 2022-10-11 中国电力科学研究院有限公司 辨识柔性直流非线性功率特性的仿真测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647188A (zh) * 2007-03-15 2010-02-10 Abb技术有限公司 反转直流输电系统电力潮流的方法和装置
KR20140036552A (ko) * 2012-09-17 2014-03-26 한국전력공사 전력계통의 운영 손실을 최소화하는 hvdc제어 시스템 및 그 방법
CN105893677A (zh) * 2016-04-01 2016-08-24 上海交通大学 直流配电网直流变压器功率电压特性仿真模型及仿真方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647188A (zh) * 2007-03-15 2010-02-10 Abb技术有限公司 反转直流输电系统电力潮流的方法和装置
KR20140036552A (ko) * 2012-09-17 2014-03-26 한국전력공사 전력계통의 운영 손실을 최소화하는 hvdc제어 시스템 및 그 방법
CN105893677A (zh) * 2016-04-01 2016-08-24 上海交通大学 直流配电网直流变压器功率电压特性仿真模型及仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多端柔性直流下垂控制的功率参考值修正方法;喻锋等;《电力自动化设备》;20151130;第35卷(第11期);第117-121页 *

Also Published As

Publication number Publication date
CN106953330A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN105978016A (zh) 一种基于最优潮流的多端柔性直流输电系统优化控制方法
CN106129999B (zh) 基于有限时间一致性的直流微电网分布式协同控制方法
CN105990999A (zh) 电源供应装置及其控制方法
CN110149066A (zh) 一种基于模型控制预测的mmc桥臂电流控制方法及系统
CN107769213B (zh) 一种多换流器并联的交直流配电网潮流计算方法
CN105515006A (zh) 一种基于改进型下垂控制的微电网多主从混合控制方法
CN105207209A (zh) 一种基于下垂控制的交直流配电网系统潮流计算方法
CN106208031B (zh) 直流微网中可抑制环流的改进下垂控制方法和系统
CN106707740A (zh) 基于积分分离pid的数字电源环路补偿器的设计方法
CN105701734A (zh) 一种直流配电网含变流器的负荷功率电压特性仿真模型及仿真方法
CN112688307A (zh) 一种交直流混合微电网控制器及控制方法
CN106953330B (zh) 一种用于柔性直流配电网的潮流控制器以及控制方法
CN106292283B (zh) 一种光伏并网逆变器的自适应模糊积分滑模控制方法
CN112531715B (zh) 基于虚拟电阻的下垂控制多端直流微电网潮流计算方法
CN113179017A (zh) 半桥型双向dc-dc变换器控制环路补偿方法
CN106026070A (zh) 基于下垂控制的直流微电网变换器解耦控制方法
CN110134004B (zh) 一种基于电力弹簧电路结构的pi控制参数整定方法
CN106340905B (zh) 一种基于虚拟同步控制的并网逆变器功率分配方法
CN103606940B (zh) 一种应用于微电网的分布式电源功率平抑方法
CN109921407A (zh) 一种面向直流微电网电流分配的二次调控器、系统和方法
CN107332284B (zh) 一种基于无功电流一致控制的微电网逆变器下垂控制方法
CN111864797B (zh) 一种基于双维控制的孤岛微网二次电压调节方法
CN108182317B (zh) 一种基于vsc的柔性直流输电系统建模方法
CN114156858A (zh) 一种多储能直流配电网协调控制方法及系统
CN206920526U (zh) 一种多端直流测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant