CN106952311A - Assisted parking system and method based on panoramic stitching data mapping table - Google Patents
Assisted parking system and method based on panoramic stitching data mapping table Download PDFInfo
- Publication number
- CN106952311A CN106952311A CN201710120841.XA CN201710120841A CN106952311A CN 106952311 A CN106952311 A CN 106952311A CN 201710120841 A CN201710120841 A CN 201710120841A CN 106952311 A CN106952311 A CN 106952311A
- Authority
- CN
- China
- Prior art keywords
- image
- bird
- calibration
- images
- eye view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013506 data mapping Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000004927 fusion Effects 0.000 claims abstract description 30
- 239000004744 fabric Substances 0.000 claims abstract description 22
- 240000004050 Pentaglottis sempervirens Species 0.000 claims description 88
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 claims description 88
- 238000013507 mapping Methods 0.000 claims description 36
- 230000009466 transformation Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 241001300198 Caperonia palustris Species 0.000 claims description 3
- 235000000384 Veronica chamaedrys Nutrition 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/10—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
- B60R2300/105—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/30—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
- B60R2300/303—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
- B60R2300/806—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for aiding parking
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
本发明公开了基于全景拼接数据映射表的辅助泊车方法及系统,在车身四周的地面上设置标定布,利用标定布上棋盘格区域和公共覆盖区域的布局和尺寸信息,将安装在车辆车身上的相邻摄像头的覆盖区域内的图像进行粗配准;然后利用公共覆盖区域内的物体特征将相邻摄像头的覆盖区域内的图像进行微调,利用图像特征的非相似度,所有分属于不同摄像机所采集的图像特征非相似度的和达到最小时,找到最优的图像配准位置;利用全景拼接模板图像生成全景拼接数据映射表,根据包含数据映射关系表的文件可以实时地生成全景视频图像。使用本发明能够有效地提高全景标定图像的配准精度、提高了全景视频图像的拼接融合效果、有效地满足硬件的实时性要求。
The invention discloses an auxiliary parking method and system based on a panoramic splicing data mapping table. Calibration cloth is arranged on the ground around the vehicle body, and the layout and size information of the checkerboard area and the public coverage area on the calibration cloth are used to install the vehicle on the vehicle body. The images in the coverage areas of the adjacent cameras on the body are roughly registered; then the images in the coverage areas of the adjacent cameras are fine-tuned by using the object features in the common coverage area, and the non-similarity of the image features is used. When the non-similarity sum of the image features collected by the camera reaches the minimum, find the optimal image registration position; use the panoramic stitching template image to generate a panoramic stitching data mapping table, and generate a panoramic video in real time according to the file containing the data mapping relationship table image. The use of the present invention can effectively improve the registration accuracy of the panoramic calibration image, improve the splicing and fusion effect of the panoramic video image, and effectively meet the real-time requirements of hardware.
Description
技术领域technical field
本发明涉及图像处理技术领域,特别是涉及基于全景拼接数据映射表的辅助泊车系统及方法。The invention relates to the technical field of image processing, in particular to an auxiliary parking system and method based on a panoramic stitching data mapping table.
背景技术Background technique
全景辅助泊车系统通过安装在车身前后左右4路鱼眼摄像头实时采集车身周围的图像,图像处理单元将这四路鱼眼图像进行畸变矫正,然后将这四路鱼眼图像经过透视变换到一个空间坐标系下,接着生成全景图像,并传送到中控台显示设备,用户可在车内直观的看到车身周围的环境,能够有效提高行车的安全性。The panoramic assisted parking system collects images around the vehicle body in real time through four fisheye cameras installed on the front, rear, left, and right sides of the vehicle body. The image processing unit performs distortion correction on the four fisheye images, and then transforms the four fisheye images into one Under the spatial coordinate system, a panoramic image is then generated and transmitted to the center console display device. The user can intuitively see the environment around the car body in the car, which can effectively improve driving safety.
全景辅助泊车系统由于输入的原始图像是由多个超广角车载摄像头获取到的,且需要经过畸变矫正、单应性变换来进行系统标定,这将导致物体形变和颜色差异较大,无论使用哪种配准算法,都无法得到理想的配准效果,找到一个最优的图像配准位置,是全景辅助泊车系统的实现难点。全景辅助泊车系统由于系统的特殊应用需求,需要系统的硬件装置能够满足实际应用中的实时性要求。Since the input original image of the panoramic assisted parking system is obtained by multiple ultra-wide-angle vehicle cameras, and requires distortion correction and homography transformation for system calibration, this will lead to large differences in object deformation and color. No registration algorithm can achieve the ideal registration effect. Finding an optimal image registration position is a difficult point in the implementation of the panoramic assisted parking system. Due to the special application requirements of the system, the panoramic assisted parking system needs the hardware device of the system to meet the real-time requirements in practical applications.
发明内容Contents of the invention
为了解决现有技术的不足,本发明提供了基于全景拼接数据映射表的辅助泊车方法,目的在于利用全景拼接模板图像生成全景拼接数据映射表。In order to solve the deficiencies of the prior art, the present invention provides an auxiliary parking method based on a panoramic stitching data mapping table, with the purpose of generating a panoramic stitching data mapping table using a panoramic stitching template image.
本发明的另一目的是提供基于全景拼接数据映射表的辅助泊车系统,该系统根据包含数据映射关系表的文件可以实时地生成全景视频图像。Another object of the present invention is to provide an auxiliary parking system based on a panoramic stitching data mapping table, which can generate panoramic video images in real time according to a file containing a data mapping table.
基于全景拼接数据映射表的辅助泊车方法,包括:An assisted parking method based on a panoramic stitching data mapping table, including:
在车身四周的地面上设置标定布,利用标定布上棋盘格区域和公共覆盖区域的布局和尺寸信息,将安装在车辆车身上的相邻摄像头的覆盖区域内的图像进行粗配准;Set a calibration cloth on the ground around the vehicle body, and use the layout and size information of the checkerboard area and the public coverage area on the calibration cloth to roughly register the images in the coverage area of the adjacent camera installed on the vehicle body;
然后利用公共覆盖区域内的物体特征将相邻摄像头的覆盖区域内的图像进行微调,利用图像特征的非相似度,所有分属于不同摄像机所采集的图像特征非相似度的和达到最小时,找到最优的图像配准位置;Then use the object features in the common coverage area to fine-tune the images in the coverage areas of adjacent cameras, and use the dissimilarity of image features to minimize the sum of the dissimilarity of all image features collected by different cameras, find Optimal image registration position;
利用全景拼接模板图像生成全景拼接数据映射表,根据包含数据映射关系表的文件可以实时地生成全景视频图像。The panorama stitching data mapping table is generated by using the panorama mosaic template image, and the panorama video image can be generated in real time according to the file containing the data mapping relationship table.
进一步的,在要标定车辆车身前方、左方、后方和右方安装4路鱼眼超广角摄像头。Further, 4-way fisheye ultra-wide-angle cameras are installed on the front, left, rear and right of the vehicle body to be calibrated.
进一步的,利用摄像头获取汽车前方、左方、后方和右方的四幅鱼眼标定图像A0(x00,y00)、A1(x10,y10)、A2(x20,y20)、A3(x30,y30),对这四副鱼眼标定图像进行畸变校正,得到四幅畸变校正后的鱼眼标定图像B0(x01,y01)、B1(x11,y11)、B2(x21,y21)、B3(x31,y31)。Further, use the camera to obtain four fisheye calibration images A 0 (x 00 ,y 00 ), A 1 (x 10 ,y 10 ), A 2 (x 20 ,y 20 ), A 3 (x 30 ,y 30 ), perform distortion correction on these four fisheye calibration images, and obtain four distortion-corrected fisheye calibration images B 0 (x 01 ,y 01 ), B 1 (x 11 , y 11 ), B 2 (x 21 ,y 21 ), B 3 (x 31 ,y 31 ).
进一步的,分别识别B0(x01,y01)、B1(x11,y11)、B2(x21,y21)、B3(x31,y31)图像中的棋盘格内角点,得到图像中的棋盘格内角点的世界坐标和图像坐标,根据棋盘格内角点的世界坐标和图像坐标能够计算出B0(x01,y01)、B1(x11,y11)、B2(x21,y21)、B3(x31,y31)图像的单应性变换矩阵H0、H1、H2、H3,根据该单应性变换矩阵,对图像B0(x01,y01)、B1(x11,y11)、B2(x21,y21)、B3(x31,y31)分别进行鸟瞰变换,得到四幅鸟瞰标定图像C0(x02,y02)、C1(x12,y12)、C2(x22,y22)、C3(x32,y32)。Further, identify the checkerboard interior corners in B 0 (x 01 ,y 01 ), B 1 (x 11 ,y 11 ), B 2 (x 21 ,y 21 ), B 3 (x 31 ,y 31 ) images respectively point, get the world coordinates and image coordinates of the inner corner points of the checkerboard in the image, and calculate B 0 (x 01 ,y 01 ), B 1 (x 11 ,y 11 ) according to the world coordinates and image coordinates of the inner corner points of the checkerboard , B 2 (x 21 , y 21 ), B 3 (x 31 , y 31 ) image homography transformation matrix H 0 , H 1 , H 2 , H 3 , according to the homography transformation matrix, image B 0 (x 01 ,y 01 ), B 1 (x 11 ,y 11 ), B 2 (x 21 ,y 21 ), and B 3 (x 31 ,y 31 ) perform bird’s-eye view transformation respectively to obtain four bird’s-eye view calibration images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ), C 2 (x 22 ,y 22 ), C 3 (x 32 ,y 32 ).
进一步的,单应性变换需要保证四幅鸟瞰标定图像中涉及的单个棋盘方格的图像尺寸相同,并且鸟瞰标定图像中棋盘格的方向与全景拼接的方向一致。Furthermore, the homography transformation needs to ensure that the image size of a single checkerboard involved in the four bird's-eye view calibration images is the same, and the direction of the checkerboard in the bird's-eye view calibration image is consistent with the direction of the panorama stitching.
进一步的,所述全景拼接模板图像的生成方式为:根据标定布棋盘格区域的实际尺寸、棋盘格区域之间的实际垂直间距、棋盘格区域的图像尺寸信息以及全景鸟瞰标定图像的显示距离,生成全景拼接模板图像。Further, the method of generating the panoramic stitching template image is as follows: according to the actual size of the checkerboard area of the calibration cloth, the actual vertical distance between the checkerboard areas, the image size information of the checkerboard area, and the display distance of the panoramic bird's-eye view calibration image, Generate panorama stitching template images.
进一步的,所述全景拼接模板图像由中心区域Rcent、前方区域RA、左方区域RB、后方区域RC、右方区域RD五块组成,中心区域Rcent为汽车模型图像,前方区域RA、左方区域RB、后方区域RC、右方区域RD分别与相应方向的鸟瞰标定图像C0(x02,y02)、C1(x12,y12)、C2(x22,y22)、C3(x32,y32)相对应,根据棋盘格区域的尺寸确定两两鸟瞰标定图像的拼接缝隙,拼接缝隙对应的矩形区域就是两两鸟瞰标定图像的重叠区域。Further, the panorama stitching template image is composed of five blocks: the central area R cent , the front area RA , the left area RB , the rear area RC , and the right area RD. The central area R cent is a car model image, and the front area Region R A , left region R B , rear region R C , and right region R D respectively correspond to the bird's-eye view calibration images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ), C 2 (x 22 , y 22 ) and C 3 (x 32 , y 32 ), corresponding to each other, according to the size of the checkerboard area, determine the splicing gap of the two bird's-eye view calibration images, and the rectangular area corresponding to the splicing gap is the overlapping of the two bird's-eye view calibration images area.
进一步的,根据拼接线的位置、鸟瞰图像中棋盘格的图像位置,将四幅鸟瞰标定图像拼接为一幅完整的全景鸟瞰标定图像D(x3,y3)。Further, according to the position of the stitching line and the image position of the checkerboard in the bird's-eye view image, the four bird's-eye view calibration images are stitched into a complete panoramic bird's-eye view calibration image D(x 3 , y 3 ).
进一步的,所述找到最优的图像配准位置具体包括:确定相邻鸟瞰标定图像的重叠区域,对相邻鸟瞰标定图像的重叠区域图像分别进行特征提取,根据这两个重叠区域的图像特征,将这两幅鸟瞰标定图像位置进行微调,搜索到两两相邻鸟瞰图像的最佳配准位置,最终使得在4个重合区域内,所有分属于不同摄像机所采集的图像特征非相似度的和达到最小。Further, the finding of the optimal image registration position specifically includes: determining the overlapping area of adjacent bird's-eye view calibration images, performing feature extraction on the overlapping area images of adjacent bird's-eye view calibration images, and according to the image features of the two overlapping areas , fine-tune the positions of the two bird's-eye view calibration images, and search for the best registration position of two adjacent bird's-eye view images, and finally make all the non-similarities of image features collected by different cameras in the four overlapping areas and reach a minimum.
进一步的,生成全景拼接映射表文件,全景拼接映射表由以下几部分组成:Further, a panorama stitching map file is generated, and the panorama stitching map consists of the following parts:
F0:鸟瞰标定图像C0(x02,y02)与前方鱼眼标定图像A0(x00,y00)之间像素点坐标映射表M0;F0: Pixel coordinate mapping table M 0 between the bird's-eye view calibration image C 0 (x 02 ,y 02 ) and the front fish-eye calibration image A 0 (x 00 ,y 00 );
F1:鸟瞰标定图像C1(x12,y12)与左方鱼眼标定图像A1(x10,y10)之间像素点坐标映射表M1;F1: Pixel coordinate mapping table M 1 between the bird's-eye view calibration image C 1 (x 12 ,y 12 ) and the left fish-eye calibration image A 1 (x 10 ,y 10 );
F2:鸟瞰标定图像C2(x22,y22)与后方鱼眼标定图像A2(x20,y20)之间像素点坐标映射表M2;F2: Pixel coordinate mapping table M 2 between the bird's-eye calibration image C 2 (x 22 , y 22 ) and the rear fish-eye calibration image A 2 (x 20 , y 20 );
F3:鸟瞰标定图像C3(x32,y32)与右方鱼眼标定图像A3(x30,y30)之间像素点坐标映射表M3;F3: Pixel coordinate mapping table M 3 between the bird's-eye calibration image C 3 (x 32 , y 32 ) and the right fish-eye calibration image A 3 (x 30 , y 30 );
F4:全景鸟瞰标定图像D(x3,y3)与4个方向鸟瞰标定图像之间像素点所属区域映射表M4,映射表M4可表示为公式(1),其中R0、R1、R2、R3分别是鸟瞰标定图像C0(x02,y02)、C1(x12,y12)、C2(x22,y22)、C3(x32,y32)的子图像,且不属于全景视频图像中相邻鸟瞰标定图像的融合区域,相邻鸟瞰标定图像的融合区域是相邻鸟瞰标定图像重叠区域的子图像,R4、R5、R6、R7属于相邻鸟瞰标定图像的融合区域,在融合区域中对所属重叠区域图像进行融合处理,其中R4是鸟瞰标定图像C0(x02,y02)、C1(x12,y12)的重叠区域子图像,R5是鸟瞰标定图像C1(x12,y12)、C2(x22,y22)的重叠区域子图像,R6是鸟瞰标定图像C2(x22,y22)、C3(x32,y32)的重叠区域子图像,R7是鸟瞰标定图像C0(x02,y02)、C3(x32,y32)的重叠区域子图像;F4: Mapping table M 4 of the region between the panoramic bird's-eye view calibration image D(x 3 ,y 3 ) and the bird's-eye view calibration image in 4 directions. The mapping table M 4 can be expressed as formula (1), where R 0 , R 1 , R 2 , R 3 are bird's-eye view calibration images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ), C 2 (x 22 ,y 22 ), C 3 (x 32 ,y 32 ) , and does not belong to the fusion area of adjacent bird's-eye calibration images in the panoramic video image, the fusion area of adjacent bird-eye calibration images is the sub-image of the overlapping area of adjacent bird's-eye calibration images, R 4 , R 5 , R 6 , R 7 belongs to the fusion area of adjacent bird's-eye view calibration images, and performs fusion processing on the overlapping area images in the fusion area, where R 4 is the bird's-eye view calibration images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ) R 5 is the overlapping area sub-image of the bird's-eye view calibration image C 1 (x 12 ,y 12 ), C 2 (x 22 ,y 22 ), R 6 is the bird's-eye view calibration image C 2 (x 22 ,y y 22 ), the overlapping area sub-images of C 3 (x 32 , y 32 ), R 7 is the overlapping area sub-image of the bird's-eye view calibration image C 0 (x 02 , y 02 ), C 3 (x 32 , y 32 );
F5:全景鸟瞰标定图像D(x3,y3)与4个方向鸟瞰标定图像C0(x02,y02)、C1(x12,y12)、C2(x22,y22)、C3(x32,y32)之间像素点坐标映射表M5,且对于相邻鸟瞰标定图像融合区域内的任意像素点(x′3,y′3),需要说明(x′3,y′3)与所属的两个鸟瞰图像像素点的坐标映射关系;F5: Panoramic bird's-eye view calibration image D(x 3 ,y 3 ) and 4-direction bird's-eye view calibration images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ), C 2 (x 22 ,y 22 ) , C 3 (x 32 , y 32 ), the pixel point coordinate mapping table M 5 , and for any pixel point (x′ 3 , y′ 3 ) in the adjacent bird’s-eye view calibration image fusion area, it needs to be explained (x′ 3 ,y′ 3 ) and the coordinate mapping relationship between the two bird's-eye view image pixels;
F6:对于相邻鸟瞰标定图像的融合区域R4、R5、R6、R7内确定像素点的融合因子h1、h2,其中h1、h2分别是所属鸟瞰图像重叠部分对应坐标下像素的权值,将融合区域R4、R5、R6、R7中涉及的任意像素点的坐标(x′3,y′3)与该像素点的融合因子存入映射表M6。F6: Determine the fusion factors h 1 and h 2 of pixels in the fusion regions R 4 , R 5 , R 6 , and R 7 of adjacent bird’s-eye view calibration images, where h 1 and h 2 are the corresponding coordinates of the overlapping parts of the bird’s-eye view images Lower the weight of the pixel, store the coordinates (x′ 3 , y′ 3 ) of any pixel involved in the fusion area R 4 , R 5 , R 6 , R 7 and the fusion factor of the pixel into the mapping table M 6 .
进一步地,所述标定布由棋盘格区域和公共覆盖区域组成,公共覆盖区域主要是作为全景拼接的标记物,在汽车的前后左右的地面上距离车身设定距离分别放置或绘制前标定布、后标定布、左标定布和右标定布,保证相邻标定布棋盘格矩形区域相互垂直,且保证标定布位于前后左右鱼眼摄像的可视范围内,根据放置或绘制于汽车前后左右四个方向的标定布,利用摄像头获取汽车四周的标定图像信息。Further, the calibration cloth is composed of a checkerboard area and a public coverage area. The public coverage area is mainly used as a marker for panoramic stitching, and the front calibration cloth, For the rear calibration cloth, left calibration cloth and right calibration cloth, ensure that the checkerboard rectangular areas of adjacent calibration cloths are perpendicular to each other, and ensure that the calibration cloth is within the visual range of the front, rear, left, and right fisheye cameras. The direction of the calibration cloth, using the camera to obtain the calibration image information around the car.
进一步地,所述全景拼接模板图像前方区域RA由区域R0、R7组成,左方区域RB由区域R1、R4组成,后方区域RC由区域R2、R5组成,右方区域RD由区域R3、R6组成。Further, the front region R A of the panoramic stitching template image is composed of regions R 0 and R 7 , the left region R B is composed of regions R 1 and R 4 , the rear region R C is composed of regions R 2 and R 5 , and the right region R B is composed of regions R 2 and R 5 . Square region RD is composed of regions R 3 , R 6 .
进一步地,实时地生成全景视频图像实现步骤:实时获取车身周围的4路鱼眼实时图像后,对R0、R1、R2、R3区域内的像素,根据标定系统生成的数据映射表文件,映射到所属原始鱼眼图像的坐标,确定输出像素值,对于R4、R5、R6、R7区域内的像素,根据数据映射表文件,映射到所要参与计算的原始鱼眼图像的坐标,根据映射表确定的融合因子,将该像素点进行融合,确定输出像素值。Further, the implementation steps of generating panoramic video images in real time: After obtaining the 4-way fisheye real-time images around the vehicle body in real time, for the pixels in the R 0 , R 1 , R 2 , and R 3 areas, according to the data mapping table generated by the calibration system File, mapped to the coordinates of the original fisheye image to which it belongs, to determine the output pixel value, for the pixels in the R 4 , R 5 , R 6 , and R 7 areas, map to the original fisheye image to be involved in the calculation according to the data mapping table file According to the fusion factor determined by the mapping table, the pixel is fused to determine the output pixel value.
基于全景拼接数据映射表的辅助泊车系统,包括:Assisted parking system based on panoramic stitching data mapping table, including:
图像采集模块,利用安装在车辆车身前方、左方、后方和右方的4路鱼眼超广角摄像头获取图像,并对图像进行同步处理;The image acquisition module uses 4-way fisheye ultra-wide-angle cameras installed in the front, left, rear and right of the vehicle body to acquire images and perform synchronous processing on the images;
判断模块,用于对同步处理后的图像进行判断是否需要标定,若需要则将同步处理后的图像传输至系统标定模块,否则,转入全景生成模块;Judgment module, used to judge whether the image after synchronous processing needs to be calibrated, if necessary, the image after synchronous processing is transmitted to the system calibration module, otherwise, it is transferred to the panorama generation module;
系统标定模块,同步处理后的前视频图像、后视频图像、左视频图像及右视频图像分别进行畸变校正,之后再分别进行鸟瞰变换,将鸟瞰变换后的图像进行全景拼接并生成全景拼接数据映射表;The system calibration module performs distortion correction on the synchronously processed front video image, rear video image, left video image and right video image respectively, and then performs bird's-eye view transformation respectively, performs panoramic stitching on the bird's-eye transformed images and generates a panoramic stitching data map surface;
全景生成模块,用于对视频图像重映射变换,之后对变换后的图像进行处理后传输至显示模块进行图像显示。The panorama generation module is used to remap and transform the video image, and then process the transformed image and transmit it to the display module for image display.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明的全景辅助泊车系统利用标定布信息将鸟瞰标定图像进行粗配准,利用公共覆盖区域内的物体特征将图像进行微调,实现了鸟瞰标定图像的最优化配准,利用自动生成的拼接模板,利用全景拼接数据映射生成全景拼接数据映射表。The panoramic assisted parking system of the present invention uses the calibration cloth information to roughly register the bird's-eye view calibration image, uses the object characteristics in the public coverage area to fine-tune the image, and realizes the optimal registration of the bird's-eye view calibration image. A template for generating a panorama stitching data mapping table using the panorama stitching data mapping.
使用本发明能够有效地提高全景标定图像的配准精度、提高了全景视频图像的拼接融合效果、有效地满足硬件的实时性要求。The use of the present invention can effectively improve the registration accuracy of the panoramic calibration image, improve the splicing and fusion effect of the panoramic video image, and effectively meet the real-time requirements of hardware.
本发明结合全景泊车产品开发中的实际需求,解决全景泊车系统中的关键问题。The invention solves the key problem in the panoramic parking system in combination with the actual demand in the development of panoramic parking products.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application, and do not constitute improper limitations to the present application.
图1是全景辅助泊车系统模块框图;Fig. 1 is a module block diagram of a panoramic assisted parking system;
图2是标定布位置示意图;Figure 2 is a schematic diagram of the location of the calibration cloth;
图3是全景拼接模板图;Figure 3 is a panorama stitching template diagram;
图4是全景拼接鸟瞰图像显示范围图。Fig. 4 is a view of the display range of panoramic stitching bird's-eye view images.
具体实施方式detailed description
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
正如背景技术所介绍的,现有技术中存在的不足,为了解决如上的技术问题,本申请提出了基于全景拼接数据映射表的辅助泊车方法及系统。As introduced in the background technology, there are deficiencies in the prior art. In order to solve the above technical problems, the present application proposes a parking assistance method and system based on a panoramic stitching data mapping table.
全景辅助泊车系统的工作过程可分为两个子系统,其中一个工作子系统为标定系统,是首次安装好系统后进行标定,对4路鱼眼图像进行图像处理,生成全景拼接图像,最终的目的是生成原始鱼眼图像与全景拼接图像之间的数据映射表,另一个工作子系统是在标定完系统后,在获取到4路鱼眼实时图像后,利用标定系统生成的数据映射表生成全景实时图像。The working process of the panoramic assisted parking system can be divided into two subsystems. One of the working subsystems is the calibration system, which is calibrated after the system is installed for the first time. Image processing is performed on the 4-channel fisheye image to generate a panoramic stitching image. The final The purpose is to generate a data mapping table between the original fisheye image and the panoramic stitching image. Another working subsystem is to use the data mapping table generated by the calibration system after the system is calibrated and the 4-channel fisheye real-time image is obtained. Panoramic live images.
本申请的一种典型的实施方式中,本发明实施例采用如下的系统设计方案:利用PC机来标定全景辅助泊车系统,确定鱼眼超广角摄像头获取到的标定图像和全景拼接图像数据映射表,并将该数据映射表写入文本文件中,然后将该文件拷贝到使用USB接口的存储设备中,全景辅助泊车系统的硬件设备通过读取USB端口中的包含数据映射表的文件完成全景辅助泊车设备的初始化。在下次启动全景辅助泊车设备时,系统读取闪存中包含数据映射表的信息单元,利用该数据映射表对实时的四路鱼眼视频图像进行处理,生成实时的全景视频图像,并将其在显示屏上显示。本发明实施例中一种用于全景辅助泊车图像系统工作框图如附图1所示。In a typical implementation of the present application, the embodiment of the present invention adopts the following system design scheme: use a PC to calibrate the panoramic assisted parking system, and determine the data mapping between the calibration image and the panoramic stitching image acquired by the fisheye ultra-wide-angle camera table, and write the data mapping table into a text file, and then copy the file to a storage device using a USB interface. The hardware device of the panoramic assisted parking system is completed by reading the file containing the data mapping table in the USB port Initialization of the panoramic parking assistant. When the panoramic assisted parking equipment is started next time, the system reads the information unit containing the data mapping table in the flash memory, uses the data mapping table to process the real-time four-way fisheye video image, generates a real-time panoramic video image, and converts it to shown on the display. A working block diagram of an image system for panoramic parking assistance in an embodiment of the present invention is shown in Fig. 1 .
在车身的前后左右固定好4个鱼眼超广角车载摄像头,对于汽车的前方和后方的摄像头,可以安装在车牌上方附近,安装角度为倾斜向下,对于汽车左方和右方的摄像头,可以安装在后视镜附近,安装角度为垂直向下。根据车辆的长宽比例,确定标定布的尺寸和布局,标定布上绘制有棋盘格和拼接标记物,将标定布放置在汽车的四周,使得车辆的前方、后方和两侧分别放置有用于标定的棋盘格标记物,同时在两两摄像头的公共覆盖区域内放置有拼接标记物,标定布位置示意图如附图2。Fix 4 fisheye super wide-angle car cameras on the front, rear, left, and right sides of the car. For the front and rear cameras of the car, they can be installed near the top of the license plate. The installation angle is inclined downward. For the cameras on the left and right of the car, you can Installed near the rearview mirror, the installation angle is vertically downward. According to the length and width ratio of the vehicle, determine the size and layout of the calibration cloth. There are checkerboard and stitching markers drawn on the calibration cloth, and the calibration cloth is placed around the car so that the front, rear and sides of the vehicle are respectively placed for calibration. The checkerboard markers, and the splicing markers are placed in the common coverage area of the two cameras. The schematic diagram of the calibration cloth position is shown in Figure 2.
选用鱼眼相机标定工具对系统中要使用的鱼眼相机进行标定,可以选用opencv或者matlab标定工具箱对鱼眼相机进行标定,这里选用matlab标定工具箱。Use the fisheye camera calibration tool to calibrate the fisheye camera to be used in the system. You can use opencv or matlab calibration toolbox to calibrate the fisheye camera. Here, choose matlab calibration toolbox.
本申请的另一种典型的实施方式中,标定步骤:对4路鱼眼标定图像进行图像处理,生成全景拼接图像,最终的目的是生成原始鱼眼图像与全景拼接图像之间的数据映射表,实现步骤描述如下:In another typical implementation of the present application, the calibration step: perform image processing on the 4-way fisheye calibration image to generate a panoramic stitching image, and the ultimate goal is to generate a data mapping table between the original fisheye image and the panoramic stitching image , the implementation steps are described as follows:
步骤(1):在要标定车辆车身前方、左方、后方和右方固定好4路鱼眼摄像头,在地面上按照附图2所示放置(绘制)标定布,这里标定布上的四个棋盘格区域的布局和尺寸都是完全相同的。Step (1): Fix the 4-way fisheye camera at the front, left, rear and right of the vehicle body to be calibrated, and place (draw) the calibration cloth on the ground as shown in Figure 2, where the four calibration cloths are The layout and dimensions of the checkerboard areas are identical.
步骤(2):获取汽车前方、左方、后方和右方的四幅鱼眼标定图像A0(x00,y00)、A1(x10,y10)、A2(x20,y20)、A3(x30,y30);根据畸变校正模型对前方、左方、后方和右方鱼眼标定图像进行畸变校正,得到四幅畸变校正后的鱼眼标定图像B0(x01,y01)、B1(x11,y11)、B2(x21,y21)、B3(x31,y31)。Step (2): Obtain four fisheye calibration images A 0 (x 00 ,y 00 ), A 1 (x 10 ,y 10 ), A 2 (x 20 ,y 20 ) of the front, left, rear and right of the car ), A 3 (x 30 ,y 30 ); according to the distortion correction model, the distortion correction is performed on the front, left, rear and right fisheye calibration images, and four distortion-corrected fisheye calibration images B 0 (x 01 , y 01 ), B 1 (x 11 ,y 11 ), B 2 (x 21 ,y 21 ), B 3 (x 31 ,y 31 ).
步骤(3):分别识别畸变校正后的鱼眼标定图像中的棋盘格内角点,得到棋盘格内角点构成的矩形区域四个顶点的图像坐标,所有棋盘方格内角点构成的矩形区域左上顶点、右上顶点、左下顶点、右下顶点对应的图像坐标分别为P0、P1、P2、P3。若图像中水平方向有a个棋盘方格,垂直方向上有b个棋盘方格。若P4(x0,y0)是棋盘方格内角点构成的矩形区域左上顶点在鸟瞰图像中对应的坐标,则棋盘方格内角点构成的矩形区域右上顶点、左下顶点、右下顶点在鸟瞰图像中对应的坐标分别为P5((a-2)×u+x0,y0)、P6(x0,(b-2)×u+y0)、P7((a-2)×u+x0,(b-2)×u+y0),其中u是鸟瞰变换后单个棋盘方格的图像尺寸,C′0、C′1、C′2、C′3分别为将图像B0、B1、B2、B3以左上顶点为中心逆时针旋转0度、90度、180度和270度后的图像,计算P4、P5、P6、P7在图像C′0、C′1、C′2、C′3中对应的像素点P′0、P′1、P′2、P′3,根据棋盘格内角点的图像坐标P0、P1、P2、P3和棋盘格内角点的世界坐标P′0、P′1、P′2、P′3能够计算出图像的单应性变换矩阵;根据单应性变换矩阵,对每幅畸变校正后鱼眼标定图像分别进行鸟瞰变换,得到四幅鸟瞰图像C0(x02,y02)、C1(x12,y12)、C2(x22,y22)、C3(x32,y32),分别确定四副鸟瞰图像的融合区域。Step (3): Identify the inner corners of the checkerboard in the fisheye calibration image after distortion correction respectively, and obtain the image coordinates of the four vertices of the rectangular area formed by the inner corners of the checkerboard, and the upper left vertex of the rectangular area formed by all the inner corners of the checkerboard The image coordinates corresponding to the upper right vertex, the lower left vertex, and the lower right vertex are P 0 , P 1 , P 2 , and P 3 , respectively. If there are a checkerboard squares in the horizontal direction and b checkerboard squares in the vertical direction in the image. If P 4 (x 0 , y 0 ) is the coordinates corresponding to the upper left vertex of the rectangular area formed by the inner corners of the checkerboard in the bird's-eye view image, then the upper right vertex, lower left vertex, and lower right vertex of the rectangular area formed by the inner corners of the checkerboard are in The corresponding coordinates in the bird’s-eye view image are P 5 ((a-2)×u+x 0 ,y 0 ), P 6 (x 0 ,(b-2)×u+y 0 ), P 7 ((a- 2)×u+x 0 ,(b-2)×u+y 0 ), where u is the image size of a single checkerboard square after bird’s-eye view transformation, C′ 0 , C′ 1 , C′ 2 , C′ 3 respectively To rotate the images B 0 , B 1 , B 2 , and B 3 counterclockwise by 0 degrees, 90 degrees, 180 degrees, and 270 degrees around the upper left vertex, calculate the values of P 4 , P 5 , P 6 , and P 7 The corresponding pixel points P′ 0 , P′ 1 , P′ 2 , P′ 3 in the images C′ 0 , C′ 1 , C′ 2 , and C′ 3 , according to the image coordinates P 0 , P 1 of the inner corner points of the checkerboard , P 2 , P 3 and the world coordinates P′ 0 , P′ 1 , P′ 2 , P′ 3 of the inner corner points of the checkerboard can calculate the homography transformation matrix of the image; according to the homography transformation matrix, for each After distortion correction, the fisheye calibration images are subjected to bird's-eye view transformation respectively, and four bird's-eye-view images C 0 (x 02 ,y 02 ), C 1 (x 12 ,y 12 ), C 2 (x 22 ,y 22 ), C 3 (x 32 , y 32 ), respectively determine the fusion areas of the four bird's-eye-view images.
步骤(4):根据公式(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)生成如附图3所示的拼接模板图像,其中wlr、wrr、hfr、hrr与全景鸟瞰图像的显示距离相关,如附图4所示。Step (4): according to formula (2), (3), (4), (5), (6), (7), (8), (9), (10) generate as shown in accompanying drawing 3 Stitching template images, where w lr , w rr , h fr , h rr are related to the display distance of the panoramic bird's-eye view image, as shown in Figure 4.
wv=a×u (10)w v =a×u (10)
将四幅鸟瞰图像拼接为一幅完整的全景鸟瞰图像D(x3,y3),确定两两鸟瞰标定图像的重叠区域。Stitch the four bird's-eye view images into a complete panoramic bird's-eye view image D(x 3 , y 3 ), and determine the overlapping area of any pair of bird's-eye view calibration images.
步骤(5):对相邻鸟瞰标定图像的重叠区域分别进行二值化处理,在其中一个特征图像上选取一个目标模板图像Amh,大小为Mmh×Nmh,在另一个特征图像上有模板Amh覆盖下的搜素子图像Bmh,大小为Lmh×Wmh,记Mmh和Lmh中的最大值为r,记Nmh和Wmh中的最大值为c,对于图像上不存在的像素点,另其像素值为0,即表示这个像素点不是该图像上的特征点。利用公式(11)计算目标模板Amh和搜索子图像Bmh的非相似度Pmh,根据模板Amh和模板覆盖下的子图Bmh匹配时Pmh取得最小值,完成两幅图像之间的配准,通过特征的匹配关系建立图像之间的配准映射变换。最终使得在全景拼接图像的4个重合区域内,所有分属与不同摄像机所采集的图像特征非相似度的和达到最小。Step (5): Perform binarization on the overlapping areas of adjacent bird’s-eye view calibration images, select a target template image A mh on one of the feature images, with a size of M mh ×N mh , and a target template image on the other feature image The search sub-image B mh covered by the template A mh has a size of L mh ×W mh , and the maximum value of M mh and L mh is r, and the maximum value of N mh and W mh is c. Existing pixel points, and its pixel value is 0, which means that this pixel point is not a feature point on the image. Use the formula (11) to calculate the dissimilarity P mh between the target template A mh and the search sub-image B mh , and obtain the minimum value of P mh when matching the template A mh and the sub-image B mh covered by the template, and complete the comparison between the two images. The registration of the image is established through the matching relationship of the features to establish the registration mapping transformation between the images. Finally, in the four overlapping areas of the panoramic stitching image, the sum of the dissimilarities of all image features collected by different cameras is minimized.
步骤(6):根据步骤(3)计算的单应性变换矩阵和所使用的鱼眼图像畸变矫正模型,可以生成全景拼接映射表M0、M1、M2和M3,根据全景拼接模板图像可以生成映射表M4、M5。融合区域图像融合采用羽化的方法,具体融合方法如公式(12)、公式(13)、公式(14),其中d1、d2分别为拼接融合区域像素点到重叠边界AC、AB的距离,在计算融合区域R4、R5、R6、R7像素点像素值时,参与计算的重叠图像Is分别为A0、A1、A2和A3,参与计算的重叠图像It分别为A1、A2、A3和A0。将融合区域R4、R5、R6、R7中涉及的像素点的坐标与该像素点的融合渐变因子存入映射表M6。将包含全景拼接映射关系表M0、M1、M2、M3、M4、M5和M6的信息写入全景拼接映射表文件。Step (6): According to the homography transformation matrix calculated in step (3) and the used fisheye image distortion correction model, the panoramic stitching mapping tables M 0 , M 1 , M 2 and M 3 can be generated, and according to the panoramic stitching template The image can generate mapping tables M 4 , M 5 . The fusion area image fusion adopts the feathering method, and the specific fusion methods are as formula (12), formula (13), formula (14), where d 1 and d 2 are the distances from the pixels in the spliced fusion area to the overlapping boundaries AC and AB respectively, When calculating the pixel values of the fusion regions R 4 , R 5 , R 6 , and R 7 pixels, the overlapping images I s involved in the calculation are A 0 , A 1 , A 2 , and A 3 respectively, and the overlapping images I t involved in the calculation are respectively are A 1 , A 2 , A 3 and A 0 . The coordinates of the pixels involved in the fusion regions R 4 , R 5 , R 6 , and R 7 and the fusion gradient factors of the pixels are stored in the mapping table M 6 . Write the information including the panoramic stitching mapping relation tables M 0 , M 1 , M 2 , M 3 , M 4 , M 5 and M 6 into the panorama stitching mapping table file.
h1+h2=1 (13)h 1 +h 2 =1 (13)
E(x,y)=h1Is(x,y)+h2It(x,y) (14)E(x,y)=h 1 I s (x,y)+h 2 I t (x,y) (14)
若(x′3,y′3)为全景视频图像中的像素点,在标定完后,在获取到4路鱼眼实时图像后,利用标定系统生成的数据映射表生成全景实时图像,实现步骤描述如下:If (x′ 3 , y′ 3 ) is the pixel point in the panoramic video image, after the calibration is completed, after the 4-way fisheye real-time image is obtained, use the data mapping table generated by the calibration system to generate a panoramic real-time image, and the implementation steps Described as follows:
步骤(1):读取全景拼接映射表文件,将与全景拼接映射表相关变量进行初始化;Step (1): read the panorama stitching map file, and initialize the variables related to the panorama stitching map;
步骤(2):根据映射表M4,可以确定像素点(x′3,y′3)所属的区域;Step (2): According to the mapping table M 4 , the area to which the pixel point (x′ 3 , y′ 3 ) belongs can be determined;
步骤(3):若像素点(x′3,y′3)属于R0、R1、R2、R3中的一个区域,确定像素点(x′3,y′3)与鱼眼图像的坐标映射表Mk。根据坐标映射表M5,可以确定与像素点(x′3,y′3)对应的鸟瞰图像像素点坐标Ck(x′k2,y′k2),根据坐标映射表Mk可以确定鸟瞰图像像素点Ck(x′k2,y′k2)相对应的鱼眼图像像素点坐标Ak(x′k0,y′k0),从而确定了最终像素点的像素值;Step (3): If the pixel point (x′ 3 , y′ 3 ) belongs to an area among R 0 , R 1 , R 2 , and R 3 , determine the pixel point (x′ 3 , y′ 3 ) and the fisheye image The coordinate mapping table M k . According to the coordinate mapping table M 5 , the bird's-eye view image pixel coordinate C k (x' k2 , y' k2 ) corresponding to the pixel point (x′ 3 , y′ 3 ) can be determined, and the bird’s-eye view image can be determined according to the coordinate mapping table M k The fisheye image pixel coordinates A k (x′ k0 , y′ k0 ) corresponding to the pixel point C k (x′ k2 , y′ k2 ), thus determining the pixel value of the final pixel point;
步骤(4)若像素点(x′3,y′3)属于R4、R5、R6、R7中的一个区域,确定重叠区域像素点(x′3,y′3)与鱼眼图像的坐标映射表Ms、Mt。根据坐标映射表M5,可以确定参与计算像素点(x′3,y′3)像素值相对应的鸟瞰图像像素点坐标Cs(x′s2,y′s2)、Ct(x′t2,y′t2),根据坐标映射表Ms、Mt可以确定鸟瞰图像像素点Cs(x′s2,y′s2)、Ct(x′t2,y′t2)相对应的鱼眼图像像素点坐标As(x′s0,y′s0)、At(x′t0,y′t0)。根据映射表M6确定(x′3,y′3)的融合因子,将该像素点进行融合处理,得到最终输出的像素值。Step (4) If the pixel point (x′ 3 , y′ 3 ) belongs to an area among R 4 , R 5 , R 6 , and R 7 , determine the overlap between the pixel point (x′ 3 , y′ 3 ) and the fisheye Image coordinate mapping table M s , M t . According to the coordinate mapping table M 5 , the pixel coordinates C s (x′ s2 , y′ s2 ), C t (x ′ t2 ,y′ t2 ), according to the coordinate mapping table M s , M t can determine the fisheye image corresponding to the bird’s-eye image pixel C s (x′ s2 ,y′ s2 ), C t (x′ t2 ,y′ t2 ) Pixel coordinates A s (x′ s0 , y′ s0 ), A t (x′ t0 , y′ t0 ). The fusion factor of (x′ 3 , y′ 3 ) is determined according to the mapping table M 6 , and the pixel is fused to obtain the final output pixel value.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710120841.XA CN106952311B (en) | 2017-03-02 | 2017-03-02 | Auxiliary parking system and method based on panoramic stitching data mapping table |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710120841.XA CN106952311B (en) | 2017-03-02 | 2017-03-02 | Auxiliary parking system and method based on panoramic stitching data mapping table |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106952311A true CN106952311A (en) | 2017-07-14 |
CN106952311B CN106952311B (en) | 2020-04-07 |
Family
ID=59468022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710120841.XA Active CN106952311B (en) | 2017-03-02 | 2017-03-02 | Auxiliary parking system and method based on panoramic stitching data mapping table |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106952311B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107492125A (en) * | 2017-07-28 | 2017-12-19 | 哈尔滨工业大学深圳研究生院 | The processing method of automobile fish eye lens panoramic view picture |
CN107590773A (en) * | 2017-08-25 | 2018-01-16 | 包谦 | A kind of preparation method of panoramic picture |
CN107633545A (en) * | 2017-08-25 | 2018-01-26 | 包谦 | A kind of processing method of panoramic picture |
CN107958440A (en) * | 2017-12-08 | 2018-04-24 | 合肥工业大学 | Double fish eye images real time panoramic image split-joint methods and system are realized on GPU |
CN108712604A (en) * | 2018-05-07 | 2018-10-26 | 维沃移动通信有限公司 | A kind of panorama shooting method and mobile terminal |
CN109068207A (en) * | 2018-07-04 | 2018-12-21 | 广州希脉创新科技有限公司 | A kind of earphone and earphone system |
CN109204141A (en) * | 2018-09-19 | 2019-01-15 | 深圳市众鸿科技股份有限公司 | Method for early warning and device in vehicle travel process |
CN109429013A (en) * | 2017-08-28 | 2019-03-05 | 华利纳企业股份有限公司 | Image correction system and image correction method |
CN109544647A (en) * | 2018-11-30 | 2019-03-29 | 郑州天迈科技股份有限公司 | Calibration cloth, place and method for 360 ° of panoramic parking assist systems |
CN109600565A (en) * | 2018-12-13 | 2019-04-09 | 广州路派电子科技有限公司 | A kind of kinescope method based on parking system |
CN109613920A (en) * | 2018-12-27 | 2019-04-12 | 睿驰达新能源汽车科技(北京)有限公司 | A kind of method and device of determining vehicle location |
CN109767473A (en) * | 2018-12-30 | 2019-05-17 | 惠州华阳通用电子有限公司 | A kind of panorama parking apparatus scaling method and device |
CN109948398A (en) * | 2017-12-20 | 2019-06-28 | 深圳开阳电子股份有限公司 | The image processing method and panorama parking apparatus that panorama is parked |
CN110022459A (en) * | 2018-01-08 | 2019-07-16 | 联发科技股份有限公司 | Overall view monitoring system and overall view monitoring calibration method for vehicle |
CN110264395A (en) * | 2019-05-20 | 2019-09-20 | 深圳市森国科科技股份有限公司 | A kind of the camera lens scaling method and relevant apparatus of vehicle-mounted monocular panorama system |
CN110288527A (en) * | 2019-06-24 | 2019-09-27 | 北京智行者科技有限公司 | The vehicle-mounted camera panorama of looking around of one kind gets a bird's eye view drawing generating method |
CN110838086A (en) * | 2019-11-07 | 2020-02-25 | 上海大学 | An Outdoor Image Mosaic Method Based on Correlation Template Matching |
CN111086455A (en) * | 2020-03-19 | 2020-05-01 | 吉利汽车研究院(宁波)有限公司 | Data processing method and device, electronic equipment and storage medium |
CN111559314A (en) * | 2020-04-27 | 2020-08-21 | 长沙立中汽车设计开发股份有限公司 | Depth and image information fused 3D enhanced panoramic looking-around system and implementation method |
CN112435161A (en) * | 2020-11-12 | 2021-03-02 | 蘑菇车联信息科技有限公司 | Panoramic all-around image splicing method and system, electronic equipment and storage medium |
CN112606829A (en) * | 2020-12-16 | 2021-04-06 | 广州市车智连电子有限公司 | Auxiliary parking system based on panoramic stitching data mapping |
CN113674363A (en) * | 2021-08-26 | 2021-11-19 | 龙岩学院 | A kind of panoramic parking image mosaicking calibration method and calibration object |
CN114881863A (en) * | 2022-06-30 | 2022-08-09 | 湖北芯擎科技有限公司 | Image splicing method, electronic equipment and computer readable storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298779A (en) * | 2011-08-16 | 2011-12-28 | 淮安盈科伟力科技有限公司 | Image registering method for panoramic assisted parking system |
CN103177439B (en) * | 2012-11-26 | 2015-10-28 | 惠州华阳通用电子有限公司 | A kind of automatic calibration method based on black and white lattice corners Matching |
CN105894549A (en) * | 2015-10-21 | 2016-08-24 | 乐卡汽车智能科技(北京)有限公司 | Panorama assisted parking system and device and panorama image display method |
CN106373091A (en) * | 2016-09-05 | 2017-02-01 | 山东省科学院自动化研究所 | Automatic panorama parking aerial view image splicing method, system and vehicle |
-
2017
- 2017-03-02 CN CN201710120841.XA patent/CN106952311B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298779A (en) * | 2011-08-16 | 2011-12-28 | 淮安盈科伟力科技有限公司 | Image registering method for panoramic assisted parking system |
CN103177439B (en) * | 2012-11-26 | 2015-10-28 | 惠州华阳通用电子有限公司 | A kind of automatic calibration method based on black and white lattice corners Matching |
CN105894549A (en) * | 2015-10-21 | 2016-08-24 | 乐卡汽车智能科技(北京)有限公司 | Panorama assisted parking system and device and panorama image display method |
CN106373091A (en) * | 2016-09-05 | 2017-02-01 | 山东省科学院自动化研究所 | Automatic panorama parking aerial view image splicing method, system and vehicle |
Non-Patent Citations (2)
Title |
---|
CHUNBAO HUO 等: "Research on the auxiliary panoramic parking technology based on fast image mosaic", 《2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS)》 * |
眭昊天: "多视点全景图像辅助泊车系统研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107492125A (en) * | 2017-07-28 | 2017-12-19 | 哈尔滨工业大学深圳研究生院 | The processing method of automobile fish eye lens panoramic view picture |
CN107590773A (en) * | 2017-08-25 | 2018-01-16 | 包谦 | A kind of preparation method of panoramic picture |
CN107633545A (en) * | 2017-08-25 | 2018-01-26 | 包谦 | A kind of processing method of panoramic picture |
CN109429013A (en) * | 2017-08-28 | 2019-03-05 | 华利纳企业股份有限公司 | Image correction system and image correction method |
CN107958440A (en) * | 2017-12-08 | 2018-04-24 | 合肥工业大学 | Double fish eye images real time panoramic image split-joint methods and system are realized on GPU |
CN109948398A (en) * | 2017-12-20 | 2019-06-28 | 深圳开阳电子股份有限公司 | The image processing method and panorama parking apparatus that panorama is parked |
CN109948398B (en) * | 2017-12-20 | 2024-02-13 | 深圳开阳电子股份有限公司 | Image processing method for panoramic parking and panoramic parking device |
CN110022459A (en) * | 2018-01-08 | 2019-07-16 | 联发科技股份有限公司 | Overall view monitoring system and overall view monitoring calibration method for vehicle |
CN108712604A (en) * | 2018-05-07 | 2018-10-26 | 维沃移动通信有限公司 | A kind of panorama shooting method and mobile terminal |
CN108712604B (en) * | 2018-05-07 | 2022-02-01 | 维沃移动通信有限公司 | Panoramic shooting method and mobile terminal |
CN109068207A (en) * | 2018-07-04 | 2018-12-21 | 广州希脉创新科技有限公司 | A kind of earphone and earphone system |
CN109068207B (en) * | 2018-07-04 | 2023-05-09 | 广州希脉创新科技有限公司 | Earphone and earphone system |
CN109204141A (en) * | 2018-09-19 | 2019-01-15 | 深圳市众鸿科技股份有限公司 | Method for early warning and device in vehicle travel process |
CN109544647A (en) * | 2018-11-30 | 2019-03-29 | 郑州天迈科技股份有限公司 | Calibration cloth, place and method for 360 ° of panoramic parking assist systems |
CN109600565A (en) * | 2018-12-13 | 2019-04-09 | 广州路派电子科技有限公司 | A kind of kinescope method based on parking system |
CN109613920B (en) * | 2018-12-27 | 2022-02-11 | 睿驰达新能源汽车科技(北京)有限公司 | Method and device for determining vehicle position |
CN109613920A (en) * | 2018-12-27 | 2019-04-12 | 睿驰达新能源汽车科技(北京)有限公司 | A kind of method and device of determining vehicle location |
CN109767473B (en) * | 2018-12-30 | 2022-10-28 | 惠州华阳通用电子有限公司 | Panoramic parking device calibration method and device |
CN109767473A (en) * | 2018-12-30 | 2019-05-17 | 惠州华阳通用电子有限公司 | A kind of panorama parking apparatus scaling method and device |
CN110264395A (en) * | 2019-05-20 | 2019-09-20 | 深圳市森国科科技股份有限公司 | A kind of the camera lens scaling method and relevant apparatus of vehicle-mounted monocular panorama system |
CN110264395B (en) * | 2019-05-20 | 2023-11-28 | 深圳市森国科科技股份有限公司 | Lens calibration method and related device of vehicle-mounted monocular panoramic system |
CN110288527A (en) * | 2019-06-24 | 2019-09-27 | 北京智行者科技有限公司 | The vehicle-mounted camera panorama of looking around of one kind gets a bird's eye view drawing generating method |
CN110288527B (en) * | 2019-06-24 | 2023-10-24 | 北京智行者科技股份有限公司 | Panoramic aerial view generation method of vehicle-mounted panoramic camera |
CN110838086A (en) * | 2019-11-07 | 2020-02-25 | 上海大学 | An Outdoor Image Mosaic Method Based on Correlation Template Matching |
CN111086455A (en) * | 2020-03-19 | 2020-05-01 | 吉利汽车研究院(宁波)有限公司 | Data processing method and device, electronic equipment and storage medium |
CN111559314B (en) * | 2020-04-27 | 2021-08-24 | 长沙立中汽车设计开发股份有限公司 | Depth and image information fused 3D enhanced panoramic looking-around system and implementation method |
CN111559314A (en) * | 2020-04-27 | 2020-08-21 | 长沙立中汽车设计开发股份有限公司 | Depth and image information fused 3D enhanced panoramic looking-around system and implementation method |
CN112435161A (en) * | 2020-11-12 | 2021-03-02 | 蘑菇车联信息科技有限公司 | Panoramic all-around image splicing method and system, electronic equipment and storage medium |
CN112606829A (en) * | 2020-12-16 | 2021-04-06 | 广州市车智连电子有限公司 | Auxiliary parking system based on panoramic stitching data mapping |
CN113674363B (en) * | 2021-08-26 | 2023-05-30 | 龙岩学院 | Panoramic parking image stitching calibration method and calibration object thereof |
CN113674363A (en) * | 2021-08-26 | 2021-11-19 | 龙岩学院 | A kind of panoramic parking image mosaicking calibration method and calibration object |
CN114881863B (en) * | 2022-06-30 | 2022-09-30 | 湖北芯擎科技有限公司 | Image splicing method, electronic equipment and computer readable storage medium |
CN114881863A (en) * | 2022-06-30 | 2022-08-09 | 湖北芯擎科技有限公司 | Image splicing method, electronic equipment and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN106952311B (en) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106952311A (en) | Assisted parking system and method based on panoramic stitching data mapping table | |
CN106373091B (en) | Automatic stitching method, system and vehicle for bird's-eye view images in panoramic parking | |
CN110148169B (en) | Vehicle target three-dimensional information acquisition method based on PTZ (pan/tilt/zoom) pan-tilt camera | |
WO2019192358A1 (en) | Method and apparatus for synthesizing panoramic video, and electronic device | |
CN105096317B (en) | A kind of high-performance camera full automatic calibration method in complex background | |
US20220046218A1 (en) | Disparity image stitching and visualization method based on multiple pairs of binocular cameras | |
CN103744086B (en) | A kind of high registration accuracy method of ground laser radar and close-range photogrammetry data | |
CN112102413B (en) | An automatic calibration method for vehicle-mounted cameras based on virtual lane lines | |
JP5739584B2 (en) | 3D image synthesizing apparatus and method for visualizing vehicle periphery | |
CN104408689B (en) | Streetscape dough sheet optimization method based on full-view image | |
CN101814181B (en) | Unfolding method for restoration of fisheye image | |
CN111028155B (en) | Parallax image splicing method based on multiple pairs of binocular cameras | |
TWI587241B (en) | Method, device and system for generating two - dimensional floor plan | |
CN103617606A (en) | Vehicle multi-angle panorama generating method for aided driving | |
CN102930544A (en) | Parameter calibration system of vehicle-mounted camera | |
CN107154014A (en) | A kind of real-time color and depth Panorama Mosaic method | |
CN106534670B (en) | It is a kind of based on the panoramic video generation method for connecting firmly fish eye lens video camera group | |
CN103077524A (en) | Calibrating method of hybrid vision system | |
CN110245199B (en) | A fusion method of high-angle video and 2D map | |
CN110033407A (en) | A kind of shield tunnel surface image scaling method, joining method and splicing system | |
CN106856000A (en) | A kind of vehicle-mounted panoramic image seamless splicing processing method and system | |
CN105005964A (en) | Video sequence image based method for rapidly generating panorama of geographic scene | |
CN107993197A (en) | The joining method and system of a kind of panorama camera | |
CN113658262A (en) | Camera external parameter calibration method, device, system and storage medium | |
CN116468609A (en) | Two-stage zoom camera multi-image stitching method and system based on SuperGlue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |