CN106951673B - 一种自动优化实现双室再同步的双腔起搏系统 - Google Patents

一种自动优化实现双室再同步的双腔起搏系统 Download PDF

Info

Publication number
CN106951673B
CN106951673B CN201710066020.2A CN201710066020A CN106951673B CN 106951673 B CN106951673 B CN 106951673B CN 201710066020 A CN201710066020 A CN 201710066020A CN 106951673 B CN106951673 B CN 106951673B
Authority
CN
China
Prior art keywords
interphase
avd
optimization
pacemaker
dual chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710066020.2A
Other languages
English (en)
Other versions
CN106951673A (zh
Inventor
蒲里津
罗海芸
赵玲
郭涛
赵璐露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Kunming Medical University
Original Assignee
First Affiliated Hospital of Kunming Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Kunming Medical University filed Critical First Affiliated Hospital of Kunming Medical University
Priority to CN201710066020.2A priority Critical patent/CN106951673B/zh
Publication of CN106951673A publication Critical patent/CN106951673A/zh
Application granted granted Critical
Publication of CN106951673B publication Critical patent/CN106951673B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36571Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood flow rate, e.g. blood velocity or cardiac output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明涉及一种自动优化实现双室再同步的双腔起搏系统,该双腔起搏系统由硬件及软件两个系统组成,其中硬件系统包括双腔起搏器脉冲发生器,右房及左室两根电极。软件系统包括:(1)基于心房‑心房间期推导RA‑LV间期的算法;(2)优化左室优先系数ε;(3)基于RA‑LV间期优化起搏器AVD的算法。上述算法具体实施步骤为:(1)基于心房‑心房AS‑AS间期推导RA‑LV间期的算法;(2)优化左室优先系数ε;(3)基于RA‑LV间期优化起搏器AVD的算法;(4)建立由AS‑AS间期推导起搏器AVD的回归方程。该系统能代替目前的三腔起搏系统,对减少患者及医保的经济负担,节约有限的医疗资源及向经济欠发达的发展中国家推广具有重要意义及应用价值。

Description

一种自动优化实现双室再同步的双腔起搏系统
技术领域
本发明涉及一种自动优化实现双室再同步的双腔起搏系统,属于生物医学信号处理领域。
背景技术
慢性充血性心力衰竭(CHF)患者常合并心内电活动的传导异常,导致房室、室间和/或室内运动不同步,尤其多伴左束支传导阻滞(LBBB),表现为左、右心室间收缩不同步,导致有效心排量减少。目前在传统右房、右室双腔起搏基础上增加左室起搏的三腔起搏系统进行心脏再同步化治疗(CRT)CHF取得了确切的疗效,但仍有约30%的患者对CRT无应答。通常伴有完全性LBBB的CHF患者,房室结及右侧希-浦系统传导正常,右室无需起搏,提示应用双腔起搏器单左室起搏与从右侧希-浦系下传的自身激动形成融合波即可实现双心室再同步。
目前应用三腔起搏器实现CRT,为保证双室夺获,设置短而固定的房室延迟(AVD),废弃了房室结生理性AVD功能,过短的AVD可导致二尖瓣和三尖瓣返流、减少心排出量、恶化血流动力学,且右室起搏非生理性,激动经心肌缓慢非均匀逆希-浦系传导,有违于激动传导的生理性,可导致心室结构及功能的损害,如果双室再同步带来的获益不能抵消这些损害,将可能导致CRT无应答。
另外,右室电极植入干扰了三尖瓣的闭合而发生三尖瓣反流,并因此导致心功能恶化,而且植入右室电极增加了患者及术者暴露在X射线下的时间及手术难度。最后,三腔起搏器实现CRT要求100%双室起搏,较为耗电,电池寿命较双腔起搏器短,且其套价(脉冲发生器加3根电极)超过双腔起搏器的2倍以上,显著增加治疗CHF的费用,尤其在经济欠发达的国家及地区,很多患者常因经济原因不得不放弃昂贵的三腔起搏器治疗,因此,研发一种实现CRT的双腔起搏系统以代替目前的三腔起搏系统,对减少患者及医保的经济负担,节约有限的医疗资源及向经济欠发达的发展中国家推广具有重要意义。
发明内容
本发明的目的在于提供一种自动优化实现双室再同步的双腔起搏系统。
为了实现上述目的,本发明的技术方案如下。
一种自动优化实现双室再同步的双腔起搏系统,该双腔起搏系统由硬件及软件两个系统组成,其中硬件系统包括双腔起搏器脉冲发生器(如国产乐普8631D/R,美国Medtronic公司的Relia RED 01等),右房及左室两根电极。软件系统包括:
(1)基于心房-心房AS-AS间期推导RA-LV间期的算法:通过心房电极感知心房波,当AS-AS间期变化,起搏器程序自动延长AVD,测定右房-左室RA-LV间期,建立由AS-AS间期推导RA-LV间期的算法。
(2)优化左室优先系数ε:将起搏器的单左室起搏优化的AVD与RA-LV间期比值定义为左室优先系数ε,即:ε=优化的AVD/(RA-LV间期);该系统默认ε值为0.55,每0.03一档,也可个体化进行优化以获得优化的ε;
(3)基于RA-LV间期优化起搏器AVD的算法:自动根据程序计算出基于RA-LV间期的AVD,即AVD=(RA-LV间期)×ε。
(4)建立由AS-AS间期推导AVD的回归方程:建立由AS(n-1)-AS(n)间期推导最佳AVD(n)的回归方程:AVD(n)=c+d[AS(n-1)-AS(n)]间期,其中c为常数项,d为标准化偏回归系数,n≥2;当AS(n-1)-AS(n)间期发生变化时,自动由该方程计算最佳AVD。
上述算法具体实施步骤为:
(1)基于心房-心房AS-AS间期推导RA-LV间期的算法:
起搏器将在AS-AS间期每变化40ms时,程序自动延长AVD400ms,直至心室电极发生心室感知(VS),测定AS-AS及右房感知-左室感知RAS-LVS间期,即为该A-A间期时的RA-LV间期,直至上限跟踪频率ULR间期及下限频率LLR间期,ULR间期默认值为460ms,LLR间期默认值为1000ms,共计采集15个点,编制由AS-AS间期推导RA-LV间期的回归方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)]间期,其中a为常数项,b为标准化偏回归系数,n≥2,以在A-A间期发生变化时由该方程自动计算该A-A间期时对应的RA-LV间期。该系统AS-AS及RAS-LVS间期采集及编程可默认每24小时启动一次,即由AS-AS间期推导RA-LV间期的算法可默认每24小时优化一次,也可个体化设置优化间隔。
(2)优化左室优先系数ε:
该系统默认ε值为0.55,每0.03一档,也可个体化优化以获得优化的ε:延长AVD至腔内图显示VS时,测定AS-VS间期,即该AS-AS间期时的RA-LV间期,在心脏超声下进行优化,以默认值0.55为基线,每0.03一档双向滴定ε,至主动脉瓣血流速度时间积分AVI及左室射血分数LVEF值最大,二尖瓣反流面积MRA最小时的ε为优化的ε,程控入起搏系统。
(3)基于RA-LV间期优化起搏器AVD的算法:
起搏器自动根据方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)]间期推导出该A(n-1)-A(n)间期相对应的RA(n)-LV(n)间期,再自动计算出此A(n-1)-A(n)间期时,基于该RA-LV间期的最佳AVD,即AVD(n)=RA(n)-LV(n)间期×ε,共计15个RA-LV间期对应的最佳AVD。
(4)建立由AS-AS间期推导AVD的回归方程:
由这15个A-A间期为自变量,该15个A-A间期对应的最佳AVD为因变量,建立由AS(n-1)-AS(n)间期推导最佳AVD(n)的回归方程:AVD(n)=c+d[AS(n-1)-AS(n)]间期,其中c为常数项,d为标准化偏回归系数,n≥2;当A(n-1)-A(n)间期发生变化时,自动由该方程计算最佳AVD。
本发明的工作原理为:
基于RA-LV间期获得单左室起搏优化的AVD,将优化的AVD与RA-LV间期的比值(优化的AVD/RA-LV间期)定义为左室优先系数ε,该系数反映了优化后,起搏器程控的单左室起搏的AVD优先于右侧生理性房室延迟的程度,起搏器程序自动定时延长AVD,通过右房及左室电极采集心房-心房AS-AS间期与AS-VS间期,即RA-LV间期,以AS-AS间期为自变量,RA-LV间期为因变量建立由AS-AS间期推导RA-LV间期的算法,作为起搏器工作程序自动设置AVD的依据,即AVD=(RA-LV间期)×ε,再建立由AS-AS间期推导最佳AVD的回归方程自动计算最佳AVD,以保证能实时准确跟踪右侧房室动态变化的生理性房室延迟,与从右侧希-浦系下传的激动形成室性融合波而实现双心室再同步。
该发明的有益效果在于:该系统能代替目前的三腔起搏系统,对减少患者及医保的经济负担,节约有限的医疗资源及向经济欠发达的发展中国家推广具有重要意义及应用价值。
具体实施方式
下面结合实施例对本发明的具体实施方式进行描述,以便更好的理解本发明。
实施例
本实施例中的自动优化实现双室再同步的双腔起搏系统,该双腔起搏系统由硬件及软件两个系统组成,其中硬件系统包括双腔起搏器脉冲发生器(如国产乐普8631D/R,美国Medtronic公司的Relia RED 01等),右房及左室两根电极。软件系统包括:
(1)基于心房-心房间期推导RA-LV间期的算法:通过心房电极感知心房波,当心房-心房间期变化,起搏器程序自动延长AVD,测定RA-LV间期,建立由心房-心房间期推导RA-LV间期的算法。
(2)优化左室优先系数ε:将起搏器的单左室起搏优化的AVD与RA-LV间期比值定义为左室优先系数ε,即:ε=优化的AVD/(RA-LV间期);该系统默认ε值为0.55,也能个体化进行优化以获得优化的ε;
(3)基于RA-LV间期优化起搏器AVD的算法:自动根据程序计算出基于RA-LV间期的AVD,即AVD=(RA-LV间期)×ε。
(4)建立由AS-AS间期推导AVD的回归方程:建立由AS(n-1)-AS(n)间期推导最佳AVD(n)的回归方程:AVD(n)=c+d[AS(n-1)-AS(n)]间期,其中c为常数项,d为标准化偏回归系数,n≥2;当AS(n-1)-AS(n)间期发生变化时,自动由该方程计算最佳AVD。
上述算法具体实施步骤为:
(1)基于心房-心房AS-AS间期推导RA-LV间期的算法:
起搏器将在AS-AS间期每变化40ms时,程序自动延长AVD400ms,直至心室电极发生心室感知(VS),测定AS-AS及RAS-LVS间期,即为该A-A间期时的RA-LV间期,直至上限跟踪频率ULR间期及下限频率LLR间期,ULR间期默认值为460ms,LLR间期默认值为1000ms,共计采集15个点,编制由AS-AS间期推导RA-LV间期的回归方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)]间期,其中a为常数项,b为标准化偏回归系数,n≥2,以在A-A间期发生变化时由该方程自动计算该A-A间期时对应的RA-LV间期。该系统AS-AS及RAS-LVS间期采集及编程可默认每24小时启动一次,即由AS-AS间期推导RA-LV间期的算法可默认每24小时优化一次,也可个体化设置优化间隔。
(2)优化左室优先系数ε:
该系统默认ε值为0.55,每0.03一档,也可个体化优化以获得优化的ε:延长AVD至腔内图显示VS时,测定AS-VS间期,即该AS-AS间期时的RA-LV间期,在心脏超声下进行优化,以默认值0.55为基线,每0.03一档双向滴定ε,至主动脉瓣血流速度时间积分AVI及左室射血分数LVEF值最大,二尖瓣反流面积MRA最小时的ε为优化的ε,程控入起搏系统。
(3)基于RA-LV间期优化起搏器AVD的算法:
起搏器自动根据方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)]间期推导出该A(n-1)-A(n)间期相对应的RA(n)-LV(n)间期,再自动计算出此A(n-1)-A(n)间期时,基于该RA-LV间期的最佳AVD,即AVD(n)=RA(n)-LV(n)间期×ε,共计15个RA-LV间期对应的最佳AVD。
(4)建立由AS-AS间期推导AVD的回归方程:
由这15个A-A间期为自变量,该15个A-A间期对应的最佳AVD为因变量,建立由AS(n-1)-AS(n)间期推导最佳AVD(n)的回归方程:AVD(n)=c+d[AS(n-1)-AS(n)]间期,其中c为常数项,d为标准化偏回归系数,n≥2;当A(n-1)-A(n)间期发生变化时,自动由该方程计算最佳AVD。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (1)

1.一种自动优化实现双室再同步的双腔起搏系统,其特征在于:该双腔起搏系统由硬件及软件两个系统组成,其中硬件系统包括双腔起搏器脉冲发生器,右心房电极及左心室电极;软件系统包括:
(1)基于心房感知-心房感知间期,即AS-AS间期,推导右房感知-左室感知间期的算法,即RA-LV间期的算法:通过心房电极感知心房波,当AS-AS间期变化,起搏器程序自动延长房室延迟,直至心室电极发生心室感知VS,测定AS-AS及右房感知-左室感知间期,即为该AS-AS间期时的RA-LV间期,直至上限跟踪频率ULR间期及下限频率LLR间期,ULR间期默认值为460ms,LLR间期默认值为1000ms,共计采集15个点,编制由AS-AS间期推导RA-LV间期的回归方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)间期],其中a为常数项,b为标准化偏回归系数,n为心跳次数,n-1为第n次心跳之前的一次心跳,n≥2;在AS-AS间期发生变化时,由该方程自动计算该AS-AS间期时对应的RA-LV间期;该系统AS-AS及RA-LV间期采集及编程,默认每24小时启动一次,即由AS-AS间期推导RA-LV间期的算法,默认每24小时优化一次;其中,AS是指通过心房电极感知心房波;
(2)优化左室优先系数ε:将起搏器的单左室起搏优化的AVD与RA-LV间期比值定义为左室优先系数ε,即:ε=优化的AVD/(RA-LV间期);该系统默认ε值为0.55,每0.03一档:延长AVD至腔内图显示VS时,测定AS-VS间期,即该AS-AS间期时的RA-LV间期,在心脏超声下进行优化,以默认值0.55为基线,每0.03一档双向滴定ε,至主动脉瓣血流速度时间积分及左室射血分数最大,二尖瓣反流面积最小时的ε为优化的ε,将优化的ε输入起搏系统;
(3)基于RA-LV间期优化起搏器房室延迟的算法:起搏器自动根据方程:RA(n)-LV(n)间期=a+b[AS(n-1)-AS(n)间期]推导出该AS(n-1)-AS(n)间期相对应的RA(n)-LV(n)间期,再自动计算出此AS(n-1)-AS(n)间期时,基于该RA-LV间期的优化AVD,即AVD(n)=[RA(n)-LV(n)间期]×ε,共计15个RA-LV间期对应的优化AVD;
(4)由这15个AS-AS间期为自变量,该15个AS-AS间期对应的优化AVD为因变量,建立由AS(n-1)-AS(n)间期推导第n次心跳的优化AVD(n)的回归方程:优化AVD(n)=c+d[AS(n-1)-AS(n)间期],其中c为常数项,d为标准化偏回归系数,当AS(n-1)-AS(n)间期发生变化时,自动由该方程计算第n次心跳的优化AVD(n)
CN201710066020.2A 2017-02-06 2017-02-06 一种自动优化实现双室再同步的双腔起搏系统 Expired - Fee Related CN106951673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710066020.2A CN106951673B (zh) 2017-02-06 2017-02-06 一种自动优化实现双室再同步的双腔起搏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710066020.2A CN106951673B (zh) 2017-02-06 2017-02-06 一种自动优化实现双室再同步的双腔起搏系统

Publications (2)

Publication Number Publication Date
CN106951673A CN106951673A (zh) 2017-07-14
CN106951673B true CN106951673B (zh) 2019-05-21

Family

ID=59466100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710066020.2A Expired - Fee Related CN106951673B (zh) 2017-02-06 2017-02-06 一种自动优化实现双室再同步的双腔起搏系统

Country Status (1)

Country Link
CN (1) CN106951673B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175941B (zh) * 2017-12-29 2021-10-22 创领心律管理医疗器械(上海)有限公司 基于无心室起搏的双腔起搏模式的存储介质及医疗设备
CN110584777B (zh) * 2019-09-20 2021-11-09 成都迈格因科技有限公司 一种临床crt术后间期优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709335A (zh) * 2016-01-15 2016-06-29 昆明医科大学第一附属医院 单左室起搏逐跳跟踪生理性房室延迟实现双室再同步系统
CN107073267A (zh) * 2014-09-08 2017-08-18 美敦力公司 用于双腔起搏的系统和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073267A (zh) * 2014-09-08 2017-08-18 美敦力公司 用于双腔起搏的系统和方法
CN105709335A (zh) * 2016-01-15 2016-06-29 昆明医科大学第一附属医院 单左室起搏逐跳跟踪生理性房室延迟实现双室再同步系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单左室起搏逐跳跟踪生理性房室延迟实现双心室再同步的可行性;蒲里津等;《中国心脏起搏与心电生理杂志》;20161230;第30卷(第6期);500—505 *

Also Published As

Publication number Publication date
CN106951673A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
US8380308B2 (en) Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode
US7389141B2 (en) Biatrial pacing optimization for biventricular pacing
US8868184B2 (en) System and method for evaluating mechanical cardiac dyssynchrony based on multiple impedance vectors using an implantable medical device
US6959214B2 (en) Implantable medical device for measuring mechanical heart function
US6144880A (en) Cardiac pacing using adjustable atrio-ventricular delays
JP5172659B2 (ja) 長期の心房間遅延の処置のための装置
US7711423B2 (en) Algorithm for the automatic determination of optimal pacing intervals
US20050027322A1 (en) Mechanically-based interval optimization for a biventricular pacing engine
US8843198B2 (en) Apparatus and method to optimize pacing parameters
EP2144670B9 (en) Implantable medical device for monitoring valve movements of a heart
US20080114407A1 (en) Reduction of av delay for treatment of cardiac disease
EP2957321B1 (en) Apparatus to optimize pacing parameters
WO2010042910A1 (en) Single-chamber pacing using a dual-chamber pacing device
Ojo et al. Cardiac resynchronization therapy for heart failure
CN106951673B (zh) 一种自动优化实现双室再同步的双腔起搏系统
EP1962954A1 (en) Implantable medical device with therapy control
EP1768743B1 (en) Algorithm for the automatic determination of optimal pacing intervals
Kay et al. Biventricular pacing for congestive heart failure: questions of who, what, where, why, how, and how much
CN105709335A (zh) 单左室起搏逐跳跟踪生理性房室延迟实现双室再同步系统
US20200016410A1 (en) Method and device for controlling rate adaptive pacing based on heart sounds
AU2009303324B2 (en) Single-chamber pacing using a dual-chamber pacing device
Rhee Cardiac resynchronization therapy in pediatrics: emerging technologies for emerging indications
Gardas et al. The usefulness of His bundle pacing in a heterogeneous population of patients with impaired left ventricular systolic function
EP1541192B1 (en) Two-phase current ventricular electrical stimulator for heart failure and stimulation method
Jastrzebski Isoelectric atrioventricular interval during DDD pacing: what is the mechanism?

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190521

Termination date: 20200206