CN106934821A - 一种基于icp算法和b样条的锥形束ct和ct图像配准方法 - Google Patents

一种基于icp算法和b样条的锥形束ct和ct图像配准方法 Download PDF

Info

Publication number
CN106934821A
CN106934821A CN201710148067.3A CN201710148067A CN106934821A CN 106934821 A CN106934821 A CN 106934821A CN 201710148067 A CN201710148067 A CN 201710148067A CN 106934821 A CN106934821 A CN 106934821A
Authority
CN
China
Prior art keywords
registration
image
spline
reference picture
point set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710148067.3A
Other languages
English (en)
Other versions
CN106934821B (zh
Inventor
李海
刘帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201710148067.3A priority Critical patent/CN106934821B/zh
Publication of CN106934821A publication Critical patent/CN106934821A/zh
Application granted granted Critical
Publication of CN106934821B publication Critical patent/CN106934821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Landscapes

  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及一种基于ICP算法和B样条的锥形束CT和CT图像配准方法,包括:获取待配准图像和参考图像;对所述待配准图像和参考图像进行图像分割,将所述待配准图像中的目标物分割出来并提取出待配准图像点集数据,将所述参考图像中的目标物分割出来并提取参考图像点集数据;对所述待配准图像点集数据和参考图像点集数据进行ICP仿射配准,根据所述ICP配准结果获取仿射变换阵;根据所述仿射变换阵对所述待配准图像进行仿射配准;对所述仿射配准结果和所述参考图像进行B样条弹性配准。本发明融合了ICP算法快速的优点和B样条弹性配准精确的优点,可以在保证配准精度的前提下,提高配准效率,从而实现快速、准确的图像配准。

Description

一种基于ICP算法和B样条的锥形束CT和CT图像配准方法
技术领域
本发明涉及医学图像、计算机视觉、图像处理等领域,具体为一种基于ICP算法和B样条的锥形束CT和CT图像配准方法。
背景技术
锥形束CT具有成像快、非侵入性、低辐射等优点,并且它能够实时的显示病人软组织和骨骼信息,因此锥形束CT成像技术可用于实时手术导航中。然而在骨科手术导航中,由于CT成像对骨骼的清晰度较高,所以术中锥形束CT图像常常要与术前CT图像进行图像配准以进行精准治疗。但是骨科患者的病变部位可能产生变形,从而导致锥形束CT和CT进行配准时的精度成为难点,并且配准的速度也是手术导航中弹性配准的技术重点。
目前锥形束CT和CT图像的配准大致分为两种:基于特征点的配准和基于体素的配准。这两种配准方法的优势有所不同,基于特征的配准方法只使用局部特征作为配准要素,所以其配准的速度较快,但由于舍弃一部分图像信息,因此其精确度有所欠缺。基于体素的配准方法由于使用了图像的全部像素点信息,所以其配准准确度较高。但是计算量庞大导致基于体素的配准的速度较慢。近年来,将两种方法结合的混合算法相继出现,但仍未应用到锥形束CT和CT图像配准中。
发明内容
针对以上问题,本发明提供了一种基于ICP算法和B样条的锥形束CT和CT图像配准方法,这种方法结合基于点集的配准(ICP算法)和基于体素的配准(B样条配准),将基于点集的配准结果作为基于体素配准的初值可以快速进行配准,同时基于体素的配准也使本发明的方法具有很高的精度,因此本发明可以快速准确的配准图像,满足其在实时骨科手术导航中的应用。
为实现上述目的,本发明提供如下技术方案:一种基于ICP和B样条的锥形束CT和CT图像配准方法,步骤如下:
为实现上述目的,本发明提供如下技术方案:一种基于ICP和B样条的锥形束CT和CT图像配准方法,步骤如下:
步骤1:获取待配准图像(CT图像)I1和参考图像(锥形束CT图像)I2
步骤2:对所述待配准图像和参考图像进行图像分割,将所述待配准图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据P={p1,p2,…,pt},其中p1,p2,…,pt表示目标物的坐标点,t表示点集P中坐标点个数,将所述参考图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据Q={q1,q2,…,qt},其中q1,q2,…,qt表示目标物的坐标点,点集Q中坐标点个数同点集P中的个数一样;
步骤3:对所述待配准图像点集数据P和参考图像点集数据Q进行基于点集的配准即ICP仿射配准,其步骤主要为:首先对所述仿射变换阵Maffine进行初始化;利用仿射变换阵Maffine对所述待配准点集P进行变换得到点集P,即P,=P*Maffine;然后使用公式计算所述参考图像点集Q和P,之间的均方误差,其中pi和qi分别表示第i个坐标点;使用LBFGS算法不断优化Maffine对均方误差求最小化,得到最优解Maffine
步骤4:根据所述仿射变换阵Maffine对所述待配准图像进行仿射配准得到ICP配准图像Iicp
步骤5:将获取的ICP配准图像Iicp作为基于体素的配准初值,即对所述仿射配准结果Iicp和所述参考图像I2进行B样条配准得到最终结果Ifinal
优选的,所述步骤2中的对所述待配准图像和参考图像进行图像分割的步骤,包括:
对所述待配准图像和参考图像的像素灰度进行归一化为[0,255];
对所述归一化处理后的待配准图像和参考图像进行阈值分割;
对所述阈值分割后的待配准图像和参考图像进行像素坐标点提取和采样并生成点集数据。
优选的,对所述待配准图像和参考图像的像素灰度进行归一化时采用的公式为:
其中g和g,分别表示归一化后灰度值和原始图像CT值,A和B分别用公式A=wc-ww/2,B=wc+ww/2,其中ww表示图像上CT值的窗口范围,wc表示图像上CT值窗口中心。
优选的,对所述归一化处理后的待配准图像和参考图像进行阈值分割的目标物为骨骼区域,其中骨骼的CT值范围为[100,1000],使用归一化公式计算其灰度值。
优选的,所述阈值分割后的待配准图像和参考图像进行像素坐标点提取和采样并生成点集数据时首先提取出256灰度级中骨骼范围的坐标点,然后对提取出的坐标点进行1/50等间距采样得到点集图像。
优选的,所述步骤5中,B样条配准采用多分辨率B样条弹性配准方法,步骤为:使用公式对输入图像进行高斯平滑处理,根据图像大小进行降采样实施多分辨率配准,先将图像在低分辨进行B样条粗配准。首先初始化控制点,然后对两幅图像的相似度测量,通过对相似度值的判断修改控制点,将修改后的控制点代入B样条变换函数对待配准图像进行变换。使用优化方法不断修改控制点对相似度值进行最小化求解,从而得到最终配准结果Ifinal
优选的,所述多分辨率配准的分辨率层数分为1到3层,每层中XYZ轴最小分辨率参数分别设为128×128×10,256×256×20,512×512×40。
优选的,所述步骤5中的B样条配准所用变换模型为B样条函数,用公式求取像素点在(x,y,z)位置处的形变场,其中 其中表示向下取整,φi,j,k表示x,y,x轴控制点间距分别为δijk,大小为nx×ny×nz的网格中序号为ijk的控制点的值,其中i,j,k为了求像素点在(x,y,z)处的位移值T(x,y,z)仅与相邻的43个控制点有关;Bl,Bm,Bn均为三次B样条函数基函数,Bl表示B样条函数中第l个基函数,其计算公式为B0(u)=(1-u)3/6,B1(u)=(3u3-6u2+4)/6,B2(u)=(-3u3+3u2+3u+1)/6,B3(u)=u3/6,其中0≤u≤1Bm和Bn的计算同Bl,这些函数起到权函数的作用,他们根据控制点到(x,y,z)的距离大小来加权每个控制点对T(x,y,z)的贡献。
优选的,所述多分辨率配准的每层分辨率的B样条网格间距分别设为:32×32×16,16×16×8,8×8×4。
优选的,所述相似度测量和优化方法采用灰度均方差作为相似度测量,优化方法选用LBFGS算法。
本发明与现有技术相比的优点在于:本发明基于ICP和B样条的锥形束CT和CT图像配准方法,采用结合基于点的配准和基于体素的配准,在对锥形束CT和CT图像配准时,相对于传统方法具有速度快的同时保持配准精度高的特点,可以很好的应用于基于锥形束CT成像技术的骨科手术导航系统中。
附图说明
图1为基于ICP和B样条的配准方法流程图;
图2为对图像分割和点云提取采样后的点集;其中a是从锥形束CT图像中获取的点集,b是从CT图像中获取的点集;
图3为对点集图像进行ICP配准的效果展示;其中a为ICP配准前的点集图像,b为ICP配准后的点集图像;
图4为本发明配准效果展示图;其中a为初始锥形束CT图像,b为初始CT图像,c为ICP配准结果,d为最终配准结果;
图5为仿真图像生成原理展示图;其中a为生成标准形变场过程示意图,b为生成目标形变场过程示意图;
图6为配准结果的差值对比;其中a为配准前初始锥形束CT和CT图像的差值图,b为ICP配准结果与初始锥形束CT图像的差值图,c为最终配准结果与初始锥形束CT图像的差值图;
图7为配准误差的直方图显示。
具体实施方式
由于锥形束CT和CT图像取自不同成像装置并且拍摄时间不同,因此术前规划系统中的待配准图像即CT图像和术中图像即锥形束CT图像并不相同,例如两者成像视角不同,每层切片的对应关系可能有出入,图像会有偏移和形变,需要进行配准矫正。因此本发明采用如下的基于ICP和B样条的配准方法。
如图1所示,本发明一种基于ICP和B样条的配准方法流程图,包括以下步骤:
步骤S1,获取待配准图像(CT图像)I1和参考图像(锥形束CT图像)I2
步骤S2:对所述待配准图像和参考图像进行图像分割,将所述待配准图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据P={p1,p2,…,pt},其中p1,p2,…,pt表示目标物的坐标点,t表示点集P中坐标点个数,将所述参考图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据Q={q1,q2,…,qt},其中q1,q2,…,qt表示目标物的坐标点,点集Q中坐标点个数同点集P中的个数一样;
在本实例中,步骤S2中的对待配准图像和参考图像进行图像分割的步骤,包括:
(1)对所述待配准图像和参考图像的像素灰度进行归一化为[0,255];
(2)对所述归一化处理后的待配准图像和参考图像进行阈值分割;
(3)对所述阈值分割后的待配准图像和参考图像进行像素坐标点提取和采样并生成点集数据。
由于图像是取自不同时间,不同设备或者不同视角的同一场景的图像,因此CT图像和锥形束CT图像的分辨率会有所不同,所以将图像的像素灰度值进行归一化处理。归一化处理所使用的公式为:
其中g和g,分别表示归一化后灰度值和原始图像CT值,A和B分别用公式A=wc-ww/2,B=wc+ww/2,其中ww表示图像上CT值的窗口范围,wc表示图像上CT值窗口中心。
在本实例中,阈值分割的目标可以是:肺部、骨骼。其中肺部的CT值范围为[-950,200],骨骼的CT值范围为[100,1000]。优选地,对骨骼进行分割。
在本实例中,提出256灰度级中相应器官范围的坐标点,然后对坐标点进行采样,采样方法的采用如下方式之一:随机采样、等间隔采样。优选地,采用1/50等间隔采样。
如图2所示,为对待配准图像和参考图像进行阈值分割后提取坐标点并进行采样后的实验展示图,其中a是从锥形束CT图像中获取的点集,b是从CT图像中获取的点集。
S3:对所述待配准图像点集数据P和参考图像点集数据Q进行基于点集的配准即ICP仿射配准,其步骤主要为:首先对所述仿射变换阵Maffine进行初始化;利用仿射变换阵Maffine对所述待配准点集P进行变换得到点集P,即P,=P*Maffine;然后使用公式计算所述参考图像点集Q和P,之间的均方误差,其中pi和qi分别表示第i个坐标点;使用LBFGS算法不断优化Maffine对均方误差求最小化,得到最优解Maffine
在本实例中,ICP配准是基于点的配准,其中所使用的参数优化方法为LBFGS算法,其搜索步长为0.1mm、梯度收敛公差为0.01,最大迭代次数为100次
在本发明实例中,ICP配准的变换模型采用如下方式之一:刚性变换(旋转、平移),仿射变换(旋转、平移、缩放、剪切)。优选地,采用仿射变换。
如图3所示,为对待配准图像点集和参考图像点集进行ICP配准前(图3中的a)和配准后(图3中的b)的实验对比图。
步骤S4:根据仿射变换阵Maffine对待配准图像进行仿射配准得到ICP配准图像Iicp
在本实例中,对待配准图像进行仿射配准时的插值方法可采用如下方式之一:线性插值、三次插值。优选地,选用线性插值。
步骤S5:将获取的ICP配准图像Iicp作为基于体素的配准初值,即对仿射配准结果Iicp和参考图像I2进行多分辨率B样条弹性配准得到最终结果Ifinal
将ICP配准图像和参考图像作为B样条弹性配准的初始图像以提高配准精度和配准速度。同时B样条配准前,对ICP配准图像和参考图像进行高斯滤波处理用以提高配准速度。
在本实例中,B样条配准的主要步骤为:对输入图像进行平滑处理,根据图像大小进行降采样实施多分辨率配准,先将图像在低分辨进行B样条粗配准。首先初始化控制点,然后对两幅图像的相似度测量,通过对相似度值的判断修改控制点,将修改后的控制点代入B样条变换函数对待配准图像进行变换。使用优化方法不断修改控制点对相似度值进行最小化求解,从而得到最终配准结果Ifinal
在本实例中,B样条弹性配准部分采用多分辨率配准,分辨率根据具体图像大小可分为1到3层,其中每层分辨率的最小分辨率参数分别为128×128×10,256×256×20,512×512×40。例如当图像大小等于或超过512×512×40(如512×512×40)时可以分为三层进行配准,相邻层数之间为倍数关系,(即第一层128×128×10,第二层256×256×20,第三层512×512×40)。首先进行低分辨率配准,然后得出的结果作为高分辨率的输入再进行高分辨率配准直至结束。
在本实例中,每层分辨率的B样条网格间距分别选为:32×32×16,16×16×8,8×8×4。
在本实例中,相似度测量方法可选以下方式之一:互信息、互相关、灰度均方差。优选地,选用灰度均方差作为相似度测量。参数优化选用LBFGS算法。
如图4所示为整个配准实验其中一个切片的结果展示,其中图4中的(a)为参考图像(锥形束CT),图4中的(b)为待配准图像(CT图像),图4中的(c)为ICP配准结果,图4中的(d)为最终配准结果。可以看出在经过配准后,待配准图像与参考图像的接近程度逐渐增加。
如表1示,为CT(512*512*53)和锥形束CT(410*410*42)图像配准的结果,其中灰度均方差值作为相似度测量。配准输出参数包括配准前参考图像和待配准图像的灰度均方差值,ICP配准结果和B样条配结果和参考图像的灰度均方差值对比以及配准所需时间。从配准前后的灰度均方差值对比可以看出灰度均方差值提升较多,说明配准后待配准图像和参考图像的一致性有很大提高,此配准方法对于CT和锥形束CT图像配准效果很好。
表1
配准前 ICP配准结果 B样条配准结果 配准时间
灰度均方差值 2595 1208 575 630
为对本发明的准确度进行测量,设计仿真实验。如图5为仿真图像生成的流程展示,图5中的(a)将锥形束CT和CT进行配准时产生的形变场作为标准值,图5中的(b)中用标准形变场的逆变换对锥形束CT进行形变生成仿真CT图像,然后对仿真CT图像和锥形束CT图像进行配准生成目标形变场作为目标值。图6为对仿真图像进行ICP配准和B样条配准后的图像差值显示,图6中的(a)为配准前的差值效果展示,图6中的(b)为ICP配准结果和锥形束CT之间像素差值效果展示,图6中的(c)为最终配准结果和锥形束CT之间像素差值效果展示。从图中可以看出,ICP配准后参考图像和待配准图像的空间位置大致重合,但仍有局部差异,在进行B样条配准之后其配准结果和参考图像基本重合。
将标准值和目标值相减求出形变误差,图7画出误差的直方图,从图中可以看出误差大多分布在较低值,通过求均值算出误差值为0.51mm。准确度较高,满足手术导航的精度要求。
表2为比较本实例中配准方法与传统基于体素配准方法的配准速度而设计的实验结果。该实验中传统的配准方法也是使用放射变化和B样条配准作为配准流程,同时相似度测量选用灰度均方差,优化方法选用LBFGS算法。在此基础上,两种方法的收敛条件设为相同。传统方法的配准时间和本发明的配准方法的配准时间如下表所示:
表2
传统方法 本发明配准方法
时间(s)CT/锥形束CT 1610 630
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于,所述方法包括:
步骤1:获取待配准图像,即CT图像I1和参考图像,即锥形束CT图像I2
步骤2:对所述待配准图像和参考图像进行图像分割,将所述待配准图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据P={p1,p2,…,pt},其中p1,p2,…,pt表示目标物的坐标点,t表示点集P中坐标点个数,将所述参考图像中的目标物分割出来并提取其坐标点,然后对坐标点进行采样生成点集数据Q={q1,q2,…,qt},其中q1,q2,…,qt表示目标物的坐标点,点集Q中坐标点个数同点集P中个数相同;
步骤3:对所述待配准图像点集数据P和参考图像点集数据Q进行基于点集的配准即ICP仿射配准,其步骤主要为:首先对所述仿射变换阵Maffine进行初始化;利用仿射变换阵Maffine对所述待配准点集P进行变换得到点集P,即P,=P*Maffine;然后使用公式计算所述参考图像点集Q和P,之间的均方误差,其中pi和qi分别表示第i个坐标点;使用LBFGS算法不断优化Maffine对均方误差求最小化,得到最优解Maffine
步骤4:根据所述仿射变换阵Maffine对所述待配准图像进行仿射配准得到ICP配准图像Iicp
步骤5:将获取的ICP配准图像Iicp作为基于体素的配准初值,即对所述仿射配准结果Iicp和所述参考图像I2进行B样条配准得到最终结果Ifinal
2.根据权利要求1所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述步骤2中的对所述待配准图像和参考图像进行图像分割的步骤,包括:
对所述待配准图像和参考图像的像素灰度进行归一化为[0,255];
对所述归一化处理后的待配准图像和参考图像进行阈值分割;
对所述阈值分割后的待配准图像和参考图像进行像素坐标点提取和采样并生成点集数据。
3.根据权利要求2所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述的对所述待配准图像和参考图像的像素灰度进行归一化,采用如下公式:
g = 0 - 1000 < g , < A 255 &times; g , - A B - A A < g , < B 255 B < g , < 1000
其中g和g,分别表示归一化后灰度值和原始图像CT值,A和B分别用公式A=wc-ww/2,B=wc+ww/2,其中ww表示图像上CT值的窗口范围,wc表示图像上CT值窗口中心。
4.根据权利要求2所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述对所述归一化处理后的待配准图像和参考图像进行阈值分割的目标物为骨骼区域,其中骨骼的CT值范围为[100,1000],使用归一化公式计算其灰度值。
5.根据权利要求2所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述阈值分割后的待配准图像和参考图像进行像素坐标点提取和采样并生成点集数的方法为:首先提取出256灰度级中骨骼范围的坐标点,然后对提取出的坐标点进行1/50等间距采样得到点集图像。
6.根据权利要求1所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述步骤5中,B样条配准采用多分辨率B样条弹性配准方法,步骤为:使用公式:
对输入图像进行高斯平滑处理,根据图像大小进行降采样实施多分辨率配准,先将图像在低分辨进行B样条粗配准,首先初始化控制点,然后对两幅图像进行相似度测量,通过对相似度值的判断修改控制点,将修改后的控制点代入B样条变换函数对待配准图像进行变换,使用LBFGS优化方法不断修改控制点对相似度值进行最小化求解,从而得到最终配准结果Ifinal
7.根据权利要求6所述基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述B样条变换函数为:采用公式求取像素点在(x,y,z)位置处的形变场,其中:
其中表示向下取整,φi,j,k表示x,y,x轴控制点间距分别为δijk,大小为nx×ny×nz的网格中序号为ijk的控制点的值,其中i,j,k为了求像素点在(x,y,z)处的位移值T(x,y,z)仅与相邻的43个控制点有关;Bl,Bm,Bn均为三次B样条函数基函数,Bl表示B样条函数中第l个基函数,其计算公式为B0(u)=(1-u)3/6,B1(u)=(3u3-6u2+4)/6,B2(u)=(-3u3+3u2+3u+1)/6,B3(u)=u3/6,其中0≤u≤1Bm和Bn的计算同Bl,起到权函数的作用,根据控制点到(x,y,z)的距离大小来加权每个控制点对T(x,y,z)的贡献。
8.根据权利要求6所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:所述多分辨率层数分为1到3层,每层XYZ轴最小分辨率参数分别设为128×128×10,256×256×20,512×512×40。
9.根据权利要求8所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:每层分辨率的B样条网格间距分别设为:32×32×16,16×16×8,8×8×4。
10.根据权利要求6所述的基于ICP算法和B样条的锥形束CT和CT图像配准方法,其特征在于:对两幅图像进行相似度测量时,采用灰度均方差作为相似度测量。
CN201710148067.3A 2017-03-13 2017-03-13 一种基于icp算法和b样条的锥形束ct和ct图像配准方法 Active CN106934821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710148067.3A CN106934821B (zh) 2017-03-13 2017-03-13 一种基于icp算法和b样条的锥形束ct和ct图像配准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710148067.3A CN106934821B (zh) 2017-03-13 2017-03-13 一种基于icp算法和b样条的锥形束ct和ct图像配准方法

Publications (2)

Publication Number Publication Date
CN106934821A true CN106934821A (zh) 2017-07-07
CN106934821B CN106934821B (zh) 2020-06-23

Family

ID=59431952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710148067.3A Active CN106934821B (zh) 2017-03-13 2017-03-13 一种基于icp算法和b样条的锥形束ct和ct图像配准方法

Country Status (1)

Country Link
CN (1) CN106934821B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590829A (zh) * 2017-09-18 2018-01-16 西安电子科技大学 一种适用于多视角密集点云数据配准的种子点拾取方法
CN108549906A (zh) * 2018-04-10 2018-09-18 北京全域医疗技术有限公司 放疗勾靶图像配准方法及装置
CN109685838A (zh) * 2018-12-10 2019-04-26 上海航天控制技术研究所 基于超像素分割的图像弹性配准方法
CN109725506A (zh) * 2017-10-31 2019-05-07 上海微电子装备(集团)股份有限公司 一种基底预对准方法和装置以及一种光刻机
CN110458963A (zh) * 2019-08-16 2019-11-15 北京罗森博特科技有限公司 一种三维导航系统中目标物的精确定位方法及装置
CN110838140A (zh) * 2019-11-27 2020-02-25 艾瑞迈迪科技石家庄有限公司 基于混合监督学习的超声和核磁图像配准融合方法及装置
CN110930443A (zh) * 2019-11-27 2020-03-27 中国科学院深圳先进技术研究院 图像配准方法、装置及终端设备
CN110946654A (zh) * 2019-12-23 2020-04-03 中国科学院合肥物质科学研究院 一种基于多模影像融合的骨科手术导航系统
CN111192268A (zh) * 2019-12-31 2020-05-22 广州华端科技有限公司 医学图像分割模型构建方法与cbct图像骨分割方法
CN111260546A (zh) * 2020-03-11 2020-06-09 联想(北京)有限公司 一种图像处理方法、装置及电子设备
CN111402221A (zh) * 2020-03-11 2020-07-10 联想(北京)有限公司 一种图像处理方法、装置及电子设备
CN111445505A (zh) * 2020-03-25 2020-07-24 哈尔滨工程大学 一种基于二次配准的水对空成像畸变校正算法
CN112967236A (zh) * 2018-12-29 2021-06-15 上海联影智能医疗科技有限公司 图像的配准方法、装置、计算机设备和存储介质
CN114431882A (zh) * 2020-11-02 2022-05-06 深圳市安健科技股份有限公司 图像诊断系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337065A (zh) * 2013-05-22 2013-10-02 西安电子科技大学 小鼠三维ct图像的非刚性配准方法
CN104240287A (zh) * 2013-06-08 2014-12-24 北京思创贯宇科技开发有限公司 一种利用ct图像生成冠脉全景图的方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337065A (zh) * 2013-05-22 2013-10-02 西安电子科技大学 小鼠三维ct图像的非刚性配准方法
CN104240287A (zh) * 2013-06-08 2014-12-24 北京思创贯宇科技开发有限公司 一种利用ct图像生成冠脉全景图的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晶晶: "图像引导放疗系统中图像配准和重建技术的研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590829A (zh) * 2017-09-18 2018-01-16 西安电子科技大学 一种适用于多视角密集点云数据配准的种子点拾取方法
CN109725506B (zh) * 2017-10-31 2020-11-13 上海微电子装备(集团)股份有限公司 一种基底预对准方法和装置以及一种光刻机
CN109725506A (zh) * 2017-10-31 2019-05-07 上海微电子装备(集团)股份有限公司 一种基底预对准方法和装置以及一种光刻机
CN108549906A (zh) * 2018-04-10 2018-09-18 北京全域医疗技术有限公司 放疗勾靶图像配准方法及装置
CN109685838A (zh) * 2018-12-10 2019-04-26 上海航天控制技术研究所 基于超像素分割的图像弹性配准方法
CN109685838B (zh) * 2018-12-10 2023-06-09 上海航天控制技术研究所 基于超像素分割的图像弹性配准方法
CN112967236B (zh) * 2018-12-29 2024-02-27 上海联影智能医疗科技有限公司 图像的配准方法、装置、计算机设备和存储介质
CN112967236A (zh) * 2018-12-29 2021-06-15 上海联影智能医疗科技有限公司 图像的配准方法、装置、计算机设备和存储介质
CN110458963A (zh) * 2019-08-16 2019-11-15 北京罗森博特科技有限公司 一种三维导航系统中目标物的精确定位方法及装置
CN110458963B (zh) * 2019-08-16 2020-06-05 北京罗森博特科技有限公司 一种三维导航系统中目标物的精确定位方法及装置
CN110838140A (zh) * 2019-11-27 2020-02-25 艾瑞迈迪科技石家庄有限公司 基于混合监督学习的超声和核磁图像配准融合方法及装置
WO2021104089A1 (zh) * 2019-11-27 2021-06-03 中国科学院深圳先进技术研究院 图像配准方法、装置及终端设备
CN110930443A (zh) * 2019-11-27 2020-03-27 中国科学院深圳先进技术研究院 图像配准方法、装置及终端设备
CN110946654B (zh) * 2019-12-23 2022-02-08 中国科学院合肥物质科学研究院 一种基于多模影像融合的骨科手术导航系统
CN110946654A (zh) * 2019-12-23 2020-04-03 中国科学院合肥物质科学研究院 一种基于多模影像融合的骨科手术导航系统
CN111192268A (zh) * 2019-12-31 2020-05-22 广州华端科技有限公司 医学图像分割模型构建方法与cbct图像骨分割方法
CN111192268B (zh) * 2019-12-31 2024-03-22 广州开云影像科技有限公司 医学图像分割模型构建方法与cbct图像骨分割方法
CN111402221A (zh) * 2020-03-11 2020-07-10 联想(北京)有限公司 一种图像处理方法、装置及电子设备
CN111260546A (zh) * 2020-03-11 2020-06-09 联想(北京)有限公司 一种图像处理方法、装置及电子设备
CN111402221B (zh) * 2020-03-11 2023-02-17 联想(北京)有限公司 一种图像处理方法、装置及电子设备
CN111445505A (zh) * 2020-03-25 2020-07-24 哈尔滨工程大学 一种基于二次配准的水对空成像畸变校正算法
CN111445505B (zh) * 2020-03-25 2023-05-30 哈尔滨工程大学 一种基于二次配准的水对空成像畸变校正算法
CN114431882A (zh) * 2020-11-02 2022-05-06 深圳市安健科技股份有限公司 图像诊断系统及方法

Also Published As

Publication number Publication date
CN106934821B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN106934821A (zh) 一种基于icp算法和b样条的锥形束ct和ct图像配准方法
CN102525662B (zh) 组织器官三维可视化手术导航系统
CN107909585A (zh) 一种血管内超声影像的血管中内膜分割方法
US7773786B2 (en) Method and apparatus for three-dimensional interactive tools for semi-automatic segmentation and editing of image objects
CN102903103B (zh) 基于迁移活动轮廓模型的胃部ct序列图像分割方法
Zheng Statistical shape model‐based reconstruction of a scaled, patient‐specific surface model of the pelvis from a single standard AP x‐ray radiograph
JP2005332397A (ja) 幾何学的オブジェクトをデジタルの医学的画像内に自動写像する方法
CN110033465A (zh) 一种应用于双目内窥镜医学图像的实时三维重建方法
CN105894508B (zh) 一种医学图像自动定位质量的评估方法
CN107507189A (zh) 基于随机森林与统计模型的小鼠ct图像肾脏分割方法
CN104240287B (zh) 一种利用ct图像生成冠脉全景图的方法及系统
CN113570627B (zh) 深度学习分割网络的训练方法及医学图像分割方法
JP2008511395A (ja) 一連の画像における動き修正のための方法およびシステム
CN109949349A (zh) 一种多模态三维图像的配准及融合显示方法
CN115830016B (zh) 医学图像配准模型训练方法及设备
CN109767458A (zh) 一种半自动分段的顺序优化配准方法
WO2024109845A1 (zh) 一种2d-3d图像配准方法及系统
CN104933672B (zh) 基于快速凸优化算法配准三维ct与超声肝脏图像的方法
Hacihaliloglu et al. Statistical shape model to 3D ultrasound registration for spine interventions using enhanced local phase features
Kjer et al. Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical prior
CN111127488A (zh) 一种基于统计形状模型自动构建患者解剖结构模型的方法
JP2006139782A (ja) 画像を重ね合わせる方法
CN107292351B (zh) 一种结节的匹配方法及装置
Pettersson et al. Automatic hip bone segmentation using non-rigid registration
CN116363181A (zh) 一种基于特征的ct图像和超声图像肝脏配准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant