CN106934233A - 一种基于psr模型的稀土矿区环境压力量化评估方法及系统 - Google Patents

一种基于psr模型的稀土矿区环境压力量化评估方法及系统 Download PDF

Info

Publication number
CN106934233A
CN106934233A CN201710136237.6A CN201710136237A CN106934233A CN 106934233 A CN106934233 A CN 106934233A CN 201710136237 A CN201710136237 A CN 201710136237A CN 106934233 A CN106934233 A CN 106934233A
Authority
CN
China
Prior art keywords
rare
psr
environmental pressure
mining area
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710136237.6A
Other languages
English (en)
Inventor
李恒凯
杨柳
雷军
王秀丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201710136237.6A priority Critical patent/CN106934233A/zh
Publication of CN106934233A publication Critical patent/CN106934233A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2219/00Indexing scheme relating to application aspects of data processing equipment or methods
    • G06F2219/10Environmental application, e.g. waste reduction, pollution control, compliance with environmental legislation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及稀土矿环境压力评估技术领域,特别是一种基于PSR模型的稀土矿区环境压力量化评估方法,包括以下步骤,步骤S101:数据获取,通过数据获取单元获取所需评估区域原始遥感影像、降雨量数据、地形数据、土壤数据、人口密度数据;步骤S102:数据预处理,将步骤S101获得的遥感影像通过几何校正模块校正影像,大气校正后再掩膜裁剪处理获取研究区遥感影像;步骤S103:遥感影像信息提取,通过遥感信息提取单元解析评估区域地物类别信息,并统计其面积;步骤S104:PSR模型分析。采用上述方法和系统后,本发明定量评估出稀土矿区的环境安全状况,为稀土矿区环境治理提供技术支持;相比于采用实地调查的方式,本发明具有省时、省力、高效的特点。

Description

一种基于PSR模型的稀土矿区环境压力量化评估方法及系统
技术领域
本发明涉及稀土矿环境压力评估技术领域,特别是一种基于PSR模型的稀土矿区环境压力量化评估方法及系统。
背景技术
稀土作为中国特有的矿产资源,有“工业维生素”和新材料“金库”之称,是我国重要的战略资源。稀土的开采为国民经济发展做出了重要贡献,但同时也引发了严重的生态环境问题。稀土开采过程,也是生态环境破坏的过程,如植被破坏、土地荒漠化、水土流失、尾砂压占等生态环境问题,加剧了矿区生态系统的脆弱程度和退化速度,严重威胁矿区的生态安全。矿区一系列的生态环境问题,已引起人们对矿区资源开采模式的思考,只顾开采不管生态是不可持续的,要实现矿区的可持续开采和发展,必须对矿区的生态环境问题进行监测、评价和管理。
我国矿区环境压力评估,更多的依赖于实地调查,对于矿区开采所带来的环境影响与破坏并不能完整估算。稀土矿大多位于偏远山区、山高林密、矿区分散、矿点众多,如果采用以往实地调查不但费时费力,工作效率也很低,对于定量评估矿区环境压力的难度也相对较大。
发明内容
本发明需要解决的技术问题是提供一种实时、快速对大面积稀土矿区生态环境压力的评估方法。
为解决上述技术问题,本发明的一种基于PSR模型的稀土矿区环境压力量化评估方法,包括以下步骤,
步骤S101:数据获取,通过数据获取单元获取所需评估区域原始遥感影像、降雨量数据、地形数据、土壤数据、人口密度数据;
步骤S102:数据预处理,将步骤S101获得的遥感影像通过几何校正模块校正影像,大气校正后再掩膜裁剪处理获取研究区遥感影像;
步骤S103:遥感影像信息提取,通过遥感信息提取单元解析评估区域地物类别信息,并统计其面积;
步骤S104:PSR模型分析,确定PSR模型指标,并根据PSR模型指标构建PSR模型;通过构建的PSR模型计算稀土矿区环境压力并进行环境压力分级;最后根据稀土矿区环境压力空间分布情况进行分析。
进一步的,所述步骤S104具体包括以下步骤,
步骤S41:PSR模型确定,确定PSR模型的10个指标,然后分别计算出研究区该10个PSR模型的指标,并对其标准化处理;
步骤S42:PSR模型指标加权,加权PSR模型指标,通过综合指数方法构建PSR模型;
步骤S43:评估区域环境压力计算,通过构建的PSR模型计算出稀土矿区环境压力,并依据环境压力等级对研究区的环境压力分级;
步骤S44:评估区域环境压力分析,依据步骤S43得到的稀土矿区环境压力空间分布情况对其进行分析。
进一步的,步骤S01中所述原始遥感影像为Landsat8影像,其中包括波段2-7和波段10,所述地形数据为分辨率为30米的DEM数据。
更进一步的,步骤S102中所述DEM数据需通过镶嵌地形数据,再通过裁剪处理获得。
进一步的,所述步骤S102中几何校正模块选择地面控制点与影像同名点运用多项式模型几何校正,大气校正通过大气校正模块处理。
进一步的,所述步骤S104中PSR模型包括压力层、状态层和响应层3个准则层;其中压力层包括人口密度、荒漠化指数和土壤侵蚀模数3个指标因子;状态层包括植被指数、生态弹性度、生物丰度指数3个指标因子;响应层包括景观破碎度、分维数、香农多样性、稀土矿区地表温度4个指标因子。
本发明还包括一种基于PSR模型的稀土矿区环境压力量化评估系统,包括数据获取单元、数据处理单元、PSR模型构建单元、遥感信息提取单元和稀土矿区环境压力量化评估单元;所述数据获取单元与数据处理单元输入端相连接,所述数据处理单元输出端与PSR模型构建单元相连接;所述遥感信息提取单元分别与数据处理单元输入端、PSR模型构建单元输入端相连接;所述PSR模型构建单元输出端与稀土矿区环境压力量化评估单元输入端相连接。
进一步的,所述遥感信息提取单元包括依次连接的定义训练样本模块、神经网络监督分类模块、评价分类结果模块和分类后处理模块;所述定义训练样本模块与数据处理单元相连接,所述分类后处理模块与PSR模型构建单元相连接。
更进一步的,所述定义训练样本模块用于创建稀土矿区不同地物类型的感兴趣区,作为训练样本;所述神经网络监督分类模块是指利用神经网络算法对定义训练的样本进行图像分类;所述评价分类结果模块用于比较分析分类结果和地表真实信息,可采用ENVI提供的混淆矩阵包含的要素:总体分类精度、Kappa系数、混淆概率、错分误差、漏分误差、制图精度以及用户精度来反映;所述分类后处理模块是指利用Majority/Minority分析对分类结果中不可避免产生的一些面积很小的图斑进行剔除或重新分类处理。
采用上述方法和系统后,本发明提出了结合层次分析法和PSR模型构建了一种矿区生态环境压力评估的方法,定量评估出稀土矿区的环境安全状况,为稀土矿区环境治理提供技术支持;相比于采用实地调查的方式,本发明具有省时、省力、高效的特点。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明一种基于PSR模型的稀土矿区环境压力量化评估方法的流程图。
图2为本发明一种基于PSR模型的稀土矿区环境压力量化评估系统的结构框图。
图3为本发明PSR模型结构图。
其中:1为数据获取单元,2为数据处理单元,3为PSR模型构建单元,4为稀土矿区环境压力量化评估单元,5为遥感信息提取单元
具体实施方式
如图1所示,本发明的一种基于PSR模型的稀土矿区环境压力量化评估方法,步骤S101:数据获取,通过数据获取单元获取所需评估区域原始遥感影像、降雨量数据、地形数据、土壤数据、人口密度数据。所述原始遥感影像为Landsat8影像,其中包括波段2-7和波段10,所述地形数据为分辨率为30米的DEM数据。所述评估区域土壤数据通过土壤数据模块直接导出;所述评估区域降雨量数据及人口密度数据分别通过查阅气象站及统计年鉴获得。
步骤S102:数据预处理,将步骤S101获得的遥感影像通过几何校正模块校正影像,大气校正后再掩膜裁剪处理获取研究区遥感影像。所述DEM数据需通过镶嵌地形数据,再通过裁剪处理获得。几何校正模块,选择地面控制点与影像同名点运用多项式模型几何校正,大气校正通过大气校正模块处理,其采用ENVI软件中FLAASH大气校正模块进行,减少或消除大气对遥感影像的影响,然后通过研究区矢量图掩膜裁剪得到研究区影像;研究区地形数据位于3景相邻地形图中,因此需通过ArcCatalog软件将3景相邻地形图拼接成一个大范围、无缝的地形图,然后通过研究区矢量图掩膜裁剪得到研究区DEM数据。
步骤S103:遥感影像信息提取,通过遥感信息提取单元解析评估区域地物类别信息,并统计其面积。
步骤S104:PSR模型分析,确定PSR模型指标,并根据PSR模型指标构建PSR模型;通过构建的PSR模型计算稀土矿区环境压力并进行环境压力分级;最后根据稀土矿区环境压力空间分布情况进行分析。进一步的,所述步骤S104具体包括以下步骤,
步骤S41:PSR模型确定,确定PSR模型的10个指标,然后分别计算出研究区该10个PSR模型的指标,并对其标准化处理。如图3所示,PSR模型包括压力层、状态层和响应层3个准则层;其中压力层包括人口密度、荒漠化指数和土壤侵蚀模数3个指标因子;状态层包括植被指数、生态弹性度、生物丰度指数3个指标因子;响应层包括景观破碎度、分维数、香农多样性、稀土矿区地表温度4个指标因子。10个指标因子获得方式如下:
1、人口密度通过查阅统计年鉴直接获得。
2、荒漠化指数可在Albedo-NDVI特征空间用DDI表示,如式(1)、(2):
DDI=k*N-A (1)
A=a*N+b (2)
式中,k为式(2)中a的负倒数,即k=-1/a;N为正规化后的植被指数;A为正规化后的地表反照率,a为回归方程的斜率,b为回归方程在纵坐标上的截距。
3、土壤侵蚀模数采用修正通用土壤流失方程(RUSLE),该模型定义如式(3)所示:
A=K*L*S*P*R*C (3)
式中:A为平均土壤流失量,单位为(t·km-2·a-1);R为降雨侵蚀力因子,单位为MJ·mm/(hm2·h·a);K为土壤可蚀性因子,单位为t·h/(MJ·mm);L是坡长因子;S为坡度因子;C为植被覆盖因子;P为土壤侵蚀控制措施因子。
4、植被指数选择归一化植被指数(NDVI),其采用近红外波段与红光波段像元的反射率或亮度值之差与两者之和的比值来表示。
5、生态弹性度(ECO),其计算如下式(4):
式中:Si为第i类土地利用类型面积,其可依据步骤3)分类后统计结果获得;Pi为第i类土地利用类型的弹性分值,其中林地0.9、水体0.8、灌木林0.7、草地0.6、耕地0.5、居民点及工矿用地0.4、未利用地0.3,n为土地利用类型数。
6、生态丰度指数(BAI)依据《生态环境状况评价技术规范》计算,其计算如下式(5):
式中:Abio为归一化系数,Si为第i类土地利用类型面积,其可依据步骤S103分类后统计结果获得;Pi为第i类土地利用类型的生物丰度权重,可依据《生态环境状况评价技术规范》获取,S为区域总面积,n为土地利用类型数。
7、景观破碎度,计算表达式如下(6):
FN=(Np-1)/Nc (6)
式中:Nc为景观总面积,Np为景观中各类斑块的总和。
8、香农多样性(SHDI)计算如下式(7):
式中:pi为土地利用类型i在整个景观中所占比例,其表示景观中各类嵌块体的复杂性和变异性的指标,值越大,表示景观多样程度越高,n为土地利用类型数。
9、分维数D计算如下式(8):
D=2ln(P/4)ln(A) (8)
式中:P为斑块周长,A为斑块面积,当D值越大时,表明斑块形状越复杂。
10、地表温度TS计算如式(9)、(10):
ε=0.004PV+0.986 (10)
式中:T(K)是卫星高度上热红外波段所探测到的像元亮度温度;λ(μm)为热红外波段的中心波长;ρ=hc/δ=1.439×10-2(m·K);δ=1.38×10-23(J·K-1),为玻尔兹曼常数;h=6.626×10-34(J·s),为Plank常数;c=2.998×108(m·s-1),为光速;ε(无量纲)是地表比辐射率,PV为植被覆盖度,可由像元二分法计算获得。
步骤S42:PSR模型指标加权,加权PSR模型指标,通过综合指数方法构建PSR模型。首先确定PSR模型指标因子的权重,然后对所有指标因子进行标准化,最后通过综合指数法构建出PSR模型。所述PSR模型指标因子权重可通过AHP法确定;所述PSR指标因子指标化在于解决其由于量纲不统一,不具可比性问题,标准化处理,使所有PSR指标因子的值控制在[0-10]范围内。所述综合指数法构建PSR模型是指通过各指标因子加权求和得到,其评价模型如下式(11):
式中:LESI为稀土矿区生态安全评价指数,xi为第i个评价因子的评价向量,ωi为第i个评级因子的权重向量,n为评价指标的个数。
步骤S43:评估区域环境压力计算,通过构建的PSR模型计算稀土矿区环境压力计算,并依据环境压力等级对研究区的环境压力分级。
步骤S44:评估区域环境压力分析,依据步骤S43得到的稀土矿区环境压力空间分布情况,如表1所示,可将稀土矿区环境压力从空间分布特征以及不同地物的空间分布等级等角度进行分析。
表1 稀土矿区环境压力等级及特征
如图2所示,本发明还包括一种基于PSR模型的稀土矿区环境压力量化评估系统,包括数据获取单元1、数据处理单元2、PSR模型构建单元3、遥感信息提取单元5和稀土矿区环境压力量化评估单元4;所述数据获取单元1与数据处理单元2输入端相连接,所述数据处理单元2输出端与PSR模型构建单元3相连接;所述遥感信息提取单元5分别与数据处理单元2输入端、PSR模型构建单元3输入端相连接;所述PSR模型构建单元3输出端与稀土矿区环境压力量化评估单元4输入端相连接。
进一步的,所述遥感信息提取单元5包括依次连接的定义训练样本模块、神经网络监督分类模块、评价分类结果模块和分类后处理模块;所述定义训练样本模块与数据处理单元相连接,所述分类后处理模块与PSR模型构建单元相连接。所述定义训练样本模块用于创建稀土矿区不同地物类型的感兴趣区,作为训练样本;所述神经网络监督分类模块是指利用神经网络算法对定义训练的样本进行图像分类;所述评价分类结果模块用于比较分析分类结果和地表真实信息,可采用ENVI提供的混淆矩阵包含的要素:总体分类精度、Kappa系数、混淆概率、错分误差、漏分误差、制图精度以及用户精度来反映;所述分类后处理模块是指利用Majority/Minority分析对分类结果中不可避免产生的一些面积很小的图斑进行剔除或重新分类处理。
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。

Claims (9)

1.一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于,包括以下步骤,
步骤S101:数据获取,通过数据获取单元获取所需评估区域原始遥感影像、降雨量数据、地形数据、土壤数据、人口密度数据;
步骤S102:数据预处理,将步骤S101获得的遥感影像通过几何校正模块校正影像,大气校正后再掩膜裁剪处理获取研究区遥感影像;
步骤S103:遥感影像信息提取,通过遥感信息提取单元解析评估区域地物类别信息,并统计其面积;
步骤S104:PSR模型分析,确定PSR模型指标,并根据PSR模型指标构建PSR模型;通过构建的PSR模型计算稀土矿区环境压力并进行环境压力分级;最后根据稀土矿区环境压力空间分布情况进行分析。
2.按照权利要求1所述的一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于,所述步骤S104具体包括以下步骤,
步骤S41:PSR模型确定,确定PSR模型的10个指标,然后分别计算出研究区该10个PSR模型的指标,并对其标准化处理;
步骤S42:PSR模型指标加权,加权PSR模型指标,通过综合指数方法构建PSR模型;
步骤S43:评估区域环境压力计算,通过构建的PSR模型计算出稀土矿区环境压力,并依据环境压力等级对研究区的环境压力分级;
步骤S44:评估区域环境压力分析,依据步骤S43得到的稀土矿区环境压力空间分布情况对其进行分析。
3.按照权利要求1所述的一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于:步骤S01中所述原始遥感影像为Landsat8影像,其中包括波段2-7和波段10,所述地形数据为分辨率为30米的DEM数据。
4.按照权利要求3所述的一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于:步骤S102中所述DEM数据需通过镶嵌地形数据,再通过裁剪处理获得。
5.按照权利要求1所述的一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于:所述步骤S102中几何校正模块选择地面控制点与影像同名点运用多项式模型几何校正,大气校正通过大气校正模块处理。
6.按照权利要求1所述的一种基于PSR模型的稀土矿区环境压力量化评估方法,其特征在于:所述步骤S104中PSR模型包括压力层、状态层和响应层3个准则层;其中压力层包括人口密度、荒漠化指数和土壤侵蚀模数3个指标因子;状态层包括植被指数、生态弹性度、生物丰度指数3个指标因子;响应层包括景观破碎度、分维数、香农多样性、稀土矿区地表温度4个指标因子。
7.一种基于PSR模型的稀土矿区环境压力量化评估系统,其特征在于:包括数据获取单元、数据处理单元、PSR模型构建单元、遥感信息提取单元和稀土矿区环境压力量化评估单元;所述数据获取单元与数据处理单元输入端相连接,所述数据处理单元输出端与PSR模型构建单元相连接;所述遥感信息提取单元分别与数据处理单元输入端、PSR模型构建单元输入端相连接;所述PSR模型构建单元输出端与稀土矿区环境压力量化评估单元输入端相连接。
8.按照权利要求7所述的一种基于PSR模型的稀土矿区环境压力量化评估系统,其特征在于:所述遥感信息提取单元包括依次连接的定义训练样本模块、神经网络监督分类模块、评价分类结果模块和分类后处理模块;所述定义训练样本模块与数据处理单元相连接,所述分类后处理模块与PSR模型构建单元相连接。
9.按照权利要求7所述的一种基于PSR模型的稀土矿区环境压力量化评估系统,其特征在于:所述定义训练样本模块用于创建稀土矿区不同地物类型的感兴趣区,作为训练样本;所述神经网络监督分类模块是指利用神经网络算法对定义训练的样本进行图像分类;所述评价分类结果模块用于比较分析分类结果和地表真实信息,可采用ENVI提供的混淆矩阵包含的要素:总体分类精度、Kappa系数、混淆概率、错分误差、漏分误差、制图精度以及用户精度来反映;所述分类后处理模块是指利用Majority/Minority分析对分类结果中不可避免产生的一些面积很小的图斑进行剔除或重新分类处理。
CN201710136237.6A 2017-03-09 2017-03-09 一种基于psr模型的稀土矿区环境压力量化评估方法及系统 Pending CN106934233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710136237.6A CN106934233A (zh) 2017-03-09 2017-03-09 一种基于psr模型的稀土矿区环境压力量化评估方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710136237.6A CN106934233A (zh) 2017-03-09 2017-03-09 一种基于psr模型的稀土矿区环境压力量化评估方法及系统

Publications (1)

Publication Number Publication Date
CN106934233A true CN106934233A (zh) 2017-07-07

Family

ID=59432709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710136237.6A Pending CN106934233A (zh) 2017-03-09 2017-03-09 一种基于psr模型的稀土矿区环境压力量化评估方法及系统

Country Status (1)

Country Link
CN (1) CN106934233A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516168A (zh) * 2017-08-28 2017-12-26 中国测绘科学研究院 一种生态环境质量综合评价方法
CN108170926A (zh) * 2017-12-12 2018-06-15 伊犁师范学院 一种河谷草地退化情况的信息数据采集及分析方法
CN110363322A (zh) * 2018-04-10 2019-10-22 重庆师范大学 一种土壤侵蚀程度的预测方法
CN111369178A (zh) * 2020-04-07 2020-07-03 榆林学院 一种基于生态大数据的矿区生态修复指导系统
CN113130014A (zh) * 2021-04-23 2021-07-16 华东交通大学 一种基于多分支神经网络的稀土萃取模拟方法及系统
CN113780822A (zh) * 2021-09-14 2021-12-10 上海师范大学 一种基于psr模型的城市生态安全预警方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517037A (zh) * 2014-12-23 2015-04-15 中国科学院遥感与数字地球研究所 一种生态承载力的遥感估算方法
CN105631818A (zh) * 2015-12-24 2016-06-01 中国农业大学 遥感影像的批量自动化几何校正方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517037A (zh) * 2014-12-23 2015-04-15 中国科学院遥感与数字地球研究所 一种生态承载力的遥感估算方法
CN105631818A (zh) * 2015-12-24 2016-06-01 中国农业大学 遥感影像的批量自动化几何校正方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
曹兆伟 等: "基于BP神经网络的东屿岛遥感影像分类", 《海洋通报》 *
王慧慧,吴开亚: "基于PSR模型的安徽省"十二五"环境压力分析", 《合肥工业大学学报(社会科学版)》 *
蒋玲 等: "基于PSR 模型和层次分析法的甘肃省土地可持续利用研究", 《环境与可持续发展》 *
郭广猛,杨杰: "Google Earth在《遥感原理与方法》教学中的应用", 《南阳师范学院学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516168A (zh) * 2017-08-28 2017-12-26 中国测绘科学研究院 一种生态环境质量综合评价方法
CN108170926A (zh) * 2017-12-12 2018-06-15 伊犁师范学院 一种河谷草地退化情况的信息数据采集及分析方法
CN108170926B (zh) * 2017-12-12 2021-07-30 伊犁师范学院 一种河谷草地退化情况的信息数据采集及分析方法
CN110363322A (zh) * 2018-04-10 2019-10-22 重庆师范大学 一种土壤侵蚀程度的预测方法
CN111369178A (zh) * 2020-04-07 2020-07-03 榆林学院 一种基于生态大数据的矿区生态修复指导系统
CN113130014A (zh) * 2021-04-23 2021-07-16 华东交通大学 一种基于多分支神经网络的稀土萃取模拟方法及系统
CN113130014B (zh) * 2021-04-23 2023-02-07 华东交通大学 一种基于多分支神经网络的稀土萃取模拟方法及系统
CN113780822A (zh) * 2021-09-14 2021-12-10 上海师范大学 一种基于psr模型的城市生态安全预警方法
CN113780822B (zh) * 2021-09-14 2023-10-31 上海师范大学 一种基于psr模型的城市生态安全预警方法

Similar Documents

Publication Publication Date Title
CN106934233A (zh) 一种基于psr模型的稀土矿区环境压力量化评估方法及系统
Pi et al. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery
US20200234170A1 (en) Method for classifying eco-geological environment types based on coal resource exploitation
McBratney et al. On digital soil mapping
Sahebjalal et al. Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods
Ramachandra et al. Geographic Resources Decision Support System for land use, land cover dynamics analysis
Castillo et al. LIDAR remote sensing for secondary Tropical Dry Forest identification
Stathakis et al. Efficient segmentation of urban areas by the VIBI
CN113240688A (zh) 一种一体化洪涝灾害精准监测预警方法
Boloorani et al. Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery
Adinarayana et al. A rule-based soil erosion model for a hilly catchment
CN110334623B (zh) 一种基于Sentinel-2A卫星遥感影像提取崩岗信息的方法
CN107590514A (zh) 遥感分类精度评价的样本点优化布设方法、系统和设备
CN102184423A (zh) 一种全自动的区域不透水面遥感信息精确提取方法
Nadiri et al. Formulating Convolutional Neural Network for mapping total aquifer vulnerability to pollution
CN106709212A (zh) 一种快速识别土壤有机碳关键输出区的多参数评价方法
Wei et al. Using object-oriented coupled deep learning approach for typical object inspection of transmission channel
Wang et al. Research on habitat quality assessment and decision-making based on Semi-supervised Ensemble Learning method—Daxia River Basin, China
Nelson et al. Spatial statistical techniques for aggregating point objects extracted from high spatial resolution remotely sensed imagery
Pan et al. Urban expansion and intra-urban land evolution as well as their natural environmental constraints in arid/semiarid regions of China from 2000–2018
Ngo et al. Land cover classification using interval type-2 fuzzy clustering for multi-spectral satellite imagery
CN112613371A (zh) 一种基于密集连接卷积神经网络高光谱图像道路提取方法
Chen et al. Urban land use and land cover classification using the neural-fuzzy inference approach with Formosat-2 data
Tien Bui et al. LAND COVER CHANGE MAPPING USING A COMBINATION OF SENTINEL-1 DATA AND MULTISPECTRAL SATELLITE IMAGERY: A CASE STUDY OF SANANDAJ COUNTY, KURDISTAN, IRAN.
Zhou et al. Aboveground biomass estimation of wetland vegetation at the species level using unoccupied aerial vehicle RGB imagery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination