CN106933267A - 一种刚柔杆型平面并联平台的振动测量控制装置及方法 - Google Patents

一种刚柔杆型平面并联平台的振动测量控制装置及方法 Download PDF

Info

Publication number
CN106933267A
CN106933267A CN201710271392.9A CN201710271392A CN106933267A CN 106933267 A CN106933267 A CN 106933267A CN 201710271392 A CN201710271392 A CN 201710271392A CN 106933267 A CN106933267 A CN 106933267A
Authority
CN
China
Prior art keywords
moving platform
vibration
degree
flexible link
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710271392.9A
Other languages
English (en)
Inventor
邱志成
余龙焕
张宪民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710271392.9A priority Critical patent/CN106933267A/zh
Publication of CN106933267A publication Critical patent/CN106933267A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Abstract

本发明公开了一种刚柔杆型平面并联平台的振动测量控制装置及方法,包括并联平台本体单元、检测单元及振动控制单元,所述并联平台本体单元包括一个动平台、一个静平台和三个并联分支,每个并联分支包括一个主动刚性杆和一个从动柔性杆,主动刚性杆、从动柔性杆和动平台上均安装加速度传感器,用以检测刚性杆、柔性杆和动平台加速度信息;从动柔性杆上贴有多片压电陶瓷传感器和驱动器,用于振动测量和驱动控制;静平台周围布置三个单点激光测振仪,用以检测动平台的振动信息。本发明采用多个加速度传感器分别检测动平台、刚性杆以及柔性杆振动,再参考单点激光测振仪测得的动平台振动信息,计算出控制量,实现对并联平台的振动控制。

Description

一种刚柔杆型平面并联平台的振动测量控制装置及方法
技术领域
本发明涉及3-RRR并联平台的控制领域,具体涉及一种刚柔杆型平面并联平台的振动测量控制装置及方法。
背景技术
并联机器人是若干个自由度的末端执行器与固定地基通过两个或两个以上的独立运动支链相连。3-RRR并联平台具有三个独立运动支链,每条支链有三个转动副,动平台和静平台通过三条支链相连。并联机器人相比串联机器人具有高速度、高精度、高承载能力的应用优势,并联机器人的末端动平台可以实现高速运动、精确定位、承载大质量负载。
选择并联机器人作为精密定位平台,实现高速、高精度和高效率定位。并联平台在实际运动时,由于柔性杆的弹性变形、减速器的间隙和摩擦、关节间隙以及并联平台非线性误差等影响,并联机器人在运动过程会有振动,在运动定位时也会有残余振动。系统振动会影响运动的精准度,所以需要设计振动控制方法来抑制并联平台的振动。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种刚柔杆型平面并联平台的振动测量控制装置及方法。
本发明采用如下技术方案:
一种刚柔杆型平面并联平台的振动测量控制装置,包括并联平台本体单元、检测单元及振动控制单元;
所述并联平台本体单元,包括一个动平台、一个静平台及三个并联分支,所述动平台为三角形,所述三个并联分支安装在动平台的三个角上,三个并联分支的结构相同,每个并联分支包括一个主动刚性杆和一个从动柔性杆,所述主动刚性杆的一端与从动柔性杆的一端连接,从动柔性杆的另一端与动平台连接;
所述检测单元,包括单自由度加速度传感器、压电陶瓷传感器、单点激光测振仪及三自由度加速度传感器;
所述主动刚性杆及从动柔性杆分别安装单自由度加速度传感器,所述压电陶瓷传感器安装在从动柔性杆上,所述三自由度加速度传感器具体为两个,安装在动平台上,所述单点激光测振仪具体为三个,均匀设置在静平台的周围;
所述三自由度加速度传感器及从动柔性杆安装的单自由度加速度传感器检测的信号通过A/D转换电路后输入到计算机;
所述主动刚性杆上安装的单自由度加速度传感器检测主动刚性杆的加速度信号,通过A/D转换电路后输入到计算机;
所述压电陶瓷传感器检测振动信号经过电荷放大器放大,然后通过A/D转换电路后输入到计算机;
所述单点激光测振仪检测动平台的振动位移信号,通过激光测振仪控制箱输入到计算机;
所述控制单元包括压电陶瓷驱动器、伺服电机及减速器,所述伺服电机与减速器连接,分别固定在静平台上,所述减速器的主动轴与刚性主动杆的另一端铰接,所述压电陶瓷驱动器安装在从动柔性杆上,所述计算机接收从动柔性杆上的单轴加速度传感器的加速度信号、三自由度加速度传感器及单点激光测振仪检测的振动位移信号后得到控制信号,通过D/A转换电路转换后输出到压电放大电路上,进一步作用到压电陶瓷驱动器;
所述计算机接收主动刚性杆上的单轴加速度传感器的检测信号后得到控制信号,通过运动控制卡PMAC传输到伺服电机驱动器,伺服电机将控制信号作用到主动刚性杆上,抑制主动刚性杆的振动。
所述单自由度加速度传感器具体为六个,其中三个单自由度加速度传感器分别安装在三个主动刚性杆上,具体在距离主动刚性杆转动轴心150mm的中心位置;
另外三个单自由度加速度传感器分别安装在三个从动柔性杆上,具体在距离从动柔性杆转动轴心130mm的中心位置;
所述压电陶瓷传感器具体为三个,分别粘贴在三个从动柔性杆上,位于从动柔性杆的中心位置,姿态角为0°。
一只三自由度加速度传感器水平安装在动平台的中心,另一只三自由度加速度传感器安装在动平台Y轴正方向距离动平台中心45mm处,且倾斜角为其中在0°和90°之间。
所述压电陶瓷驱动器由多个压电陶瓷片构成,对称设置在每个从动柔性杆的两端,正反两面粘贴,姿态角为0°。
所述三个单点激光测振仪分别跟动平台的三个侧面垂直,且当动平台在初始位置时,与相垂直的侧面距离是相等的,其三条中心线相交于动平台的中心点。
所述主动刚性杆的一端具体通过转轴与从动柔性杆连接,所述从动柔性杆具体通过转轴与动平台连接。
所述装置的测量控制方法,包括如下步骤:
步骤一运动控制卡PMAC发送控制信号给伺服驱动器,交流伺服电机接收伺服驱动器输出的驱动信号,带动减速器转动,使刚性主动杆及柔性从动杆带动平台由初始位置运动到目标位置;
步骤二动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,经过A/D转换电路后输入到计算机;
主动刚性杆和从动柔性杆上的单自由度加速度传感器分别测得主动刚性杆和从动柔性杆的加速度信息,经过A/D转换电路后输入到计算机;
从动柔性杆上的压电陶瓷传感器测得振动信息,经过电荷放大器放大,经过A/D转换电路后输入到计算机;
三个单点激光测振仪测量动平台的振动位移信息,经过激光测振仪控制箱输入到计算机中;
步骤三计算机接收三自由度加速度传感器的振动信号、单点激光测振仪的振动位移信号及从动柔性杆上的单自由度加速度传感器测得的杆的加速度信号,得到控制信号,输出到D/A转换电路转换后输出到压电放大电路上,压电陶瓷驱动器作用到从动柔性杆上,抑制柔性杆的振动,从而抑制动平台振动;
计算机接收主动刚性杆上的单自由度加速度传感器测得的杆的加速度信号经过处理得到控制信号通过PMAC运动控制卡传输到伺服驱动器,伺服电机将控制量以转动力矩的方式作用到主动刚性杆上,抑制主动刚性杆的振动,最终达到控制动平台振动的目的。
所述动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,具体为:
安装在动平台中心位置的三自由度加速度传感器测得动平台x方向加速度ax1和y方向加速度ay1
另外一只三自由度加速度传感器测得动平台x方向加速度ax2和y方向加速度ay2
则动平台中心点处x方向的加速度ax=ax1,动平台y方向的加速度ay=ay1,动平台中心点处的旋转角加速度为
其中d代表两个三自由度加速度传感器的中心距离。
所述三个单点激光测振仪测量动平台的振动位移信息,具体为:
所述三个单点激光测振仪具体为第一、第二及第三单点激光测振仪,所述三台单点激光测振仪分别测得动平台发生振动前后,打在动平台上的激光点沿各个单点激光测振仪方向的距离a1,a2和a3,则根据几何关系可得:
其中:联立上述方程求得:
△x,△y分别是动平台在水平方向及竖直方向的平动位移,α是动平台的转动角度,β表示动平台初始位置与目标位置中心点的连线与X轴的夹角。
计算机得到单点激光测振仪反馈的动平台振动位移信号,所述三个单点激光测振仪反馈的动平台振动位移信号,当目标位置的中心点与实际到达位置的中心点偏离最小时动平台停止运动。
本发明的有益效果:
(1)本发明采用两个安装在动平台上的三自由度加速度传感器,能够解算出动平台2个平动自由度和1个转动自由度加速度,机构简单,质量轻,体积小,不影响并联平台的特性。
(2)本发明采用6个单自由度加速度传感器,分别安装在3个主动刚性杆和3个从动柔性杆上,可以检测出主动杆和从动杆加速度信息,结合动平台的加速度信息,这些信号经过计算机处理后作为控制信号作用在压电陶瓷传感器,可以很好的达到抑制并联平台运动中的振动和定位时的自激振动的目的;
(3)本发明采用3个压电陶瓷传感器,分别对称粘贴于柔性杆上,可以检测柔性杆的振动信息,作为并联平台振动控制效果的评价参考。
(4)本装置采用多传感器融合系统,既有单自由度加速度传感器、三自由度加速度传感器以及压电陶瓷传感器,可以通过多传感器信息融合对并联平台振动进行辨识研究。
(5)本装置采用了单点激光测振仪测量动平台的振动,这种非接触式测量方法测量的精度更高,与加速度传感器测振信号的互相参考,这样由控制算法计算出来的控制量更为精准。
附图说明
图1是本发明一种刚柔杆型平面并联平台的振动测量控制装置的总体结构示意图;
图2是图1装置的俯视图;
图3是图1装置的前视图;
图4是本实施例中动平台的加速度传感器布置结构示意图;
图5是本实施例中主动刚性杆的传感器/驱动器布置结构示意图;
图6是本实施例中从动柔性杆的传感器/驱动器布置结构示意图;
图7是本实施例中动平台三自由度加速度传感器得到动平台的平动加速度计转动加速度的计算原理图;
图8是本实施例中单点激光测振仪的计算原理图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1-图6所示,一种刚柔性杆型平面并联平台的振动测量控制装置,包括一个动平台9、一个静平台12和三个并联分支,所述动平台9为等边三角形,所述三个并联分支的结构相同及安装的传感器与驱动器的位置相同,所述三个并联分支安装在动平台的三个角上,每个并联分支包括一个主动刚性杆3和一个从动柔性杆5,所述主动刚性杆3一端与从动柔性杆5的一端通过转轴连接,所述主动刚性杆的另一端与减速器2的转动轴铰接,带动主动刚性杆的转动,所述减速器2与伺服电机1分别安装在静平台的上,所述从动柔性杆的另一端与动平台通过转轴连接,主动刚性杆带动从动柔性杆的转动和移动,从动柔性杆的转动和移动使动平台以定姿态运动到目标位置。
还包括单自由度加速度传感器、压电陶瓷传感器、三自由度加速度传感器及单点激光测振仪,所述单自由度加速度传感器4、7具体为六个,其中三个分别安装在主动刚性杆上,具体位于距离主动刚性杆转动轴心150mm的位置,另外三个单自由度加速度传感器分别安装在三个从动柔性杆上,具体在距离从动柔性杆转动轴心130mm的中心位置。
所述压电陶瓷传感器6具体为三个,分别粘贴在三个从动柔性杆上,位于从动柔性杆的中心位置,姿态角为0°。
所述三自由度加速度传感器具体为两只,通过加速度传感器支架11固定在动平台上,具体为第一及第二三自由度加速度传感器10-1,10-2,其中第一三自由度加速度传感器10-1安装在动平台的中心,第二三自由度加速度传感器10-2安装在动平台Y轴正方向距离动平台中心45mm处,且倾斜角为其中在0°和90°之间。
所述三个单点激光测振仪20安装在静平台的周围,初始位置时,分别跟相对应的动平台的三个侧面垂直,与相垂直的侧面距离相等,三个单点激光测振仪的三条中心线的相交于动平台的中心点。
所述压电陶瓷驱动器8由多个压电陶瓷片构成,对称设置在每个从动柔性杆的两端,姿态角为0°。
检测信号的传输路径如下:
三自由度加速度传感器和单自由度加速度传感器检测的相应的动平台的平动加速度和转动加速度,以及主动从动杆的加速度信号,通过A/D转换电路16输入到计算机中;
所述从动柔性杆的压电陶瓷传感器测得柔性杆的振动信息首先经过电荷放大器15放大,然后进行A/D转换电路到计算机,其检测的信息可用于振动分析和反馈控制。
所述三个单点激光测振仪检测的动平台的振动位移信号,输入到激光测振仪控制箱21,进一步输入到计算机中。
计算机接收动平台三自由度加速度传感器、单点激光测振仪的振动位移信号及从动柔性杆的单自由度加速度传感器的振动信号,利用控制算法计算得到控制量,进行D/A转换电路18转换后输出到压电放大电路17上,压电电源驱动压电陶瓷片作用力到柔性杆上,抑制柔性杆的振动,从而抑制动平台振动;
计算机接收主动刚性杆的单自由度加速度传感器的振动信号,利用控制算法得到控制信号,通过运动控制卡PMAC14传输到伺服驱动器13上,伺服电机将控制量以转动力矩的方式作用到主动刚性杆上,抑制刚性杆的振动,最终达到控制动平台振动的目的。
本装置具体的控制方法,包括如下步骤:
步骤一运动控制卡PMAC14发送控制控制信号给伺服驱动器13,伺服电机1接收到伺服驱动器输出的驱动信号后,带动减速器2转动,通过主动刚性杆3和从动柔性杆5使平台运动到目标位置;
步骤二动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,经过A/D转换电路后输入到计算机19;
主动刚性杆和从动柔性杆上的单自由度加速度传感器分别测得主动刚性杆和从动柔性杆的加速度信息,经过A/D转换电路后输入到计算机;
从动柔性杆上的压电陶瓷传感器测得振动信息,经过电荷放大器放大,经过A/D转换电路后输入到计算机;
三个单点激光测振仪测量动平台的振动信息,经过激光测振仪控制箱输入到计算机中;
步骤三计算机接收三自由度加速度传感器的振动信号、单点激光测振仪的振动位移信号及从动柔性杆上的单自由度加速度传感器测得的杆的加速度信号,得到控制信号,输出到D/A转换电路转换后输出到压电放大电路上,压电陶瓷驱动器作用到从动柔性杆上,抑制柔性杆的振动,从而抑制动平台振动;
计算机接收主动刚性杆上的单自由度加速度传感器测得的杆的加速度信号经过处理得到控制信号通过PMAC运动控制卡14传输到伺服驱动器13,伺服电机将控制量以转动力矩的方式作用到主动刚性杆上,抑制主动刚性杆的振动,最终达到控制动平台振动的目的。
所述动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,具体为:
如图7所示,安装在动平台中心位置的三自由度加速度传感器测得动平台x方向加速度ax1和y方向加速度ay1
另外一只三自由度加速度传感器测得动平台x方向加速度ax2和y方向加速度ay2
则动平台中心点处x方向的加速度ax=ax1,动平台y方向的加速度ay=ay1,动平台中心点处的旋转角加速度为
其中d代表两个三自由度加速度传感器的中心距离。
如图8所示,所述均匀分布在静平台周围的三个单点激光测振仪具体为第一、第二及第三单点激光测振仪,其中每个单点激光测振仪分别跟动平台的三边垂直,三个中心线相交于动平台的中心,动平台由初始位置A发生振动,运动到目标位置B,其过程分为先平动,再转动,最后经过平动到目标位置,所述三台单点激光测振仪分别测得动平台发生振动前后,打在动平台上的激光点沿各个单点激光测振仪方向的距离a1,a2和a3,则根据几何关系可得:
其中:联立上述方程求得:
△x,△y分别是动平台在水平方向及竖直方向的平动位移,α是动平台的转动角度,β表示动平台初始位置与目标位置中心点的连线与X轴的夹角。
计算机得到单点激光测振仪反馈的动平台振动位移信号,所述三个单点激光测振仪反馈的动平台振动位移信号,当目标位置的中心点与实际到达位置的中心点偏离最小时动平台停止运动。
图1中的虚线连接表示电信号与检测驱动控制装置的连接图,其中三个并联支链的连线一样,图1中只表示出一条支链的连线关系。
在本实施例中刚性主动杆的尺寸参数:214mm×25mm×10mm;从动柔性杆杆5的尺寸参数为:214mm×25mm×3mm;所有材料均为铝合金,构件表面进行氧化处理,能够绝缘。
固定静平台11由正方形钢板、钢架结构以及大理石组成,伺服电机和减速器与正方形钢板固定安装,整个静平台稳定性强,隔振效果良好。
每条支链有一个主动关节和两个被动关节,均为转动关节;转动轴和轴承连接材料为45号钢。
伺服电机选用三相交流伺服电机属于安川电机有限公司,型号为:SGMAV-08ADA61,额定功率750W,工作电压为200V,增量式编码器精度是20位。
与三相交流伺服电机配套使用的伺服驱动器13型号为:SGDV-5R5A01A,最大适用容量为1000W,工作电压200V。
减速器采用的是广东新宝电器股份有限公司生产的减速器,型号为:VRB-090-5-K3-18DC18,减速比为1:5。
加速度传感器均采用Kistler公司的电容式传感器,单自由度加速度传感器型号为8310B25,测量频率范围0-300Hz,灵敏度为80mV/g,量程±25g;三自由度加速度传感器型号为8393B10,灵敏度为200mV/g,量程为±10g。
压电陶瓷传感器6的几何尺寸为10mm×5mm×1mm,压电陶瓷材料的弹性模量为Ep=63Gpa,d=-166pm/V,位于柔性杆中心位置,姿态角为0°。
压电陶瓷驱动器8为压电陶瓷片,几何尺寸为50mm×25mm×3mm,压电陶瓷材料的弹性模量为Ep=63Gpa,d=-166pm/V;
电荷放大器15选用江苏联能电子有限公司的YE5850型电荷放大器;
压电放大电路17可选用型号为APEX-PA241DW或APEX-PA240CX的压电放大器等零件组成,其研制单位为华南理工大学,在申请人申请的名称为“太空帆板弯曲和扭转模态振动模拟主动控制装置与方法”,申请号为200810027186.4的专利中有详细介绍。放大倍数可达到52倍,即将-5V~+5V放大到-260~+260V。
单点激光测振仪20采用的是舜宇光学科技有限公司的单点激光测振仪,型号为LV-S01(法向),工作距离0.35~50m,位移分辨率(@500Hz)为0.32nm,最大线性误差是1%。单点激光测振仪控制箱21与单点激光测振仪相匹配。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种刚柔杆型平面并联平台的振动测量控制装置,其特征在于,包括并联平台本体单元、检测单元及振动控制单元;
所述并联平台本体单元,包括一个动平台、一个静平台及三个并联分支,所述动平台为三角形,所述三个并联分支安装在动平台的三个角上,三个并联分支的结构相同,每个并联分支包括一个主动刚性杆和一个从动柔性杆,所述主动刚性杆的一端与从动柔性杆的一端连接,从动柔性杆的另一端与动平台连接;
所述检测单元,包括单自由度加速度传感器、压电陶瓷传感器、单点激光测振仪及三自由度加速度传感器;
所述主动刚性杆及从动柔性杆分别安装单自由度加速度传感器,所述压电陶瓷传感器安装在从动柔性杆上,所述三自由度加速度传感器具体为两个,安装在动平台上,所述单点激光测振仪具体为三个,均匀设置在静平台的周围;
所述三自由度加速度传感器及从动柔性杆安装的单自由度加速度传感器检测的信号通过A/D转换电路后输入到计算机;
所述主动刚性杆上安装的单自由度加速度传感器检测主动刚性杆的加速度信号,通过A/D转换电路后输入到计算机;
所述压电陶瓷传感器检测振动信号经过电荷放大器放大,然后通过A/D转换电路后输入到计算机;
所述单点激光测振仪检测动平台的振动位移信号,通过激光测振仪控制箱输入到计算机;
所述控制单元包括压电陶瓷驱动器、伺服电机及减速器,所述伺服电机与减速器连接,分别固定在静平台上,所述减速器的主动轴与刚性主动杆的另一端铰接,所述压电陶瓷驱动器安装在从动柔性杆上,所述计算机接收从动柔性杆上的单轴加速度传感器的加速度信号、三自由度加速度传感器及单点激光测振仪检测的振动位移信号后得到控制信号,通过D/A转换电路转换后输出到压电放大电路上,进一步作用到压电陶瓷驱动器;
所述计算机接收主动刚性杆上的单轴加速度传感器的检测信号后得到控制信号,通过运动控制卡PMAC传输到伺服电机驱动器,伺服电机将控制信号作用到主动刚性杆上,抑制主动刚性杆的振动。
2.根据权利要求1所述的装置,其特征在于,所述单自由度加速度传感器具体为六个,其中三个单自由度加速度传感器分别安装在三个主动刚性杆上,具体在距离主动刚性杆转动轴心150mm的中心位置;
另外三个单自由度加速度传感器分别安装在三个从动柔性杆上,具体在距离从动柔性杆转动轴心130mm的中心位置;
所述压电陶瓷传感器具体为三个,分别粘贴在三个从动柔性杆上,位于从动柔性杆的中心位置,姿态角为0°。
3.根据权利要求1所述的装置,其特征在于,一只三自由度加速度传感器水平安装在动平台的中心,另一只三自由度加速度传感器安装在动平台Y轴正方向距离动平台中心45mm处,且倾斜角为其中在0°和90°之间。
4.根据权利要求1所述的装置,其特征在于,所述压电陶瓷驱动器由多个压电陶瓷片构成,对称设置在每个从动柔性杆的两端,正反两面粘贴,姿态角为0°。
5.根据权利要求1所述的装置,其特征在于,所述三个单点激光测振仪分别跟动平台的三个侧面垂直,且当动平台在初始位置时,与相垂直的侧面距离是相等的,其三条中心线相交于动平台的中心点。
6.根据权利要求1所述的装置,其特征在于,所述主动刚性杆的一端具体通过转轴与从动柔性杆连接,所述从动柔性杆具体通过转轴与动平台连接。
7.应用权利要求1-6任一项所述装置的测量控制方法,其特征在于,包括如下步骤:
步骤一运动控制卡PMAC发送控制信号给伺服驱动器,交流伺服电机接收伺服驱动器输出的驱动信号,带动减速器转动,使刚性主动杆及柔性从动杆带动平台由初始位置运动到目标位置;
步骤二动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,经过A/D转换电路后输入到计算机;
主动刚性杆和从动柔性杆上的单自由度加速度传感器分别测得主动刚性杆和从动柔性杆的加速度信息,经过A/D转换电路后输入到计算机;
从动柔性杆上的压电陶瓷传感器测得振动信息,经过电荷放大器放大,经过A/D转换电路后输入到计算机;
三个单点激光测振仪测量动平台的振动位移信息,经过激光测振仪控制箱输入到计算机中;
步骤三计算机接收三自由度加速度传感器的振动信号、单点激光测振仪的振动位移信号及从动柔性杆上的单自由度加速度传感器测得的杆的加速度信号,得到控制信号,输出到D/A转换电路转换后输出到压电放大电路上,压电陶瓷驱动器作用到从动柔性杆上,抑制柔性杆的振动,从而抑制动平台振动;
计算机接收主动刚性杆上的单自由度加速度传感器测得的杆的加速度信号经过处理得到控制信号通过PMAC运动控制卡传输到伺服驱动器,伺服电机将控制量以转动力矩的方式作用到主动刚性杆上,抑制主动刚性杆的振动,最终达到控制动平台振动的目的。
8.根据权利要求7所述的方法,其特征在于,所述动平台上的两个三自由度加速度传感器实时测得动平台的平动加速度和转动加速度信息,具体为:
安装在动平台中心位置的三自由度加速度传感器测得动平台x方向加速度ax1和y方向加速度ay1
另外一只三自由度加速度传感器测得动平台x方向加速度ax2和y方向加速度ay2
则动平台中心点处x方向的加速度ax=ax1,动平台y方向的加速度ay=ay1,动平台中心点处的旋转角加速度为
其中d代表两个三自由度加速度传感器的中心距离。
9.根据权利要求7所述的方法,其特征在于,所述三个单点激光测振仪测量动平台的振动位移信息,具体为:
所述三个单点激光测振仪具体为第一、第二及第三单点激光测振仪,所述三台单点激光测振仪分别测得动平台发生振动前后,打在动平台上的激光点沿各个单点激光测振仪方向的距离a1,a2和a3,则根据几何关系可得:
a 1 - Δ x · t a n α - 3 6 ( 1 cos α - 1 ) = Δ y ;
其中:联立上述方程求得:
Δ x = a 2 + a 3 + 3 ( 2 a 1 + a 2 - a 3 ) · t a n α 3 ( 1 + tan 2 α ) ;
Δ y = 2 a 1 + a 2 - a 3 - t a n α [ a 2 + a 3 + 3 ( 2 a 1 + a 2 - a 3 ) · t a n α ] 3 ( 1 + tan 2 α ) ;
α = a r c c o s 3 a 6 ( a 3 - a 1 - a 2 ) + 3 a ,
△x,△y分别是动平台在水平方向及竖直方向的平动位移,α是动平台的转动角度,β表示动平台初始位置与目标位置中心点的连线与X轴的夹角。
10.根据权利要求7所述的方法,其特征在于,计算机得到单点激光测振仪反馈的动平台振动位移信号,所述三个单点激光测振仪反馈的动平台振动位移信号,当目标位置的中心点与实际到达位置的中心点偏离最小时动平台停止运动。
CN201710271392.9A 2017-04-24 2017-04-24 一种刚柔杆型平面并联平台的振动测量控制装置及方法 Pending CN106933267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710271392.9A CN106933267A (zh) 2017-04-24 2017-04-24 一种刚柔杆型平面并联平台的振动测量控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710271392.9A CN106933267A (zh) 2017-04-24 2017-04-24 一种刚柔杆型平面并联平台的振动测量控制装置及方法

Publications (1)

Publication Number Publication Date
CN106933267A true CN106933267A (zh) 2017-07-07

Family

ID=59437985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710271392.9A Pending CN106933267A (zh) 2017-04-24 2017-04-24 一种刚柔杆型平面并联平台的振动测量控制装置及方法

Country Status (1)

Country Link
CN (1) CN106933267A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106547A (zh) * 2018-01-17 2018-06-01 华南理工大学 基于激光传感器的平面三自由度宏微复合定位系统及方法
CN108132437A (zh) * 2017-11-30 2018-06-08 上海电气集团股份有限公司 一种交流伺服驱动器末端抖动抑制功能测试平台
CN110439958A (zh) * 2019-08-29 2019-11-12 华南理工大学 一种平面二自由度微扰动柔性主动隔振装置与方法
CN112388636A (zh) * 2020-11-06 2021-02-23 广州大学 DDPG多目标遗传自优化三轴delta机器平台与方法
CN113295359A (zh) * 2021-07-28 2021-08-24 中国空气动力研究与发展中心设备设计与测试技术研究所 一种抑制引射器支撑板振动模拟试验装置及振动抑制方法
CN114603329A (zh) * 2022-03-15 2022-06-10 上海智能制造功能平台有限公司 一种用于智能装配的3prs-3rrr双平台设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317218A (zh) * 2014-10-11 2015-01-28 华南理工大学 一种微纳操作环境下的精密宏动并联定位系统及方法
CN104760039A (zh) * 2015-03-16 2015-07-08 华南理工大学 基于激光位移传感器的并联平台振动检测控制装置与方法
CN105252539A (zh) * 2015-10-19 2016-01-20 华南理工大学 一种基于加速度传感器抑制并联平台振动控制系统及方法
CN106041895A (zh) * 2016-07-25 2016-10-26 华南理工大学 一种三自由度平面柔性并联平台装置及控制方法
CN206696718U (zh) * 2017-04-24 2017-12-01 华南理工大学 一种刚柔杆型平面并联平台的振动测量控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317218A (zh) * 2014-10-11 2015-01-28 华南理工大学 一种微纳操作环境下的精密宏动并联定位系统及方法
CN104760039A (zh) * 2015-03-16 2015-07-08 华南理工大学 基于激光位移传感器的并联平台振动检测控制装置与方法
CN105252539A (zh) * 2015-10-19 2016-01-20 华南理工大学 一种基于加速度传感器抑制并联平台振动控制系统及方法
CN106041895A (zh) * 2016-07-25 2016-10-26 华南理工大学 一种三自由度平面柔性并联平台装置及控制方法
CN206696718U (zh) * 2017-04-24 2017-12-01 华南理工大学 一种刚柔杆型平面并联平台的振动测量控制装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132437A (zh) * 2017-11-30 2018-06-08 上海电气集团股份有限公司 一种交流伺服驱动器末端抖动抑制功能测试平台
CN108106547A (zh) * 2018-01-17 2018-06-01 华南理工大学 基于激光传感器的平面三自由度宏微复合定位系统及方法
CN108106547B (zh) * 2018-01-17 2023-09-19 华南理工大学 基于激光传感器的平面三自由度宏微复合定位系统及方法
CN110439958A (zh) * 2019-08-29 2019-11-12 华南理工大学 一种平面二自由度微扰动柔性主动隔振装置与方法
CN110439958B (zh) * 2019-08-29 2023-09-26 华南理工大学 一种平面二自由度微扰动柔性主动隔振装置与方法
CN112388636A (zh) * 2020-11-06 2021-02-23 广州大学 DDPG多目标遗传自优化三轴delta机器平台与方法
CN112388636B (zh) * 2020-11-06 2022-04-12 广州大学 DDPG多目标遗传自优化三轴delta机器平台与方法
CN113295359A (zh) * 2021-07-28 2021-08-24 中国空气动力研究与发展中心设备设计与测试技术研究所 一种抑制引射器支撑板振动模拟试验装置及振动抑制方法
CN113295359B (zh) * 2021-07-28 2022-02-22 中国空气动力研究与发展中心设备设计与测试技术研究所 一种抑制引射器支撑板振动模拟试验装置及振动抑制方法
CN114603329A (zh) * 2022-03-15 2022-06-10 上海智能制造功能平台有限公司 一种用于智能装配的3prs-3rrr双平台设备

Similar Documents

Publication Publication Date Title
CN106933267A (zh) 一种刚柔杆型平面并联平台的振动测量控制装置及方法
CN104760039B (zh) 基于激光位移传感器的并联平台振动检测控制装置与方法
CN105252539B (zh) 一种基于加速度传感器抑制并联平台振动控制系统及方法
CN106426089B (zh) 柔性三自由度并联机构振动检测控制装置及控制方法
CN102317737B (zh) 坐标测量机(cmm)和补偿坐标测量机中的误差的方法
CN106933266B (zh) 一种基于同步带驱动的多柔性梁振动控制装置与方法
CN102226713B (zh) 三维空间测振装置及方法
CN107389287A (zh) 基于激光位移传感器的柔性臂振动测量及控制装置与方法
CN108827571B (zh) 两自由度柔性臂振动检测控制装置及方法
CN102162768B (zh) 一种静压气浮导轨的性能检测装置及其使用方法
CN103148983A (zh) 柔性触觉传感器的三维力加载及标定装置
CN104567698A (zh) 基于非接触式传感器的两端固支压电梁振动检测控制装置
CN106041895A (zh) 一种三自由度平面柔性并联平台装置及控制方法
CN206105840U (zh) 柔性三自由度并联机构振动检测控制装置
CN112082719B (zh) 一种扭簧连接的多柔性梁耦合振动检测装置及控制方法
CN204373607U (zh) 基于非接触式传感器的两端固支压电梁振动检测控制装置
CN206696718U (zh) 一种刚柔杆型平面并联平台的振动测量控制装置
CN108801440A (zh) 柔性板弯曲振动检测控制装置及方法
CN205889156U (zh) 一种三自由度平面柔性并联平台装置
CN207037493U (zh) 一种基于同步带驱动的多柔性梁振动控制装置
CN207036382U (zh) 基于立体视觉的柔性机械臂振动测量控制装置
CN206216711U (zh) 有杆气缸驱动的平面三自由度并联平台控制装置
CN106625586B (zh) 一种基于直线运动单元驱动的并联机构装置及控制方法
CN207036383U (zh) 基于激光位移传感器的柔性臂振动测量及控制装置
CN206416155U (zh) 一种基于直线运动单元驱动的并联机构装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707