CN106932661B - Measuring device with AM modulation function - Google Patents

Measuring device with AM modulation function Download PDF

Info

Publication number
CN106932661B
CN106932661B CN201511002918.0A CN201511002918A CN106932661B CN 106932661 B CN106932661 B CN 106932661B CN 201511002918 A CN201511002918 A CN 201511002918A CN 106932661 B CN106932661 B CN 106932661B
Authority
CN
China
Prior art keywords
module
modulation
modulation signal
unit
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511002918.0A
Other languages
Chinese (zh)
Other versions
CN106932661A (en
Inventor
何东林
罗浚洲
王悦
王铁军
李维森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puyuan Jingdian Technology Co ltd
Original Assignee
Puyuan Jingdian Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puyuan Jingdian Technology Co ltd filed Critical Puyuan Jingdian Technology Co ltd
Priority to CN201511002918.0A priority Critical patent/CN106932661B/en
Publication of CN106932661A publication Critical patent/CN106932661A/en
Application granted granted Critical
Publication of CN106932661B publication Critical patent/CN106932661B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

本发明提供一种具有AM调制功能的测量装置,包括:校准模块的输入端为数字芯片的输入端;当进行外调制时,通过调制切换开关将校准模块的输出端与调制系数模块的输入端连接;当进行内调制时,通过调制切换开关将频率合成器的输出端与调制系数模块的输入端连接;基带偏置模块的输入端与调制系数模块的输出端连接,基带偏置模块的第一输出端与合路模块的输入端连接,基带偏置模块的第二输出端与非线性补偿模块的输入端连接;非线性补偿模块的输出端与外部AM衰减器连接。本发明在数字AM方案基础上,分析了AM需求(内调制、外调制和调制深度等),结合衰减器实际性能和校准需求,提出了AM在数字芯片内的实现参考方案。

Figure 201511002918

The invention provides a measuring device with AM modulation function, comprising: the input end of the calibration module is the input end of a digital chip; when external modulation is performed, the output end of the calibration module and the input end of the modulation coefficient module are connected by a modulation switch. When performing internal modulation, the output end of the frequency synthesizer is connected to the input end of the modulation coefficient module through the modulation switch; the input end of the baseband bias module is connected to the output end of the modulation coefficient module, and the first end of the baseband bias module is connected to the output end of the modulation coefficient module. An output end is connected with the input end of the combining module, the second output end of the baseband biasing module is connected with the input end of the nonlinear compensation module; the output end of the nonlinear compensation module is connected with the external AM attenuator. Based on the digital AM scheme, the present invention analyzes AM requirements (internal modulation, external modulation and modulation depth, etc.), and proposes a reference scheme for AM implementation in a digital chip combined with the actual performance and calibration requirements of the attenuator.

Figure 201511002918

Description

一种具有AM调制功能的测量装置A measuring device with AM modulation function

技术领域technical field

本发明涉及信号测试、测量技术领域,特别涉及一种具有AM调制功能的测量装置。The invention relates to the technical field of signal testing and measurement, in particular to a measurement device with AM modulation function.

背景技术Background technique

AM(Aplitude Modulation,调幅)是无线通讯的一种重要手段,任意波形发生器和射频信号源等设备都能产生AM信号,用于通讯系统研究或测试。部分使用模拟合成方式的任意波形发生器和大多数射频信号源均会采用控制模拟衰减器的方式实现 AM。相对于射频信号源而言,任意波形发生器产生的信号频率一般较低,大多用于通讯方案、技术的预研或设计。射频信号源产生的调制信号频率与实际使用范围相当,可用于实用性通讯设备和器件的研究或测试。射频信号源主要作用为产生一定频率范围和幅度范围的射频信号,作为待测器件的激励或参考,协助电子器件的测试测量。幅度准确度和稳定度是射频信号源的重要技术指标之一,其主要依靠ALC(Automatic Level Control,自动电平控制电路)保证。AM打开时,也需要信号源的载波信号(基础射频信号)幅度基本不变和保持原有的稳定度。AM (Aplitude Modulation, Amplitude Modulation) is an important means of wireless communication. Devices such as arbitrary waveform generators and radio frequency signal sources can generate AM signals for use in communication system research or testing. Some arbitrary waveform generators that use analog synthesis and most RF sources implement AM by controlling analog attenuators. Compared with the RF signal source, the frequency of the signal generated by the arbitrary waveform generator is generally lower, and it is mostly used for the pre-research or design of the communication scheme and technology. The frequency of the modulated signal generated by the RF signal source is comparable to the actual range of use, and can be used for research or testing of practical communication equipment and devices. The main function of the radio frequency signal source is to generate radio frequency signals in a certain frequency range and amplitude range, as the excitation or reference of the device under test, and assist in the test and measurement of electronic devices. Amplitude accuracy and stability is one of the important technical indicators of the RF signal source, which is mainly guaranteed by ALC (Automatic Level Control, automatic level control circuit). When AM is turned on, the amplitude of the carrier signal (basic radio frequency signal) of the signal source is also required to remain basically unchanged and to maintain the original stability.

专利CN201310721663.8介绍了一种射频信号源,其原理框图如图1所示,射频信号源主要包含频率合成器101、自动电平控制电路102及步进衰减器103。频率合成器101主要作用为产生用户设定频率的射频信号,自动电平控制电路102对射频信号的幅度准确度和稳定度进行控制,步进衰减器103使用比较大的衰减量步进对输出信号的幅度进行进一步调节,扩展射频信号源能够输出的幅度范围。Patent CN201310721663.8 introduces a radio frequency signal source, and its principle block diagram is shown in FIG. 1 . The radio frequency signal source mainly includes a frequency synthesizer 101 , an automatic level control circuit 102 and a step attenuator 103 . The main function of the frequency synthesizer 101 is to generate a radio frequency signal with a frequency set by the user, the automatic level control circuit 102 controls the amplitude accuracy and stability of the radio frequency signal, and the step attenuator 103 uses a relatively large attenuation step to output The amplitude of the signal is further adjusted to expand the amplitude range that the RF signal source can output.

射频信号源中,AM在自动电平控制电路102部分实现,作为其扩展功能。专利CN201310721663.8介绍了一种常见的模拟ALC方案及其AM实现,如图2所示。In the radio frequency signal source, AM is implemented in the automatic level control circuit 102 as its extended function. Patent CN201310721663.8 introduces a common analog ALC scheme and its AM implementation, as shown in Figure 2.

ALC部分由可调射频衰减器201、匹配电阻202、射频放大器203、定向耦合器 204、指数放大器205、加法器206、比较积分器(由电容207和放大器208组成)、加法器209、对数放大器210、对数放大器211及检波器212组成。2A为输入射频信号,2F为输出射频信号,2G为设定的参考信号。如果输出射频信号2F的幅度与设定的参考信号2G代表的幅度不相等,比较积分器(由电容207和放大器208组成) 的输出会发生变化,经过指数放大器205放大后作为可调射频衰减器201的衰减量,直至输出信号幅度达到设定的值。AM调制信号(基带信号,2H)经过对数放大器 211后分别进入比较积分器前后的加法器209和加法器206中,控制ALC实现AM。The ALC part consists of an adjustable RF attenuator 201, a matching resistor 202, a RF amplifier 203, a directional coupler 204, an exponential amplifier 205, an adder 206, a comparison integrator (composed of a capacitor 207 and an amplifier 208), an adder 209, a logarithm The amplifier 210 , the logarithmic amplifier 211 and the detector 212 are composed. 2A is the input RF signal, 2F is the output RF signal, and 2G is the set reference signal. If the amplitude of the output RF signal 2F is not equal to the amplitude represented by the set reference signal 2G, the output of the comparison integrator (composed of the capacitor 207 and the amplifier 208 ) will change, and it will be amplified by the exponential amplifier 205 as an adjustable RF attenuator. 201 attenuation until the output signal amplitude reaches the set value. The AM modulated signal (baseband signal, 2H) passes through the logarithmic amplifier 211 and then enters the adder 209 and the adder 206 before and after the comparison integrator, respectively, to control the ALC to realize AM.

在模拟ALC方案中,AM依附于ALC,对可调射频衰减器要求较高。In the analog ALC scheme, the AM is attached to the ALC and has higher requirements on the tunable RF attenuator.

针对模拟ALC方案存在的问题,专利CN201310721663.8提出了一种数字ALC 结构和对应的AM实现方案,如图3所示。Aiming at the problems existing in the analog ALC scheme, patent CN201310721663.8 proposes a digital ALC structure and a corresponding AM implementation scheme, as shown in FIG. 3 .

数字芯片806中的功率分配器802、检波器803、数字处理模块804、可调射频衰减器801构成相对独立的数字ALC环路,数字芯片806输出数据经过数据处理单元807后直接驱动分离的可调射频衰减器805实现AM。The power divider 802, the detector 803, the digital processing module 804, and the adjustable radio frequency attenuator 801 in the digital chip 806 form a relatively independent digital ALC loop. A modulated RF attenuator 805 implements AM.

在数字ALC方案中,AM不依附于ALC,对可调射频衰减器要求不高。但是仅在硬件上描述了AM的组成和连接,AM在数字芯片内的实现尚无明确的方案可供参考。In the digital ALC scheme, AM is not attached to ALC, and the requirements for adjustable RF attenuators are not high. However, the composition and connection of AM are only described in hardware, and there is no clear scheme for the realization of AM in digital chips.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种具有AM调制功能的测量装置,提供了AM在数字芯片内的实现参考方案。测量装置包括用于实现AM调制功能的数字芯片;The embodiment of the present invention provides a measurement device with an AM modulation function, and provides a reference solution for implementing AM in a digital chip. The measuring device includes a digital chip for realizing the AM modulation function;

所述数字芯片中包括校准模块、频率合成器、调制切换开关、调制系数模块、基带偏置模块、合路模块和非线性补偿模块;The digital chip includes a calibration module, a frequency synthesizer, a modulation switch, a modulation coefficient module, a baseband bias module, a combining module and a nonlinear compensation module;

所述校准模块的输入端为数字芯片的输入端;The input end of the calibration module is the input end of the digital chip;

当进行外调制时,通过调制切换开关将所述校准模块的输出端与所述调制系数模块的输入端连接;当进行内调制时,通过调制切换开关将所述频率合成器的输出端与所述调制系数模块的输入端连接;When performing external modulation, the output terminal of the calibration module is connected to the input terminal of the modulation coefficient module through a modulation switch; when performing internal modulation, the output terminal of the frequency synthesizer is connected to the input terminal of the frequency synthesizer through a modulation switch. the input terminal of the modulation coefficient module is connected;

所述基带偏置模块的输入端与所述调制系数模块的输出端连接,所述基带偏置模块的第一输出端与所述合路模块的输入端连接,所述基带偏置模块的第二输出端与所述非线性补偿模块的输入端连接;The input end of the baseband biasing module is connected to the output end of the modulation coefficient module, the first output end of the baseband biasing module is connected to the input end of the combining module, and the first output end of the baseband biasing module is connected to the input end of the combining module. The two output terminals are connected to the input terminal of the nonlinear compensation module;

所述非线性补偿模块的输出端与外部AM衰减器连接;The output end of the nonlinear compensation module is connected with an external AM attenuator;

所述校准模块用于对用户输入的信号进行校准,获得外调制信号;The calibration module is used for calibrating the signal input by the user to obtain the external modulation signal;

所述频率合成器用于产生内调制信号;the frequency synthesizer is used to generate the internal modulation signal;

所述调制系数模块用于改变外调制信号或内调制信号的调制深度;The modulation coefficient module is used to change the modulation depth of the outer modulation signal or the inner modulation signal;

所述基带偏置模块用于改变外调制信号或内调制信号的偏移;The baseband offset module is used to change the offset of the external modulation signal or the internal modulation signal;

所述合路模块用于将外调制信号或内调制信号与ALC参考电压进行合路;The combining module is used to combine the external modulation signal or the internal modulation signal with the ALC reference voltage;

所述非线性补偿模块用于对外调制信号或内调制信号进行非线性补偿。The nonlinear compensation module is used to perform nonlinear compensation on the external modulation signal or the internal modulation signal.

在一个实施例中,所述校准模块包括采样系数单元和采样偏置单元;In one embodiment, the calibration module includes a sampling coefficient unit and a sampling offset unit;

所述采样系数单元的输入端为所述校准模块的输入端,所述采样系数单元的输出端与所述采样偏置单元的输入端连接,所述采样偏置单元的输出端与所述调制切换开关连接;The input end of the sampling coefficient unit is the input end of the calibration module, the output end of the sampling coefficient unit is connected with the input end of the sampling offset unit, and the output end of the sampling offset unit is connected with the modulation Toggle switch connection;

或,所述采样偏置单元的输入端为所述校准模块的输入端,所述采样偏置单元的输出端与所述采样系数单元的输入端连接,所述采样系数单元的输出端与所述调制切换开关连接。Or, the input terminal of the sampling offset unit is the input terminal of the calibration module, the output terminal of the sampling offset unit is connected to the input terminal of the sampling coefficient unit, and the output terminal of the sampling coefficient unit is connected to the input terminal of the sampling coefficient unit. The modulation switch is connected.

在一个实施例中,所述数字芯片中还包括第一加法器;In one embodiment, the digital chip further includes a first adder;

通过调制切换开关同时将所述校准模块的输出端和所述频率合成器的输出端与第一加法器连接;The output end of the calibration module and the output end of the frequency synthesizer are simultaneously connected to the first adder through a modulation switch;

通过所述第一加法器将内调制信号乘以内调制系数的结果和外调制信号乘以外调制系数的结果进行相加,获得混合调制信号。A mixed modulation signal is obtained by adding the result of multiplying the inner modulation signal by the inner modulation factor and the result of multiplying the outer modulation signal by the outer modulation factor by the first adder.

在一个实施例中,所述数字芯片中还包括延迟模块;In one embodiment, the digital chip further includes a delay module;

所述延迟模块的输入端与基带偏置模块的输出端连接,所述延迟模块的第一输出端与所述合路模块的输入端连接,所述延迟模块的第二输出端与所述非线性补偿模块的输入端连接;The input terminal of the delay module is connected to the output terminal of the baseband bias module, the first output terminal of the delay module is connected to the input terminal of the combining module, and the second output terminal of the delay module is connected to the non-existing terminal. The input terminal of the linear compensation module is connected;

所述延迟模块用于调节内调制信号或外调制信号或混合调制信号的相位。The delay module is used to adjust the phase of the inner modulation signal or the outer modulation signal or the mixed modulation signal.

在一个实施例中,所述数字芯片中包括归一化模块;In one embodiment, the digital chip includes a normalization module;

所述归一化模块的输入端与所述延迟模块的第一输出端连接,所述归一化模块的输出端与所述合路模块的输入端连接;The input end of the normalization module is connected to the first output end of the delay module, and the output end of the normalization module is connected to the input end of the combining module;

所述归一化模块用于将内调制信号或外调制信号或混合调制信号与ALC参考电压进行归一化。The normalization module is used for normalizing the inner modulation signal or the outer modulation signal or the mixed modulation signal and the ALC reference voltage.

在一个实施例中,所述归一化模块为对数放大器,所述合路模块为加法器。In one embodiment, the normalization module is a logarithmic amplifier, and the combining module is an adder.

在一个实施例中,所述归一化模块为除法器,所述合路模块为乘法器。In one embodiment, the normalization module is a divider, and the combining module is a multiplier.

在一个实施例中,所述非线性补偿模块包括主波表单元、频率补偿表单元、第一乘法器、第二加法器、温度补偿单元和第三加法器;In one embodiment, the nonlinear compensation module includes a main wave table unit, a frequency compensation table unit, a first multiplier, a second adder, a temperature compensation unit, and a third adder;

所述主波表单元的输入端与所述延迟模块的输出端连接,所述频率补偿表单元的输入端与所述延迟模块的输出端连接;The input end of the main wave table unit is connected with the output end of the delay module, and the input end of the frequency compensation table unit is connected with the output end of the delay module;

所述主波表模块用于根据内调制信号或外调制信号或混合调制信号在主波表中进行查找,得到第一查表结果;The main wavetable module is used for searching in the main wavetable according to the internal modulation signal, the external modulation signal or the mixed modulation signal, to obtain the first table lookup result;

所述频率补偿表单元用于根据内调制信号或外调制信号或混合调制信号在频率补偿表中查找,得到第二查表结果;The frequency compensation table unit is used for searching in the frequency compensation table according to the internal modulation signal, the external modulation signal or the mixed modulation signal, to obtain the second table lookup result;

所述第一乘法器用于将第二查表结果与频率系数相乘,得到相乘结果;The first multiplier is used to multiply the second look-up table result by the frequency coefficient to obtain the multiplication result;

所述第二加法器用于将相乘结果与第一查表 结果相加,得到控制电压;The second adder is used to add the multiplication result and the first look-up table result to obtain the control voltage;

所述温度补偿单元用于对控制电压进行温度补偿,得到温度补偿电压;The temperature compensation unit is used to perform temperature compensation on the control voltage to obtain a temperature compensation voltage;

所述第三加法器用于将温度补偿电压与控制电压相加,得到最终控制电压。The third adder is used for adding the temperature compensation voltage and the control voltage to obtain the final control voltage.

在一个实施例中,所述温度补偿单元包括第二级放大器、温度补偿表单元和第二乘法器;In one embodiment, the temperature compensation unit includes a second stage amplifier, a temperature compensation table unit and a second multiplier;

所述第二级放大器用于将控制电压进行线性放大;The second-stage amplifier is used for linearly amplifying the control voltage;

所述温度补偿表单元用于根据线性放大后的控制电压在温度补偿表中查找,得到温度补偿结果;The temperature compensation table unit is used for searching in the temperature compensation table according to the linearly amplified control voltage to obtain the temperature compensation result;

所述第二乘法器用于将温度补偿结果与补偿系数相乘,得到温度补偿电压。The second multiplier is used to multiply the temperature compensation result by the compensation coefficient to obtain the temperature compensation voltage.

在一个实施例中,所述非线性补偿模块还包括第一级放大器;In one embodiment, the nonlinear compensation module further includes a first-stage amplifier;

所述第一级放大器的输入端为所述非线性补偿模块的输入端,所述一级放大器的输出端与所述主波表单元的输入端连接,用于将内调制信号或外调制信号或混合调制信号进行线性放大。The input end of the first-stage amplifier is the input end of the nonlinear compensation module, and the output end of the first-stage amplifier is connected to the input end of the main wavetable unit, and is used to convert the internal modulation signal or the external modulation signal. Or mixed modulation signal for linear amplification.

在本发明实施例中,在数字AM方案基础上,分析了AM需求(内调制、外调制和调制深度等),结合衰减器实际性能和校准需求,提出了AM在数字芯片内的实现参考方案。In the embodiment of the present invention, based on the digital AM scheme, the AM requirements (internal modulation, external modulation and modulation depth, etc.) are analyzed, and combined with the actual performance and calibration requirements of the attenuator, a reference scheme for the realization of AM in the digital chip is proposed .

附图说明Description of drawings

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:The accompanying drawings described herein are used to provide a further understanding of the present invention, and constitute a part of the present application, and do not constitute a limitation to the present invention. In the attached image:

图1是本发明实施例提供的一种射频信号源基本结构示意图;1 is a schematic diagram of a basic structure of a radio frequency signal source provided by an embodiment of the present invention;

图2是本发明实施例提供的一种模拟ALC电路框图;2 is a block diagram of an analog ALC circuit provided by an embodiment of the present invention;

图3是本发明实施例提供的一种数字AM电路框图;3 is a block diagram of a digital AM circuit provided by an embodiment of the present invention;

图4是本发明实施例提供的一种具有AM调制功能的测量装置结构图;4 is a structural diagram of a measurement device with AM modulation function provided by an embodiment of the present invention;

图5是本发明实施例提供的一种非线性补偿模块结构框图;5 is a structural block diagram of a nonlinear compensation module provided by an embodiment of the present invention;

图6是本发明实施例提供的另一种具有AM调制功能的测量装置结构图。FIG. 6 is a structural diagram of another measurement device with an AM modulation function provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments and accompanying drawings. Here, the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, but not to limit the present invention.

在现有的数字ALC方案中,仅在硬件上描述了AM的组成和连接,AM在数字芯片内的实现尚无明确的方案可供参考。本发明在专利CN201310721663.8提出的数字AM方案基础上,结合AM的实际需求和校准,对数字芯片内的结构进行了详细设计,形成了一种可用于实际的数字AM方案。In the existing digital ALC scheme, only the composition and connection of AM are described in hardware, and there is no clear scheme for the realization of AM in digital chip for reference. Based on the digital AM scheme proposed by the patent CN201310721663.8, the present invention designs the structure in the digital chip in detail in combination with the actual requirements and calibration of AM, and forms a practical digital AM scheme.

图4是本发明实施例提供的一种具有AM调制功能的测量装置结构图,如图4 所示,测量装置包括用于实现AM调制功能的数字芯片;FIG. 4 is a structural diagram of a measurement device with an AM modulation function provided by an embodiment of the present invention. As shown in FIG. 4 , the measurement device includes a digital chip for realizing the AM modulation function;

所述数字芯片中包括校准模块、频率合成器403、调制切换开关、调制系数模块406、基带偏置模块407、合路模块和非线性补偿模块411;The digital chip includes a calibration module, a frequency synthesizer 403, a modulation switch, a modulation coefficient module 406, a baseband bias module 407, a combining module and a nonlinear compensation module 411;

所述校准模块的输入端为数字芯片的输入端;The input end of the calibration module is the input end of the digital chip;

当进行外调制时,通过调制切换开关将所述校准模块的输出端与所述调制系数模块406的输入端连接;当进行内调制时,通过调制切换开关将所述频率合成器403 的输出端与所述调制系数模块406的输入端连接;When performing external modulation, the output terminal of the calibration module is connected to the input terminal of the modulation coefficient module 406 through a modulation switch; when performing internal modulation, the output terminal of the frequency synthesizer 403 is connected by a modulation switch. connected with the input end of the modulation coefficient module 406;

所述基带偏置模块407的输入端与所述调制系数模块406的输出端连接,所述基带偏置模块407的第一输出端与所述合路模块的输入端连接,所述基带偏置模块407 的第二输出端与所述非线性补偿模块411的输入端连接;The input end of the baseband bias module 407 is connected to the output end of the modulation coefficient module 406, the first output end of the baseband bias module 407 is connected to the input end of the combining module, the baseband bias The second output terminal of the module 407 is connected to the input terminal of the nonlinear compensation module 411;

所述非线性补偿模块411的输出端与外部AM衰减器连接;The output end of the nonlinear compensation module 411 is connected to an external AM attenuator;

所述校准模块用于对用户输入的信号进行校准,获得外调制信号;The calibration module is used for calibrating the signal input by the user to obtain the external modulation signal;

所述频率合成器403用于产生内调制信号;The frequency synthesizer 403 is used to generate an internal modulation signal;

所述调制系数模块406用于改变外调制信号或内调制信号的调制深度;The modulation coefficient module 406 is used to change the modulation depth of the outer modulation signal or the inner modulation signal;

所述基带偏置模块407用于改变外调制信号或内调制信号的偏移;The baseband offset module 407 is used to change the offset of the external modulation signal or the internal modulation signal;

所述合路模块用于将外调制信号或内调制信号与ALC参考电压进行合路;The combining module is used to combine the external modulation signal or the internal modulation signal with the ALC reference voltage;

所述非线性补偿模块411用于对外调制信号或内调制信号进行非线性补偿。The nonlinear compensation module 411 is used to perform nonlinear compensation on the external modulation signal or the internal modulation signal.

具体实施时,所述校准模块的作用是对采样电路的非理想特性校准,即用户输入设备手册指定的信号(如1Vpp正弦信号)时,校准后的信号与内部产生的调制信号相同。具体的,校准模块可以包括采样偏置单元401(减法器)和采样系数单元402 (乘法器);In specific implementation, the function of the calibration module is to calibrate the non-ideal characteristics of the sampling circuit, that is, when the user inputs the signal specified in the device manual (eg 1Vpp sinusoidal signal), the calibrated signal is the same as the internally generated modulation signal. Specifically, the calibration module may include a sampling offset unit 401 (subtractor) and a sampling coefficient unit 402 (multiplier);

所述采样系数单元402的输入端为所述校准模块的输入端,所述采样系数单元402的输出端与所述采样偏置单元401 的输入端连接,所述采样偏置单元的输出端与所述调制切换开关连接;The input terminal of the sampling coefficient unit 402 is the input terminal of the calibration module, the output terminal of the sampling coefficient unit 402 is connected to the input terminal of the sampling offset unit 401, and the output terminal of the sampling offset unit is connected to the input terminal of the sampling offset unit 401. the modulation switch is connected;

或,所述采样偏置单元401的输入端为所述校准模块的输入端,所述采样偏置单元401的输出端与所述采样系数单元402的输入端连接,所述采样系数单元402的输出端与所述调制切换开关连接;Or, the input terminal of the sampling offset unit 401 is the input terminal of the calibration module, the output terminal of the sampling offset unit 401 is connected to the input terminal of the sampling coefficient unit 402, and the sampling coefficient unit 402 has an output terminal. The output end is connected with the modulation switch;

所述采样偏置单元401和所述采样系数单元402的作用为对从用户输入开始至数字化采样完毕之间的链路误差(主要包含系统设计误差和器件批量一致性误差)进行校准,使得校准后的信号幅度与用户输入的标准信号幅度一致。校准在设备出厂前完成,一般仅执行一次。用户使用时,此模块的系数固定。The functions of the sampling offset unit 401 and the sampling coefficient unit 402 are to calibrate the link error (mainly including system design error and device batch consistency error) between the start of user input and the completion of digital sampling, so that the calibration is performed. The resulting signal amplitude is consistent with the standard signal amplitude input by the user. Calibration is completed before the device leaves the factory and is generally only performed once. When used by users, the coefficients of this module are fixed.

采样偏置单元401和所述采样系数单元402的具体结构可根据具体电路调整,还可以取消采样偏置单元401等。The specific structures of the sampling offset unit 401 and the sampling coefficient unit 402 can be adjusted according to specific circuits, and the sampling offset unit 401 and the like can also be eliminated.

具体实施时,AM需要实现调制频率和调制深度可调功能,需要实现内调制和外调制,部分设备可能还会有“内+外”的调制模式。此时,可将调制切换开关换成权重计算切换模块和第一加法器。During specific implementation, AM needs to realize the function of adjustable modulation frequency and modulation depth, and needs to realize internal modulation and external modulation. Some devices may also have an "internal + external" modulation mode. At this time, the modulation switch can be replaced with a weight calculation switch module and a first adder.

在进行内调制时,内调制使用数字芯片内部产生的信号作为调制信号(基带信号),此调制信号可以由DDS(Direct Digital Synthesizer,直接数字式频率合成器) 403直接产生,权重计算切换模块同时设置权重-内(内调制系数)405为“1”,权重 -外(外调制系数)406为“0”。When performing internal modulation, the internal modulation uses the signal generated inside the digital chip as the modulation signal (baseband signal). This modulation signal can be directly generated by DDS (Direct Digital Synthesizer) 403, and the weight calculation switching module simultaneously Set Weight-Inner (Inner Modulation Coefficient) 405 to "1" and Weight-Outer (Outer Modulation Coefficient) 406 to "0".

当进行外调制时,使用用户提供的调制信号4A,那么计算切换模块设置权重- 内(内调制系数)405为“0”,权重-外(外调制系数)406为“1”。When performing external modulation, using the modulation signal 4A provided by the user, the calculation switching module sets the weight-inner (inner modulation coefficient) 405 to "0", and the weight-outer (outer modulation coefficient) 406 to "1".

当进行混合调制(“内+外”模式)时,权重计算切换模块同时设置权重-内(内调制系数)405和权重-外(外调制系数)406均为“0.5”。“内+外”模式将设备内部产生的调制信号和用户提供的调制信号各自乘以0.5以后再通过第一加法器相加,作为最终的调制信号(混合调制信号或者说是最终的基带信号)。When performing mixed modulation (“inner+outer” mode), the weight calculation switching module simultaneously sets both weight-inner (inner modulation coefficient) 405 and weight-outer (outer modulation coefficient) 406 to “0.5”. In "inside+outside" mode, the modulated signal generated inside the device and the modulated signal provided by the user are multiplied by 0.5 and then added together by the first adder as the final modulated signal (mixed modulated signal or final baseband signal) .

上述所说的内调制信号和外调制信号的形式均为y=sin(w0*t),其中w0为调制频率。在进行混合调制时,内部源和外部均需产生y=sin(w0*t)的调制系数,同时设置权重-内和权重-外均为“0.5”。The above-mentioned inner modulation signal and outer modulation signal are both in the form of y=sin(w0*t), where w0 is the modulation frequency. When performing mixed modulation, both the internal source and the external need to generate a modulation coefficient of y=sin(w0*t), and at the same time, set the weight-inner and weight-outer to be "0.5".

具体实施时,内调制时,让内部产生的基带信号进行后续运算;外调制时,让外部输入并校准后的调制信号进入后续运算;混合调制时,让内调制信号乘以0.5加上外调制信号乘以0.5后进入后续运算。In specific implementation, when internal modulation is performed, the internally generated baseband signal is used for subsequent operations; when external modulation is performed, the externally input and calibrated modulation signal is used for subsequent operations; when mixed modulation is performed, the internal modulation signal is multiplied by 0.5 plus external modulation. After the signal is multiplied by 0.5, it enters the subsequent operation.

后续运算包括对调制信号的深度和偏移进行调节。其中,调制系数模块406用于改变外调制信号、内调制信号和混合调制信号的调制深度,调制深度0~100%可调节。基带偏置模块407用于改变外调制信号、内调制信号和混合调制信号的偏移,便于后续逻辑设计。在基带偏置后的信号可以使用y=1+ma*sin(w0*t)表示,其中w0为调制频率,ma为调制深度。Subsequent operations include adjusting the depth and offset of the modulated signal. The modulation coefficient module 406 is used to change the modulation depth of the external modulation signal, the internal modulation signal and the mixed modulation signal, and the modulation depth can be adjusted from 0 to 100%. The baseband offset module 407 is used to change the offset of the external modulation signal, the internal modulation signal and the mixed modulation signal, which is convenient for subsequent logic design. The baseband biased signal can be represented by y=1+ma*sin(w0*t), where w0 is the modulation frequency and ma is the modulation depth.

具体实施时,所述数字芯片还可以包括延迟模块(408、410)用于调节AM与 ALC配合时的相位误差,即内调制信号或外调制信号或混合调制信号的相位。根据实际情况可能有1个或者2个,或者没有。During specific implementation, the digital chip may further include delay modules (408, 410) for adjusting the phase error when AM and ALC cooperate, that is, the phase of the internal modulation signal or the external modulation signal or the mixed modulation signal. According to the actual situation, there may be 1 or 2, or none.

当有一个时,延迟模块的输入端与基带偏置模块407的输出端连接,延迟模块的第一输出端与合路模块的输入端连接,延迟模块的第二输出端与非线性补偿模块411 的输入端连接。When there is one, the input terminal of the delay module is connected to the output terminal of the baseband biasing module 407 , the first output terminal of the delay module is connected to the input terminal of the combining module, and the second output terminal of the delay module is connected to the nonlinear compensation module 411 input connection.

当有两个时,延迟模块408的输入端与基带偏置模块407的第一输出端连接,延迟模块408的输出端与合路模块的输入端连接;延迟模块410的输入端与基带偏置模块407的第二输出端连接,延迟模块410的输出端与非线性补偿模块411的输入端连接。When there are two, the input of the delay module 408 is connected to the first output of the baseband bias module 407, the output of the delay module 408 is connected to the input of the combining module; the input of the delay module 410 is connected to the baseband bias The second output terminal of the module 407 is connected, and the output terminal of the delay module 410 is connected to the input terminal of the nonlinear compensation module 411 .

具体实施时,对AM在ALC环内的调制,基带信号(内调制信号或外调制信号或混合调制信号)进入ALC之前需要根据ALC的模式进行转换。因此,所述数字芯片中还包括归一化模块,归一化模块的输入端与所述延迟模块的第一输出端连接,所述归一化模块的输出端与所述合路模块的输入端连接。During specific implementation, for AM modulation in the ALC loop, the baseband signal (internal modulation signal or external modulation signal or mixed modulation signal) needs to be converted according to the ALC mode before entering the ALC. Therefore, the digital chip further includes a normalization module, the input terminal of the normalization module is connected to the first output terminal of the delay module, and the output terminal of the normalization module is connected to the input terminal of the combining module. end connection.

如果ALC参考为对数模式(参考电压以dB形式的单位表示),归一化模块为对数放大器,将内调制信号或外调制信号或混合调制信号进行对数放大后,再与ALC 参考电压4C进行相加,即合路模块为加法器,相加的结果作为ALC环路的最终参考电压。如果ALC参考为线性模式(参考电压以伏特——V形式的单位表示),归一化模块需要除以基带偏置模块的数值,再与ALC参考相乘,即合路模块为乘法器,相乘的结果作为ALC环路的最终参考电压。线性ALC中,如果调制信号已经是以“1”为中心,归一化模块可以取消。If the ALC reference is in logarithmic mode (the reference voltage is expressed in units of dB), the normalization module is a logarithmic amplifier. 4C is added, that is, the combining module is an adder, and the added result is used as the final reference voltage of the ALC loop. If the ALC reference is in linear mode (the reference voltage is expressed in units of volts-V), the normalization block needs to be divided by the value of the baseband bias block, and then multiplied by the ALC reference, that is, the combiner block is a multiplier, and the phase The result of the multiplication serves as the final reference voltage for the ALC loop. In linear ALC, if the modulating signal is already centered on "1", the normalization block can be canceled.

由于一般的数字芯片对整数的设计和处理比小数略简单,可考虑将调制信号乘以一个较大的倍率,再在最后归一化或直接转换为最终输出。Since the design and processing of integers in general digital chips is slightly simpler than that of decimals, it can be considered to multiply the modulated signal by a larger ratio, and then normalize or directly convert it into the final output at the end.

具体实施时,在模拟方案中,衰减器的非线性补偿根据dB形式的输出信号进行。而AM失真的度量是以伏特(V)为基础进行的。当调制深度接近100%时,调制深度1%的改变在AM正峰值会对应dB形式很小的变化,而在负峰值处则会对应很大的变化。dB形式的非线性补偿对AM而言实用性不高,AM在正峰值处容易失真。在数字AM方案中,可针对AM特性设计针对AM应用的补偿方案,即非线性补偿模块411。In the specific implementation, in the analog scheme, the nonlinear compensation of the attenuator is performed according to the output signal in the form of dB. The measurement of AM distortion is based on volts (V). As the modulation depth approaches 100%, a 1% change in modulation depth corresponds to a small change in dB at positive AM peaks and a large change at negative peaks. Nonlinear compensation in dB is not very practical for AM, which tends to distort at positive peaks. In the digital AM scheme, a compensation scheme for AM applications, ie, the nonlinear compensation module 411 , can be designed for AM characteristics.

图5是本发明实施例提供的一种非线性补偿模块结构框图,如图5所示,非线性补偿模块411包括主波表单元502、频率补偿表单元503、第一乘法器、第二加法器、温度补偿单元和第三加法器;FIG. 5 is a structural block diagram of a nonlinear compensation module provided by an embodiment of the present invention. As shown in FIG. 5 , the nonlinear compensation module 411 includes a main wave table unit 502, a frequency compensation table unit 503, a first multiplier, and a second adder. a temperature compensation unit and a third adder;

所述主波表单元502的输入端与所述延迟模块的输出端连接,所述频率补偿表单元503的输入端与所述延迟模块的输出端连接;The input end of the main wave table unit 502 is connected with the output end of the delay module, and the input end of the frequency compensation table unit 503 is connected with the output end of the delay module;

所述主波表单元502用于根据内调制信号或外调制信号或混合调制信号在主波表中进行查找,得到第一查表结果;The main wavetable unit 502 is configured to search in the main wavetable according to the internal modulation signal, the external modulation signal or the mixed modulation signal, and obtain the first table lookup result;

所述频率补偿表单元503用于根据内调制信号或外调制信号或混合调制信号在频率补偿表中查找,得到第二查表结果;The frequency compensation table unit 503 is configured to search in the frequency compensation table according to the internal modulation signal, the external modulation signal or the mixed modulation signal, and obtain the second table lookup result;

所述第一乘法器用于将第二查表结果与频率系数相乘,得到相乘结果;The first multiplier is used to multiply the second look-up table result by the frequency coefficient to obtain the multiplication result;

所述第二加法器用于将相乘结果与第一查表 结果相加,得到控制电压;The second adder is used to add the multiplication result and the first look-up table result to obtain the control voltage;

所述温度补偿单元用于对控制电压进行温度补偿,得到温度补偿电压;The temperature compensation unit is used to perform temperature compensation on the control voltage to obtain a temperature compensation voltage;

所述第三加法器用于将温度补偿电压与控制电压相加,得到最终控制电压。The third adder is used for adding the temperature compensation voltage and the control voltage to obtain the final control voltage.

具体实施时,非线性补偿模块411还可以包括第一级放大器501,第一级放大器的输入端为所述非线性补偿模块的输入端,所述一级放大器的输出端与所述主波表单元的输入端连接,其作用为将输入的幅度信号5A转换为波表输入(查表地址),为线性放大器。如果输入的幅度信号已经能够直接查表,那么第一级放大器501也可以没有。During specific implementation, the nonlinear compensation module 411 may further include a first-stage amplifier 501 , the input end of the first-stage amplifier is the input end of the nonlinear compensation module, and the output end of the first-stage amplifier is connected to the main wavetable The input end of the unit is connected, and its function is to convert the input amplitude signal 5A into a wavetable input (look-up table address), which is a linear amplifier. If the input amplitude signal can directly look up the table, then the first stage amplifier 501 may not be.

非线性补偿模块的工作原理为:The working principle of the nonlinear compensation module is as follows:

输入电压5A经过第一级线性放大器501后分别进入主波表和频率补偿表,查表得到对应的输出。频率补偿表查表结果与频率系数相乘,再与主波表查表结果相加,得到未经过温度补偿的衰减器控制电压5C。未经补偿的控制电压5C会进入温度补偿模块得到相应的温度补偿值,在与未经补偿的电压5C相加得到最终的控制电压5B。The input voltage 5A enters the main wave table and the frequency compensation table respectively after passing through the first-stage linear amplifier 501, and the corresponding output is obtained by looking up the table. The frequency compensation table look-up table result is multiplied by the frequency coefficient, and then added with the main wave table look-up table result to obtain the attenuator control voltage 5C without temperature compensation. The uncompensated control voltage 5C will enter the temperature compensation module to obtain the corresponding temperature compensation value, which is added to the uncompensated voltage 5C to obtain the final control voltage 5B.

具体实施时,温度补偿单元由第二级放大器505、温度补偿波表单元506和第二乘法器组成。第二级放大器505作用为将待补偿的控制电压5C转换为温度补偿波表的输入(查表地址),查表后将得到一个初始的补偿电压,此电压会通过乘法器与温度系数507相乘,才会得到最终的温度补偿电压。In specific implementation, the temperature compensation unit is composed of a second stage amplifier 505, a temperature compensation wavetable unit 506 and a second multiplier. The function of the second stage amplifier 505 is to convert the control voltage 5C to be compensated into the input of the temperature-compensated wavetable (look-up table address). After looking up the table, an initial compensation voltage will be obtained. Multiply to get the final temperature compensation voltage.

具体实施时,AM衰减器非线性补偿模块用于将以伏特(V)形式单位表示输入信号转换为衰减器的实际控制电压,需要对衰减器的频率误差和温度误差进行补偿。其输入5A可以使用y=A*(1+sinw0t)表示,输出5B的是衰减器在相应的频率和温度下的控制电压。衰减器误差按照伏特(V)的形式衡量,以一个固定电压值为基准,当需求的电压值与基准值差异较大时误差较大。此非线性补偿模块依靠主波表对一个频率下的非线性进行良好的补偿,再用频率补偿模块对特定温度下不同频率的控制电压进行补偿,频率补偿完毕后的结果才进入温度补偿模块,进行温度补偿。没有将温度补偿模块与频率补偿模块并行设置,原因是频率补偿时增加的那一部分电压也有温度误差,也需要进行温度补偿。In specific implementation, the AM attenuator nonlinear compensation module is used to convert the input signal expressed in volts (V) into the actual control voltage of the attenuator, which needs to compensate the frequency error and temperature error of the attenuator. The input 5A can be represented by y=A*(1+sinw0t), and the output 5B is the control voltage of the attenuator at the corresponding frequency and temperature. The attenuator error is measured in volts (V), based on a fixed voltage value, and the error is larger when the required voltage value is significantly different from the reference value. The nonlinear compensation module relies on the main wavetable to compensate the nonlinearity at one frequency well, and then uses the frequency compensation module to compensate the control voltage of different frequencies at a specific temperature. After the frequency compensation is completed, the result enters the temperature compensation module. Perform temperature compensation. The temperature compensation module and the frequency compensation module are not set in parallel, because the part of the voltage added during frequency compensation also has temperature error, and temperature compensation is also required.

频率补偿的基本设定为不同频率下衰减量-控制电压曲线均匀发生变化。即,如果衰减器在频率freq1下衰减量-控制电压曲线可以使用函数y=f1(x)表示,(y为衰减量,x为控制电压)在频率freq2下的曲线可以使用y=f2(x)表示,那么函数在其它频率下的曲线可以使用函数y=*f1(x)+kf*(f2(x)-f1(x))表示,kf为待定的频率补偿系数,随频率发生变化。在进行频率补偿时,需要首先对衰减器在两个频率(freq1、freq2) 下扫描衰减量-控制电压关系,以一个频率(基准频率,freq1)下的曲线为主波表(502) 内容,另一个频率(参考频率,freq2)下的曲线与前一个频率下的曲线误差(相同衰减量下的控制电压差)为频率补偿波表(503)内容。不同频率下的频率系数(504) 通过校准得到。The basic setting of frequency compensation is that the attenuation-control voltage curve changes uniformly at different frequencies. That is, if the attenuation amount-control voltage curve of the attenuator at the frequency freq1 can be represented by the function y=f1(x), (y is the attenuation amount, x is the control voltage), the curve at the frequency freq2 can be expressed as y=f2(x ), then the curve of the function at other frequencies can be represented by the function y=*f1(x)+kf*(f2(x)-f1(x)), where kf is an undetermined frequency compensation coefficient, which changes with frequency. When performing frequency compensation, it is necessary to first scan the attenuation-control voltage relationship for the attenuator at two frequencies (freq1, freq2), and take the curve at one frequency (reference frequency, freq1) as the main wavetable (502) content, The error between the curve at another frequency (reference frequency, freq2) and the curve at the previous frequency (control voltage difference at the same attenuation) is the content of the frequency compensation wavetable (503). The frequency coefficients (504) at different frequencies are obtained by calibration.

温度补偿的基本设定与频率补偿相似,即设定相同衰减量下控制电压随温度均匀发生变化,但控制电压随温度变化的速度与衰减量和频率相关。使用函数y=y0 +m(freq)*(T-T0)*g(y0)对衰减器的温度特性进行补偿,温度系数(507)包含m(freq) 与(T-T0)的乘积。其中,输入为未经补偿(基准温度,T0)的控制电压(y0),输出是当前温度(T)和频率(freq)下的控制电压;m(freq)为频率因子,随频率发生变化;g(y0)为衰减量补偿因子,与控制电压(衰减量)相关。温度补偿时,需要首先测量不同温度下衰减器的衰减量-控制电压曲线。然后计算主波表频率(基准频率, freq1)下衰减量-控制电压曲线温度误差,并归一化到1摄氏度,得到基础温度误差。接着,将基础温度误差的横坐标(衰减量)变换为基准温度(T0)下的控制电压。最后,将控制电压-基础温度误差曲线对横坐标(控制电压)线性化,得到温度误差波表。频率因子的计算可以对不同频率相同衰减量(或控制电压)对应的基础温度误差比例系数计算得到,也可以使用温度试验的方式测量得到。The basic setting of temperature compensation is similar to that of frequency compensation, that is, the control voltage changes uniformly with temperature under the same attenuation, but the speed at which the control voltage changes with temperature is related to the attenuation and frequency. The temperature characteristic of the attenuator is compensated using the function y=y0 +m(freq)*(T-T0)*g(y0), and the temperature coefficient (507) contains the product of m(freq) and (T-T0). Among them, the input is the control voltage (y0) without compensation (reference temperature, T0), and the output is the control voltage at the current temperature (T) and frequency (freq); m(freq) is the frequency factor, which changes with frequency; g(y0) is an attenuation compensation factor, which is related to the control voltage (attenuation). During temperature compensation, it is necessary to first measure the attenuation-control voltage curve of the attenuator at different temperatures. Then calculate the temperature error of the attenuation-control voltage curve at the frequency of the main wavetable (reference frequency, freq1), and normalize it to 1 degree Celsius to obtain the basic temperature error. Next, the abscissa (attenuation amount) of the base temperature error is converted into the control voltage at the reference temperature (T0). Finally, linearize the control voltage-basic temperature error curve to the abscissa (control voltage) to obtain a temperature error wavetable. The calculation of the frequency factor can be obtained by calculating the basic temperature error proportional coefficient corresponding to the same attenuation (or control voltage) at different frequencies, or by measuring it by means of a temperature test.

本发明还提出一种数字AM方案实施例,如图6所示,在非线性补偿模块610 后增加了测试寄存器611。The present invention also proposes an embodiment of a digital AM solution. As shown in FIG. 6 , a test register 611 is added after the nonlinear compensation module 610 .

工作原理为:The working principle is:

用户输入信号6A经过采样偏置单元601和采样系数单元602校准后,作为调制切换开关604的一路输入,内部源603产生的调制信号作为另一路输入。调制切换开关604实现内/外调制的切换,调制系数模块605实现调制深度变化,基带偏置模块 606实现调制信号的偏移。线性模式的ALC需要对延迟模块607后的基带信号除以基带偏置608后与ALC参考DAC相乘。对数模式的ALC需要对延迟模块607后的基带信号进行对数放大,再经过适当的线性倍率放大后与ALC参考DAC相加。基带偏置模块606调节后的基带信号(内调制信号或外调制信号或混合调制信号),需要经过延迟模块609和非线性补偿模块610后输出信号6B用于控制外部AM衰减器。After being calibrated by the sampling offset unit 601 and the sampling coefficient unit 602, the user input signal 6A is used as one input of the modulation switch 604, and the modulation signal generated by the internal source 603 is used as another input. The modulation switch 604 realizes the switching of internal/external modulation, the modulation coefficient module 605 realizes the modulation depth change, and the baseband bias module 606 realizes the offset of the modulation signal. The ALC in linear mode needs to divide the baseband signal after the delay block 607 by the baseband offset 608 and then multiply it with the ALC reference DAC. The ALC in logarithmic mode needs to logarithmically amplify the baseband signal after the delay module 607, and then add it to the ALC reference DAC after being amplified by an appropriate linear magnification. The baseband signal (internal modulation signal or external modulation signal or mixed modulation signal) adjusted by the baseband bias module 606 needs to pass through the delay module 609 and the nonlinear compensation module 610 to output signal 6B for controlling the external AM attenuator.

测试寄存器611的作用是:当启用测试模式时,直接使用测试寄存器611的值控制衰减器,帮助测试衰减器性能。The function of the test register 611 is: when the test mode is enabled, the value of the test register 611 is directly used to control the attenuator to help test the performance of the attenuator.

本发明得到的效果是:The effect that the present invention obtains is:

未对衰减器进行频率温度补偿时,如果AM载波频率发生变化,解调后的AM 正负峰值偏差可达10%以上。使用对数模式的频率、温度补偿方案后,对AM失真进行校准,不同载波频率下正负峰值误差可在3%以内。但峰值误差随温度变化剧烈,调制深度设定为90%,温度变化约5摄氏度,正峰值发生约7%左右的变化。使用本发明补偿方案,-5~55摄氏度,100%调试深度,正负峰值误差变化量小于约5%。When the frequency temperature compensation is not performed on the attenuator, if the AM carrier frequency changes, the AM positive and negative peak deviation after demodulation can reach more than 10%. After using the frequency and temperature compensation scheme in logarithmic mode, the AM distortion is calibrated, and the positive and negative peak errors under different carrier frequencies can be within 3%. However, the peak error changes drastically with temperature, the modulation depth is set to 90%, the temperature changes by about 5 degrees Celsius, and the positive peak value changes by about 7%. Using the compensation scheme of the present invention, -5 to 55 degrees Celsius, 100% debugging depth, and the variation of positive and negative peak errors is less than about 5%.

显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。Obviously, those skilled in the art should understand that each module or each step of the above-mentioned embodiments of the present invention may be implemented by a general-purpose computing device, and they may be centralized on a single computing device, or distributed in multiple computing devices. network, they can optionally be implemented with program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be different from the The illustrated or described steps are performed in order, either by fabricating them separately into individual integrated circuit modules, or by fabricating multiple modules or steps of them into a single integrated circuit module. As such, embodiments of the present invention are not limited to any particular combination of hardware and software.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, various modifications and changes may be made to the embodiments of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种具有AM调制功能的测量装置,其特征在于,测量装置包括用于实现AM调制功能的数字芯片;1. a measuring device with AM modulation function is characterized in that, the measuring device comprises a digital chip for realizing AM modulation function; 所述数字芯片中包括校准模块、频率合成器、调制切换开关、调制系数模块、基带偏置模块、合路模块和非线性补偿模块;The digital chip includes a calibration module, a frequency synthesizer, a modulation switch, a modulation coefficient module, a baseband bias module, a combining module and a nonlinear compensation module; 所述校准模块的输入端为数字芯片的输入端;The input end of the calibration module is the input end of the digital chip; 当进行外调制时,通过调制切换开关将所述校准模块的输出端与所述调制系数模块的输入端连接;当进行内调制时,通过调制切换开关将所述频率合成器的输出端与所述调制系数模块的输入端连接;When performing external modulation, the output terminal of the calibration module is connected to the input terminal of the modulation coefficient module through a modulation switch; when performing internal modulation, the output terminal of the frequency synthesizer is connected to the input terminal of the frequency synthesizer through a modulation switch. the input terminal of the modulation coefficient module is connected; 所述基带偏置模块的输入端与所述调制系数模块的输出端连接,所述基带偏置模块的第一输出端与所述合路模块的输入端连接,所述基带偏置模块的第二输出端与所述非线性补偿模块的输入端连接;The input end of the baseband biasing module is connected to the output end of the modulation coefficient module, the first output end of the baseband biasing module is connected to the input end of the combining module, and the first output end of the baseband biasing module is connected to the input end of the combining module. The two output terminals are connected to the input terminal of the nonlinear compensation module; 所述非线性补偿模块的输出端与外部AM衰减器连接;The output end of the nonlinear compensation module is connected with an external AM attenuator; 所述校准模块用于对用户输入的信号进行校准,获得外调制信号;The calibration module is used for calibrating the signal input by the user to obtain the external modulation signal; 所述频率合成器用于产生内调制信号;the frequency synthesizer is used to generate the internal modulation signal; 所述调制系数模块用于改变外调制信号或内调制信号的调制深度;The modulation coefficient module is used to change the modulation depth of the outer modulation signal or the inner modulation signal; 所述基带偏置模块用于改变外调制信号或内调制信号的偏移;The baseband offset module is used to change the offset of the external modulation signal or the internal modulation signal; 所述合路模块用于将外调制信号或内调制信号与ALC参考电压进行合路;The combining module is used to combine the external modulation signal or the internal modulation signal with the ALC reference voltage; 所述非线性补偿模块用于对外调制信号或内调制信号进行非线性补偿。The nonlinear compensation module is used to perform nonlinear compensation on the external modulation signal or the internal modulation signal. 2.如权利要求1所述的具有AM调制功能的测量装置,其特征在于,所述校准模块包括采样系数单元和采样偏置单元;2. The measuring device with AM modulation function as claimed in claim 1, wherein the calibration module comprises a sampling coefficient unit and a sampling offset unit; 所述采样系数单元的输入端为所述校准模块的输入端,所述采样系数单元的输出端与所述采样偏置单元的输入端连接,所述采样偏置单元的输出端与所述调制切换开关连接;The input end of the sampling coefficient unit is the input end of the calibration module, the output end of the sampling coefficient unit is connected with the input end of the sampling offset unit, and the output end of the sampling offset unit is connected with the modulation Toggle switch connection; 或,所述采样偏置单元的输入端为所述校准模块的输入端,所述采样偏置单元的输出端与所述采样系数单元的输入端连接,所述采样系数单元的输出端与所述调制切换开关连接。Or, the input terminal of the sampling offset unit is the input terminal of the calibration module, the output terminal of the sampling offset unit is connected to the input terminal of the sampling coefficient unit, and the output terminal of the sampling coefficient unit is connected to the input terminal of the sampling coefficient unit. The modulation switch is connected. 3.如权利要求1所述的具有AM调制功能的测量装置,其特征在于,所述数字芯片中还包括第一加法器;3. The measuring device with AM modulation function as claimed in claim 1, wherein the digital chip also comprises a first adder; 通过调制切换开关同时将所述校准模块的输出端和所述频率合成器的输出端与第一加法器连接;The output end of the calibration module and the output end of the frequency synthesizer are simultaneously connected to the first adder through a modulation switch; 通过所述第一加法器将内调制信号乘以内调制系数的结果和外调制信号乘以外调制系数的结果进行相加,获得混合调制信号。A mixed modulation signal is obtained by adding the result of multiplying the inner modulation signal by the inner modulation factor and the result of multiplying the outer modulation signal by the outer modulation factor by the first adder. 4.如权利要求3所述的具有AM调制功能的测量装置,其特征在于,所述数字芯片中还包括延迟模块;4. the measuring device with AM modulation function as claimed in claim 3, is characterized in that, also comprises delay module in described digital chip; 所述延迟模块的输入端与基带偏置模块的输出端连接,所述延迟模块的第一输出端与所述合路模块的输入端连接,所述延迟模块的第二输出端与所述非线性补偿模块的输入端连接;The input terminal of the delay module is connected to the output terminal of the baseband bias module, the first output terminal of the delay module is connected to the input terminal of the combining module, and the second output terminal of the delay module is connected to the non-existing terminal. The input terminal of the linear compensation module is connected; 所述延迟模块用于调节内调制信号或外调制信号或混合调制信号的相位。The delay module is used to adjust the phase of the inner modulation signal or the outer modulation signal or the mixed modulation signal. 5.如权利要求4所述的具有AM调制功能的测量装置,其特征在于,所述数字芯片中包括归一化模块;5. The measuring device with AM modulation function as claimed in claim 4, wherein the digital chip comprises a normalization module; 所述归一化模块的输入端与所述延迟模块的第一输出端连接,所述归一化模块的输出端与所述合路模块的输入端连接;The input end of the normalization module is connected to the first output end of the delay module, and the output end of the normalization module is connected to the input end of the combining module; 所述归一化模块用于将内调制信号或外调制信号或混合调制信号与ALC参考电压进行归一化。The normalization module is used for normalizing the inner modulation signal or the outer modulation signal or the mixed modulation signal and the ALC reference voltage. 6.如权利要求5所述的具有AM调制功能的测量装置,其特征在于,所述归一化模块为对数放大器,所述合路模块为加法器。6 . The measuring device with AM modulation function according to claim 5 , wherein the normalization module is a logarithmic amplifier, and the combining module is an adder. 7 . 7.如权利要求5所述的具有AM调制功能的测量装置,其特征在于,所述归一化模块为除法器,所述合路模块为乘法器。7 . The measuring device with AM modulation function according to claim 5 , wherein the normalization module is a divider, and the combining module is a multiplier. 8 . 8.如权利要求4所述的具有AM调制功能的测量装置,其特征在于,所述非线性补偿模块包括主波表单元、频率补偿表单元、第一乘法器、第二加法器、温度补偿单元和第三加法器;8. The measuring device with AM modulation function according to claim 4, wherein the nonlinear compensation module comprises a main wave table unit, a frequency compensation table unit, a first multiplier, a second adder, a temperature compensation unit and third adder; 所述主波表单元的输入端与所述延迟模块的输出端连接,所述频率补偿表单元的输入端与所述延迟模块的输出端连接;The input end of the main wave table unit is connected with the output end of the delay module, and the input end of the frequency compensation table unit is connected with the output end of the delay module; 所述主波表单元用于根据内调制信号或外调制信号或混合调制信号在主波表中进行查找,得到第一查表结果;The main wavetable unit is used for searching in the main wavetable according to the internal modulation signal, the external modulation signal or the mixed modulation signal, to obtain the first table lookup result; 所述频率补偿表单元用于根据内调制信号或外调制信号或混合调制信号在频率补偿表中查找,得到第二查表结果;The frequency compensation table unit is used for searching in the frequency compensation table according to the internal modulation signal, the external modulation signal or the mixed modulation signal, to obtain the second table lookup result; 所述第一乘法器用于将第二查表结果与频率系数相乘,得到相乘结果;The first multiplier is used to multiply the second look-up table result by the frequency coefficient to obtain the multiplication result; 所述第二加法器用于将相乘结果与第一查表 结果相加,得到控制电压;The second adder is used to add the multiplication result and the first look-up table result to obtain the control voltage; 所述温度补偿单元用于对控制电压进行温度补偿,得到温度补偿电压;The temperature compensation unit is used to perform temperature compensation on the control voltage to obtain a temperature compensation voltage; 所述第三加法器用于将温度补偿电压与控制电压相加,得到最终控制电压。The third adder is used for adding the temperature compensation voltage and the control voltage to obtain the final control voltage. 9.如权利要求8所述的具有AM调制功能的测量装置,其特征在于,所述温度补偿单元包括第二级放大器、温度补偿表单元和第二乘法器;9. The measuring device with AM modulation function as claimed in claim 8, wherein the temperature compensation unit comprises a second stage amplifier, a temperature compensation table unit and a second multiplier; 所述第二级放大器用于将控制电压进行线性放大;The second-stage amplifier is used for linearly amplifying the control voltage; 所述温度补偿表单元用于根据线性放大后的控制电压在温度补偿表中查找,得到温度补偿结果;The temperature compensation table unit is used for searching in the temperature compensation table according to the linearly amplified control voltage to obtain the temperature compensation result; 所述第二乘法器用于将温度补偿结果与补偿系数相乘,得到温度补偿电压。The second multiplier is used to multiply the temperature compensation result by the compensation coefficient to obtain the temperature compensation voltage. 10.如权利要求8所述的具有AM调制功能的测量装置,其特征在于,所述非线性补偿模块还包括第一级放大器;10. The measuring device with AM modulation function according to claim 8, wherein the nonlinear compensation module further comprises a first-stage amplifier; 所述第一级放大器的输入端为所述非线性补偿模块的输入端,所述一级放大器的输出端与所述主波表单元的输入端连接,用于将内调制信号或外调制信号或混合调制信号进行线性放大。The input end of the first-stage amplifier is the input end of the nonlinear compensation module, and the output end of the first-stage amplifier is connected to the input end of the main wavetable unit, and is used to convert the internal modulation signal or the external modulation signal. Or mixed modulation signal for linear amplification.
CN201511002918.0A 2015-12-29 2015-12-29 Measuring device with AM modulation function Active CN106932661B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511002918.0A CN106932661B (en) 2015-12-29 2015-12-29 Measuring device with AM modulation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511002918.0A CN106932661B (en) 2015-12-29 2015-12-29 Measuring device with AM modulation function

Publications (2)

Publication Number Publication Date
CN106932661A CN106932661A (en) 2017-07-07
CN106932661B true CN106932661B (en) 2020-10-27

Family

ID=59458369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511002918.0A Active CN106932661B (en) 2015-12-29 2015-12-29 Measuring device with AM modulation function

Country Status (1)

Country Link
CN (1) CN106932661B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531331B (en) * 2022-02-07 2024-07-19 北京奕斯伟计算技术股份有限公司 IQ signal calibration method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926770A (en) * 2004-03-01 2007-03-07 松下电器产业株式会社 Transmitter apparatus and wireless communication apparatus
CN103873408B (en) * 2012-12-10 2018-04-27 北京普源精电科技有限公司 A kind of radio-frequency signal source with modulation function
CN104730300B (en) * 2013-12-24 2019-01-29 苏州普源精电科技有限公司 A measuring device with ALC circuit
CN104734656B (en) * 2013-12-24 2018-09-25 苏州普源精电科技有限公司 A kind of radio-frequency signal source with amplitude modulation and automatic level control function

Also Published As

Publication number Publication date
CN106932661A (en) 2017-07-07

Similar Documents

Publication Publication Date Title
CN104734656B (en) A kind of radio-frequency signal source with amplitude modulation and automatic level control function
CN102904566B (en) Squaring circuit, integrated circuit, wireless communication unit and method therefor
US20080014873A1 (en) Methods and apparatus for adaptive local oscillator nulling
US7697909B2 (en) Extended range RMS-DC converter
CN107251416A (en) Frequency converter, measuring system and measuring method
CN104730310A (en) Measuring device with variable attenuation unit
CN106953600A (en) A kind of rearmounted mixing type numeral ALC control system devices based on DDS
CN110995368A (en) Circuit structure and method for quickly calibrating power for frequency spectrograph
Neshatvar et al. A non-linear feedback current driver with automatic phase compensation for bioimpedance applications
CN104730300A (en) Measuring device with ALC
CN114487685B (en) Signal analyzer with high-precision calibration function and high-precision calibration method thereof
CN106932661B (en) Measuring device with AM modulation function
CN115828824A (en) IMT equivalent model simulation file generation method of two-stage frequency converter
US20130113559A1 (en) Device and method for pre-distorting and amplifying a signal based on an error attribute
US3624525A (en) True rms converter
US8115543B2 (en) Mixed-signal transmission circuit for switching power amplifiers
US7453309B2 (en) Logarithmic temperature compensation for detectors
CN213846649U (en) Low-stray low-phase-noise power signal source
RU2731135C1 (en) Radio transmitter with digital correction of nonlinearity
CN112653459A (en) Radio frequency signal source capable of being calibrated in real time
US3219929A (en) Thermionic square law indicating device wherein cathode power dissipation is maintained constant to provide an indication of the magnitude of the unknown signal
JPH08265068A (en) Gain control circuit
Deb et al. Transistorized Electronic Analog Multiplier
CN220207791U (en) Radio frequency testing machine and radio frequency testing system
WO2015048645A1 (en) Microwave voltmeter using fully-linearized diode detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Kolding road high tech Zone of Suzhou City, Jiangsu Province, No. 8 215163

Applicant after: Puyuan Jingdian Technology Co.,Ltd.

Address before: Kolding road high tech Zone of Suzhou City, Jiangsu Province, No. 8 215163

Applicant before: RIGOL Technology Co.,Ltd.

Address after: Kolding road high tech Zone of Suzhou City, Jiangsu Province, No. 8 215163

Applicant after: RIGOL Technology Co.,Ltd.

Address before: Kolding road high tech Zone of Suzhou City, Jiangsu Province, No. 8 215163

Applicant before: SUZHOU RIGOL PRECISION ELECTRIC TECHNOLOGIES Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant