CN106927790A - 一种利用污泥制备无土栽培用陶粒和营养液的方法 - Google Patents

一种利用污泥制备无土栽培用陶粒和营养液的方法 Download PDF

Info

Publication number
CN106927790A
CN106927790A CN201710111537.9A CN201710111537A CN106927790A CN 106927790 A CN106927790 A CN 106927790A CN 201710111537 A CN201710111537 A CN 201710111537A CN 106927790 A CN106927790 A CN 106927790A
Authority
CN
China
Prior art keywords
liquid
solid
sludge
nutrient solution
haydite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710111537.9A
Other languages
English (en)
Other versions
CN106927790B (zh
Inventor
张东
李艳
许振钰
李安邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zaisentu Environmental Protection Technology Wuhan Co ltd
Original Assignee
Shenyang Ligong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Ligong University filed Critical Shenyang Ligong University
Priority to CN201710111537.9A priority Critical patent/CN106927790B/zh
Publication of CN106927790A publication Critical patent/CN106927790A/zh
Application granted granted Critical
Publication of CN106927790B publication Critical patent/CN106927790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)

Abstract

一种利用污泥制备无土栽培用陶粒和营养液的方法。其涉及城市污水处理厂剩余污泥的综合利用和无土栽培基料以及营养液的制备。步骤为:1、污泥中加入硅藻土和双氧水,冷冻,用含有纳米钛酸钙的混合酸溶液高速喷射将冷冻的污泥料粉碎融化,然后固液分离,得到固体A和液体A;2、将固体A用碱液浸泡,得到固体B和液体B;3、将液体A与液体B混合,并调pH值,沉淀分离,得到固体C和液体C;4、液体C经钛酸钙处理后得到固体D和营养液;5、将各步得到的固体混合成球、干燥煅烧,得到具有吸附重金属功能的多孔陶粒。本发明利用污泥时,无需添加粘合剂,无废物产生,无二次污染,制备的营养液和陶粒基料成本低,具有良好的经济效益和环境效益。

Description

一种利用污泥制备无土栽培用陶粒和营养液的方法
技术领域
本发明属于环境技术和农业领域,涉及一种利用污泥制备无土栽培用陶粒和营养液的方法。
背景技术
城市污水处理厂在生化法处理废水的同时,会产生大量的剩余污泥,这些污泥富含有机物,还含有寄生虫卵、病原微生物等致病生物和重金属,如不妥善处理,易造成二次污染。
污泥的处理一直是水处理行业的难题,目前,对于剩余污泥的处理方法主要有堆肥后土地利用、卫生填埋和焚烧等方法。这些方法都存在着环境安全隐患:堆肥法污泥中的有害物质不能彻底去除,这些有害物质进入环境生态系统,危害人类健康;填埋法需要大量的土地,同时也存在着安全隐患;焚烧法能耗高,易产生二噁英等有害废气。污泥中含有大量的有机物,这些有机物以生物残体为主,富含蛋白质和铜锌铁等金属元素,其中的很多成分都是宝贵的资源。因而,积极探讨污泥的综合利用方法,变废为宝,是污泥处置的最好出路。相玉琳采用射线和化学法提取了污泥中的蛋白质用于制备蛋白质发泡液(相玉琳,60CoC-ray/H2O2法与化学法对污泥蛋白发泡液性能的改善研究,天津大学,硕士论文,2011年);李亚东采用水解污泥制备泡沫混凝土(用污泥水解蛋白质生产泡沫混凝土的方法,发明专利, CN 100441545C);还有将污泥作为一种成分添加烧制建筑用砖,制水泥和制备活性炭等(李鸿江等,污泥资源化利用技术,冶金工业出版社,2010年)。这些方法因为各种限制因素的存在,尚无法大规模推广。
无土栽培是现代化植物种植的一种重要生产形式。利用无土栽培技术,既可以克服土壤条件和耕地资源的制约,又可以满足作物生长对于温度、光照、水、肥料、气等因素的需要。目前无土栽培领域所用的营养液一般采用化工原料直接配制,使得成本高,同时还会带进大量的有害成分,污泥中含有大量的有益微量元素和蛋白质,但是同时还含有有害重金属和激素等有害物质,不能直接利用。传统无土栽培基质中膨胀陶粒以其稳定性好、使用过程中无污染,清洁,便于清洗和重复利用等优点,而备受重视。
利用污泥制备无土栽培多孔陶粒是近些年研究最多的方法,蒋文兰(污泥轻质通孔陶粒,申请号:201610477752 .6)将污泥作为一种成分,添加高粘凹凸棒石粘土、生石灰、活性白土、粉状凹凸棒发泡剂空心微珠、轻质氧化镁、膨胀珍珠岩、膨胀蛭石和硫酸亚铁等组分煅烧成型制备多孔陶粒,用于无土栽培;梁新强等(一种用作盆栽土壤填充物的污泥陶粒的制备方法及其用途,申请号 201610261054 .2)将污泥烘干与黏土混合煅烧后再将表面覆盖生物炭粉末,制备盆栽土壤填充物,得到缓慢释放生物炭的污泥陶粒,等等。这些方法制备陶粒,都是采用添加粘土或高岭土制备,这需要消耗大量的粘土等矿物;同时,污泥中的有用元素和组分,如氮磷钾氨基酸等,在煅烧过程中均破坏掉,没有得到利用。另一方面,在无土栽培过程中,在施加营养液和水等环节,都会引入一些有害的重金属。这些重金属会在作物上富集,进入食物链,危害人们健康。而目前的无土栽培用多孔陶粒均无吸附重金属功能。
发明内容
一种利用污泥制备无土栽培用陶粒和营养液的方法,是将污泥中含有的大量有用组份,如氮、磷、钾、氨基酸、蛋白质以及铜锌铁等金属元素,转化和提取出来,作为无土栽培的营养液;剩余无机组份和部分有机质造粒,煅烧,制备具有吸附重金属功能的多孔陶粒,用于无土栽培填充料。
采用的技术方案
一种利用污泥制备无土栽培用陶粒和营养液的方法,包括如下步骤:
步骤1:取新鲜的剩余污泥,调整含水率80-90%,加入污泥质量的10-40%的硅藻土,按污泥质量和双氧水体积的比为1 kg:0.01-0.2L加入质量浓度为30%的双氧水溶液,搅拌混合均匀,于﹣20-﹣8℃冷冻12h,取出,得到冷冻固体污泥料,再按新鲜污泥质量和酸溶液体积比为1kg:1L取混合酸溶液,加入新鲜污泥质量的0.1%-5%的纳米钛酸钙粉体,搅拌混合,分散均匀,制成纳米钛酸钙-混合酸的悬浊料液,加热至60-90℃,用高压喷枪,将混合酸悬浊料液以50-100m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,固液分离,得到固体A和液体A;
步骤2:将步骤一得到的固体A与等质量的水混合,搅拌均匀,用氢氧化钾调pH值8-9,加热微沸5-10min,滴加氢氧化钾溶液,使浸泡液的pH值保持在8-9,冷却到室温,固液分离,得到固体B和液体B;
步骤3:将步骤2得到的液体B与步骤1得到的液体A混合,加入含钙和镁的化合物,搅拌均匀,反应完全,再加入氢氧化钾和氨水调整溶液的pH值6-8,室温下,静置12h,固液分离,得到固体C和液体C;
步骤4:将步骤3得到的液体C中,按1-10g/L的量加入纳米钛酸钙,紫外光辐照下,搅拌20-60min,固液分离,得到固体D和营养液;
步骤5:将步骤2得到的固体B和步骤3得到的固体C以及步骤4得到的固体D烘干,混合球磨0.5-8h,加水,制成小球,105℃烘干,于烧成温度为950-1250℃煅烧,即可得到多孔陶粒,可用作具备吸附重金属功能的无土栽培的基料。
步骤1中加入的混合酸溶液为硝酸、硫酸和磷酸的混合溶液,其含量为硝酸、硫酸和磷酸的浓度分别为1-2 mol/L、0.1-0.5 mol/L和1-1.5mol/L;
步骤3中的加入含钙和镁的化合物为碳酸钙、氧化钙、氢氧化钙、白云石、方解石和石灰石以及碳酸镁、氧化镁和氢氧化镁中的一种或几种,加入量为钙、镁摩尔数与污泥千克数比为1.5-2.5:0.8-1.5:5。
步骤3中调液体B和A混合液的pH值时,加入氢氧化钾时,氢氧化钾的摩尔数与液体A和B混合液的体积升数之比控制在0.8-1.2:1范围内。
步骤4中使用的紫外光波长为254nm,辐照强度不低于100 μW/cm2
步骤5中制成的小球,成球压力0-10MPa,球粒直径为2-30mm。
步骤5煅烧升温程序为:以3℃/min的升温速度升到300 ℃, 并在此温度下保温30min。再以5℃/min的速度继续升温到烧成温度, 并保温10-20 min。
优点
无害化综合利用污泥,解决了污泥污染问题,无需添加粘合剂,充分利用污泥各组分,制备具有吸附重金属功能的无土栽培用陶粒和营养液,废物利用,变废为宝,无二次污染,制备的营养液和陶粒基料成本低,具有良好的经济效益和环境效益。
附图说明
图1为一种利用污泥制备无土栽培用陶粒和营养液的方法的工艺流程图。
具体实施方式
本发明实施例中所用纳米钛酸钙粉体均为本实验室按文献(张东,侯平. 纳米钛酸钙粉体的制备及其对水中铅和镉的吸附行为[J]. 化学学报, 2009,(12): 1336-1342)方法合成。
实施例1
一种利用污泥制备无土栽培用陶粒和营养液的方法,取2Kg新鲜的含水率为81%的剩余污泥,依次加入400g的硅藻土和质量浓度为30%的双氧水0.1 L,搅拌均匀后,于﹣20℃下冷冻12h,得到冷冻固体污泥料;另取含硝酸、硫酸和磷酸分别为2 mol/L、0.2 mol/L和1 mol/L的混合酸溶液2L,加入20g纳米钛酸钙粉体,搅拌混合,分散均匀,得到钛酸钙-混合酸悬浊料液,加热至90℃,用高压喷枪,将混合酸悬浊料液以99m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,抽滤,得到固体A和液体A;将固体A与等质量的水混合,搅拌均匀,用氢氧化钾溶液调整浸泡液的pH值为9,加热微沸搅拌反应10min,检查浸泡液的pH值,及时用氢氧化钾溶液调整,使得浸泡液的pH值保持在9,抽滤,得到固体B和液体B;将液体B与液体A混合,得到1.98L的混合液,向混合液中加入60g氢氧化钙和16g氧化镁,搅拌均匀,反应完全,再加入90g氢氧化钾,并用氨水溶液调整溶液的pH值为7,室温下,静置12h,抽滤,得到固体C和液体C,将液体C加水稀释到2L,加入10g纳米钛酸钙粉体,置于波长为254nm的紫外灯下,以200mW/cm2的辐照强度下,搅拌反应60min,4000r/min 离心15min,得到固体D和营养液1;将固体B、固体C和固体D烘干,球磨混合8 h,加水,揉捏成直径约为8-10mm的小球,105℃烘干后,以3℃/min的升温速度升到300 ℃, 并在此温度下保温30 min。再以5℃/min的速度继续升温到1050℃, 并保温20 min,炉内冷却到室温得到多孔陶粒1。
实施例2
一种利用污泥制备无土栽培用陶粒和营养液的方法,取2Kg新鲜的含水率为90%的剩余污泥,依次加入800g的硅藻土和质量浓度为30%的双氧水0.4 L,搅拌均匀后,于﹣18℃下冷冻12h,得到冷冻固体污泥料;另取含硝酸、硫酸和磷酸分别为2 mol/L、0.5 mol/L和1 mol/L的混合酸溶液2L,加入100g纳米钛酸钙粉体,搅拌混合,分散均匀,得到钛酸钙-混合酸悬浊料液,加热至80℃,用高压喷枪,将混合酸悬浊料液以92m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,抽滤,得到固体A和液体A;将固体A与等质量的水混合,搅拌均匀,用氢氧化钾溶液调整浸泡液的pH值为8,加热微沸搅拌反应5min,检查浸泡液的pH值,及时用氢氧化钾溶液调整,使得浸泡液的pH值保持在9,抽滤,得到固体B液体B;将液体B与液体A混合,得到约1.8L的混合液,往混合液中加入45g氧化钙和25g氢氧化镁,搅拌均匀,反应完全,再加入110g氢氧化钾,并用氨水溶液调整溶液的pH值6,室温下,静置12h,抽滤,得到固体C和液体C,将液体C加水稀释到2L,加入10g纳米钛酸钙粉体,置于波长为254nm的紫外灯下,以200mW/cm2的辐照强度下,搅拌反应20min,4000r/min 离心15min,得到固体D和营养液2;将固体B、固体C和固体D烘干,球磨混合6 h,加水,揉捏成直径约为25-30mm的小球,105℃烘干后,以3℃/min的升温速度升到300 ℃, 并在此温度下保温30min。再以5℃/min的速度继续升温到1000℃, 并保温10 min,炉内冷却到室温得到多孔陶粒2。
实施例3
一种利用污泥制备无土栽培用陶粒和营养液的方法,取2Kg新鲜的含水率为80%的剩余污泥,依次加入200g的硅藻土和质量浓度为30%的双氧水0.2 L,搅拌均匀后,于﹣8℃下冷冻12h,得到冷冻固体污泥料;另取含硝酸、硫酸和磷酸分别为1.5 mol/L、0.3 mol/L和1 mol/L的混合酸溶液2L,加入50g纳米钛酸钙粉体,搅拌混合,分散均匀,得到钛酸钙-混合酸悬浊料液,加热至60℃,用高压喷枪,将混合酸悬浊料液以50m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,抽滤,得到固体A和液体A;将固体A与等质量的水混合,搅拌均匀,用氢氧化钾溶液调整浸泡液的pH值为8.6,加热微沸搅拌反应5 min,检查浸泡液的pH值,及时用氢氧化钾溶液调整,使得浸泡液的pH值保持在8.6,抽滤,得到固体B和液体B;将液体B与液体A混合,得到约2 L的混合液,向混合液中加入80g碳酸钙和35g碳酸镁,混合均匀,反应完全,再加入100g氢氧化钾,并用氨水溶液调整溶液的pH值8,室温下,静置12h,抽滤,得到固体C和液体C,于2L液体C中加入20g纳米钛酸钙粉体,置于波长为254nm的紫外灯下,以200mW/cm2的辐照强度下,搅拌反应30min,4000r/min 离心15min,得到固体D和营养液3;将固体B、固体C和固体D烘干,球磨混合6 h,加水,揉捏成直径为18-22mm的小球,105℃烘干后,以3℃/min的升温速度升到300 ℃, 并在此温度下保温30 min。再以5℃/min的速度继续升温到950℃, 并保温20 min,炉内冷却到室温得到多孔陶粒3。
实施例4
一种利用污泥制备无土栽培用陶粒和营养液的方法,取调整含水率为85% 的剩余污泥2Kg,依次加入200g的硅藻土和质量浓度为30%的双氧水0.02 L,搅拌均匀后,于﹣10℃下冷冻12h,得到冷冻固体污泥料;另取含硝酸、硫酸和磷酸分别为1 mol/L、0.5 mol/L和1 mol/L的混合酸溶液2L,加入2g纳米钛酸钙粉体,搅拌混合,分散均匀,得到钛酸钙-混合酸悬浊料液,加热至70℃,用高压喷枪,将混合酸悬浊料液以75.3m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,抽滤,得到固体A和液体A;将固体A与等质量的水混合,搅拌均匀,用氢氧化钾溶液调整浸泡液的pH值为9,加热微沸搅拌反应8min,检查浸泡液的pH值,及时用氢氧化钾溶液调整,使得浸泡液的pH值保持在9,抽滤,得到固体B和液体B;将液体B与液体A混合,得到约2 L的混合液,往混合液中加入80g石灰石粉和35g碳酸镁,搅拌均匀,反应完全,再加入100g氢氧化钾,并用氨水溶液调整溶液的pH值 8,室温下,静置12h,抽滤,得到固体C和液体C,向液体C中加入5g纳米钛酸钙粉体,置于波长为254nm的紫外灯下,以200mW/cm2的辐照强度下,搅拌反应40min,4000r/min 离心15min,得到固体D和营养液4;将固体B、固体C和固体D烘干,球磨混合6 h,加水,揉捏,加5MPa压力,制成直径为5-8mm的小球,105℃烘干后,以3℃/min的升温速度升到300 ℃, 并在此温度下保温30min。再以5℃/min的速度继续升温到1200℃, 并保温10 min,炉内冷却到室温得到陶粒4。
实施例5
一种利用污泥制备无土栽培用陶粒和营养液的方法,取2Kg新鲜的含水率为81%的剩余污泥,依次加入300g的硅藻土和质量浓度为30%的双氧水0.1 L,搅拌均匀后,于﹣15℃下冷冻12h,得到冷冻固体污泥料;另取含硝酸、硫酸和磷酸分别为2 mol/L、0.1 mol/L和1.5mol/L的混合酸溶液2L,加入10g纳米钛酸钙粉体,搅拌混合,分散均匀,得到钛酸钙-混合酸悬浊料液,加热至90℃,用高压喷枪,将混合酸悬浊料液以100m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,抽滤,得到固体A和液体A;将固体A与等质量的水混合,搅拌均匀,用氢氧化钾溶液调整浸泡液的pH值为8,加热微沸搅拌反应8min,检查浸泡液的pH值,及时用氢氧化钾溶液调整,使得浸泡液的pH值保持在8,抽滤,得到固体B和液体B;将液体B与液体A混合,得到约1.8L的混合液,往混合液中加入36 g方解石和66 g白云石,搅拌均匀,反应完全,再加入95g氢氧化钾,并用氨水溶液调整溶液的pH值7,室温下,静置12h,抽滤,得到固体C和液体C,将液体C加水稀释到2L,加入2g纳米钛酸钙粉体,置于波长为254nm的紫外灯下,以200mW/cm2的辐照强度下,搅拌反应50min,4000r/min 离心15min,得到固体D和营养液5;将固体B、固体C和固体D烘干后混合,球磨混合0.5 h,加水,揉捏,加10MPa压力,制成直径为2-5 mm的小球,105℃烘干后,以3℃/min的升温速度升到300℃, 并在此温度下保温30 min。再以5℃/min的速度继续升温到1250℃, 并保温10 min,炉内冷却到室温得到陶粒5。
实施例6
将实施例1-5所得的营养液按照标准DB33/699-2008“有机液体肥料和有机-无机复混液体肥料质量安全要求”的方法和要求测试,各项指标见表1和表2:
表1 营养液的营养指标(有机-无机复混液体肥)
样品 总养分(N+P2O5+ K2O)(g/L) N (g/L) P2O5 (g/L) K2O (g/L) 有机质(g/L) 水不溶物(g/L) 氯离子(g/L) 酸碱度(pH)
营养液1 182.01 73.12 69.98 38.91 157 3.1 2.2 7.1
营养液2 201.11 83.64 71.25 46.22 95 2.6 4.1 6.1
营养液3 174.49 64.28 69.53 40.68 136 5.1 1.4 8
营养液4 167.14 55.29 70.44 41.41 118 2.2 2.8 7.7
营养液5 244.23 101.17 102.71 40.35 152 1.9 3.2 7.3
DB33/699 -2008规定值 ≥110 g/L ≥20g/L ≥20g/L ≥20g/L ≥150 g/L ≤50 g/L ≤30 g/L 4.0-8.0
表2 营养液安全指标(单位:mg/kg)
样品
营养液1 0.987 3.783 1.108 19.675 23.693
营养液2 2.226 6.432 2.325 17.522 12.174
营养液3 1.832 3.778 2.641 12.169 21.677
营养液4 1.655 5.375 0.532 9.564 22.583
营养液5 1.046 8.966 0.169 7.325 18.859
DB33/699-2008规定值 ≤5 ≤10 ≤10 ≤50 ≤50
实施例7
实施例1-5所得的陶粒性能指标见表3
表3. 陶粒性能指标
样品 密度(g/cm3 吸水率(%) 盐酸可溶率(%)
陶粒1 0.983 511.89 1.52
陶粒2 1.083 520.77 2.58
陶粒3 1.075 562.14 4.98
陶粒4 1.145 498.21 1.17
陶粒5 1.096 486.11 1.01
实施例8
实施例1-5所得的陶粒对重金属的吸附性能,取200 mg/L的铅标准溶液2000mL,于3000mL烧杯中,调溶液的pH值到6,分别加入100 g实施例1-5中得到的陶粒,不时搅动,浸泡24h,用原子吸收测上清液中铅的含量,按公式(1)计算去除率。结果见表4.
(1)
式中:η为铅的去除率(%);C 0为初始浓度(mg/L);C e为平衡浓度(mg/L)。
表4陶粒对铅的吸附性能
初始浓度,C 0(mg/L) 吸附后铅浓度(Ce)(mg/L) 单位吸附量,(mg/g) 去除率(η)(%)
陶粒1 200 2.032 3.959 98.98
陶粒2 200 3.228 3.935 98.39
陶粒3 200 0 4 100
陶粒4 200 5.377 3.89 97.31
陶粒5 200 6.441 3.87 96.78
实施例9
取实施例8中吸附铅后的陶粒,水洗3次,分别加入1mol/L的硝酸溶液200mL,浸泡洗脱5min,用原子吸收测定上清液中(或稀释后测定)的铅离子的含量,计算洗脱回收量和回收率。结果见表5:
表5 洗脱回收率
吸附总量(mg) 洗脱回收量(mg) 回收率(%)
陶粒1 395.94 398.14 100.56
陶粒2 393.54 401.78 102.09
陶粒3 400.00 396.24 99.06
陶粒4 389.25 383.65 98.56
陶粒5 387.12 378.77 97.84
洗脱后,陶粒水洗至中性后可以重复使用。

Claims (6)

1.一种利用污泥制备无土栽培用陶粒和营养液的方法,包括如下步骤:
步骤1:取新鲜的剩余污泥,调整含水率80-90%,加入污泥质量的10-40%的硅藻土,按污泥质量和双氧水体积的比为1 kg:0.01-0.2L加入质量浓度为30%的双氧水溶液,搅拌混合均匀,于﹣20-﹣8℃冷冻12h,取出,得到冷冻固体污泥料,再按新鲜污泥质量和酸溶液体积比为1kg:1L取混合酸溶液,加入新鲜污泥质量的0.1%-5%的纳米钛酸钙粉体,搅拌混合,分散均匀,制成纳米钛酸钙-混合酸的悬浊料液,加热至60-90℃,用高压喷枪,将混合酸悬浊料液以50-100m/s的喷射速度,喷入冷冻固体污泥料中,使冷冻污泥料粉碎融化,搅拌均匀,固液分离,得到固体A和液体A;
步骤2:将步骤一得到的固体A与等质量的水混合,搅拌均匀,用氢氧化钾调pH值8-9,加热微沸5-10min,滴加氢氧化钾溶液,使浸泡液的pH值保持在8-9,冷却到室温,固液分离,得到固体B和液体B;
步骤3:将步骤2得到的液体B与步骤1得到的液体A混合,加入含钙和镁的化合物,搅拌均匀,反应完全,再加入氢氧化钾和氨水调整溶液的pH值6-8,室温下,静置12h,固液分离,得到固体C和液体C;
步骤4:将步骤3得到的液体C中,按1-10g/L的量加入纳米钛酸钙,紫外光辐照下,搅拌20-60min,固液分离,得到固体D和营养液;
步骤5:将步骤2得到的固体B和步骤3得到的固体C以及步骤4得到的固体D烘干,混合球磨0.5-8h,加水,制成小球,105℃烘干,于烧成温度为950-1250℃煅烧,即可得到多孔陶粒,可用作具备吸附重金属功能的无土栽培的基料。
2.根据权利要求1所述的一种利用污泥制备无土栽培用陶粒和营养液的方法,其特征在于:
步骤1中加入的混合酸溶液为硝酸、硫酸和磷酸的混合溶液,其含量为硝酸、硫酸和磷酸的浓度分别为1-2 mol/L、0.1-0.5 mol/L和1-1.5mol/L;
步骤3中的加入含钙和镁的化合物为碳酸钙、氧化钙、氢氧化钙、白云石、方解石和石灰石以及碳酸镁、氧化镁和氢氧化镁中的一种或几种,加入量为钙和镁的摩尔数与污泥千克数比为1.5-2.5:0.8-1.5:5。
3.根据权利要求1所述的一种利用污泥制备无土栽培用陶粒和营养液的方法,其特征在于:
步骤3中调液体B和A的混合液的pH值的过程中,加入氢氧化钾时,氢氧化钾的摩尔数与液体A和B的混合液的体积升数之比控制在0.8-1.2:1范围内。
4.根据权利要求1所述的一种利用污泥制备无土栽培用陶粒和营养液的方法,其特征在于:
步骤4中使用的紫外光波长为254nm,辐照强度不低于100 μW/cm2
5.根据权利要求1所述的一种利用污泥制备无土栽培用陶粒和营养液的方法,其特征在于:
步骤5中制成的小球,成球压力0-10MPa,球粒直径为2-30mm。
6.根据权利要求1所述的一种利用污泥制备无土栽培用陶粒和营养液的方法,其特征在于:
步骤5煅烧升温程序为:以3℃/min的升温速度升到300 ℃, 并在此温度下保温30min,再以5℃/min的速度继续升温到烧成温度, 并保温10-20 min。
CN201710111537.9A 2017-02-28 2017-02-28 一种利用污泥制备无土栽培用陶粒和营养液的方法 Active CN106927790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710111537.9A CN106927790B (zh) 2017-02-28 2017-02-28 一种利用污泥制备无土栽培用陶粒和营养液的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710111537.9A CN106927790B (zh) 2017-02-28 2017-02-28 一种利用污泥制备无土栽培用陶粒和营养液的方法

Publications (2)

Publication Number Publication Date
CN106927790A true CN106927790A (zh) 2017-07-07
CN106927790B CN106927790B (zh) 2021-03-16

Family

ID=59424229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710111537.9A Active CN106927790B (zh) 2017-02-28 2017-02-28 一种利用污泥制备无土栽培用陶粒和营养液的方法

Country Status (1)

Country Link
CN (1) CN106927790B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483093A (zh) * 2019-09-11 2019-11-22 武汉钢铁有限公司 钢铁厂综合废水污泥基保水材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515815A (zh) * 2011-11-10 2012-06-27 许庆华 具有保水功能的圆柱形凹凸棒花卉陶粒
CN102976834A (zh) * 2012-12-24 2013-03-20 南京林业大学 一种利用剩余污泥制备有机-无机复混肥料的方法
KR20160070040A (ko) * 2016-03-31 2016-06-17 주식회사 다산컨설턴트 오염수 처리용 세라믹 필터 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515815A (zh) * 2011-11-10 2012-06-27 许庆华 具有保水功能的圆柱形凹凸棒花卉陶粒
CN102976834A (zh) * 2012-12-24 2013-03-20 南京林业大学 一种利用剩余污泥制备有机-无机复混肥料的方法
KR20160070040A (ko) * 2016-03-31 2016-06-17 주식회사 다산컨설턴트 오염수 처리용 세라믹 필터 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张东等: "纳米钛酸钙粉体的制备及其对水中铅和镉的吸附行为", 《化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483093A (zh) * 2019-09-11 2019-11-22 武汉钢铁有限公司 钢铁厂综合废水污泥基保水材料及其制备方法
CN110483093B (zh) * 2019-09-11 2022-02-08 武汉钢铁有限公司 钢铁厂综合废水污泥基保水材料及其制备方法

Also Published As

Publication number Publication date
CN106927790B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN104109038B (zh) 建筑垃圾压缩营养土的生产方法
CN104119172B (zh) 高岭土尾矿压缩营养土的生产方法
CN105833716B (zh) 一种用于去除臭气的生物除臭组合物及其作为填料制备和应用
CN105618007B (zh) 一种复合凝胶协同生物治理市政污泥及资源化利用工艺
CN110092695A (zh) 一种用于修复镉砷复合污染农田的土壤调理剂及其制备方法
CN107459148A (zh) 一种生化复合除磷剂的制备方法
CN114394800B (zh) 一种污泥生物炭资源化利用的方法
CN106943835A (zh) 一种利用污泥和畜禽粪便制备空气净化材料和复合肥的方法
Luo et al. Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test
CN105060669A (zh) 厌氧发酵与碳化处理相结合技术进行污泥综合利用的方法
CN106866243A (zh) 一种利用污泥制备陶粒支撑剂和复合肥的方法
CN104119171B (zh) 石墨尾矿压缩营养土的生产方法
CN106927790A (zh) 一种利用污泥制备无土栽培用陶粒和营养液的方法
CN105858736A (zh) 一种基于天然矿石与沼渣的复合污水处理剂及其制备方法
CN103601433B (zh) 一种制备污水处理用高效除磷材料的方法
JP2007175556A (ja) 廃珪藻土の高機能新素材化方法、及び、廃珪藻土による高機能新素材
CN107265582A (zh) 一种复合贝类改性生物除磷材料及其制备方法和应用
CN115073242B (zh) 一种基于磷化工碱渣的复合土壤调理剂及其制备方法和应用
CN104119157B (zh) 硅灰石尾矿压缩营养土的生产方法
CN107043242A (zh) 一种利用污泥和牛粪制备多孔陶瓷复合材料和泡沫液方法
KR20130123799A (ko) 유기성 폐기물을 처리하는 방법
CN107056236B (zh) 一种利用污泥制备空气净化功能陶瓷砖和复合肥的方法
CN106966756B (zh) 一种利用畜禽粪便和污泥制备水质净化功能生态混凝土的方法
CN108503334A (zh) 一种大掺量造纸污泥加气混凝土砌块及其制备方法
CN104109034B (zh) 菱镁矿尾矿压缩营养土的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210924

Address after: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Yami Technology (Guangzhou) Co.,Ltd.

Address before: 110159 No. 6 Nanping Road, Hunnan New District, Shenyang, Liaoning

Patentee before: SHENYANG LIGONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220719

Address after: 430000 room 1001, 10th floor, T1 office building, Gutian 2nd Road, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province kf05

Patentee after: Zaisentu environmental protection technology (Wuhan) Co.,Ltd.

Address before: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee before: Yami Technology (Guangzhou) Co.,Ltd.

TR01 Transfer of patent right