CN106909750B - A kind of computational methods of broad-leaved Vegetation canopy reflectivity - Google Patents

A kind of computational methods of broad-leaved Vegetation canopy reflectivity Download PDF

Info

Publication number
CN106909750B
CN106909750B CN201710141821.0A CN201710141821A CN106909750B CN 106909750 B CN106909750 B CN 106909750B CN 201710141821 A CN201710141821 A CN 201710141821A CN 106909750 B CN106909750 B CN 106909750B
Authority
CN
China
Prior art keywords
mrow
msub
msup
mfrac
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710141821.0A
Other languages
Chinese (zh)
Other versions
CN106909750A (en
Inventor
郭云开
安冠星
刘海洋
蒋明
谢琼
周烽松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201710141821.0A priority Critical patent/CN106909750B/en
Publication of CN106909750A publication Critical patent/CN106909750A/en
Application granted granted Critical
Publication of CN106909750B publication Critical patent/CN106909750B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/042Backward inferencing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种阔叶植被冠层反射率的计算方法及模型,计算方法包括以下步骤:S1:输入参数将输入的参数识别并分类,分为叶片参数、冠层参数及土壤参数;S2:根据叶片参数计算单个叶片的反射率及透射率;S3:根据冠层参数及S2中的叶片参数求得冠层的消光系数及散射系数;S4:根据所求的冠层消光和散射参数求得冠层的相关反射因子和反射率;S5根据冠层的相关反射因子和反射率求得冠层反射率。本发明将PROSPECT模型与SAIL模型耦合,在充分利用可获取参数的情况下取消植被冠层反射率模拟过程中叶片反射率及透射率输入的过程,本发明有效简化植被冠层光谱信息模拟过程上参数获取问题并优化算法,加速计算过程,同时耦合模型有利于植被参数反演。

The invention discloses a calculation method and model of broad-leaved vegetation canopy reflectance. The calculation method includes the following steps: S1: input parameters, identify and classify the input parameters, and divide them into leaf parameters, canopy parameters and soil parameters; S2 : calculate the reflectance and transmittance of a single leaf according to the leaf parameters; S3: obtain the extinction coefficient and scattering coefficient of the canopy according to the canopy parameters and the leaf parameters in S2; S4: obtain the canopy extinction and scattering parameters according to the obtained Obtain the relative reflection factor and reflectivity of the canopy; S5 obtain the canopy reflectivity according to the relative reflection factor and reflectivity of the canopy. The present invention couples the PROSPECT model with the SAIL model, cancels the input process of leaf reflectance and transmittance in the vegetation canopy reflectance simulation process under the condition of making full use of available parameters, and the present invention effectively simplifies the vegetation canopy spectral information simulation process The problem of parameter acquisition and algorithm optimization can speed up the calculation process, and the coupling model is beneficial to the inversion of vegetation parameters.

Description

一种阔叶植被冠层反射率的计算方法A Calculation Method of Canopy Reflectance of Broad-leaved Vegetation

技术领域technical field

本发明涉及高等级公路路域植被健康状况评价,具体涉及一种阔叶植被冠层反射率的计算方法及模型。The invention relates to the evaluation of the health status of vegetation in road areas of high-grade highways, in particular to a calculation method and model for the reflectivity of broad-leaved vegetation canopies.

背景技术Background technique

植被信息反演一直以来都是定量遥感最具前景的研究领域,为开展植被生态环境监测与评价研究提供了有利基础。国内外学者提出了众多植被参数反演模型,主要可分为统计模型和物理模型两大类,其中物理模型以其优秀的广泛适用性及稳定性备受青睐。植被信息的物理反演模型具有相当强的物理基础,不依赖于植被的具体类型和背景环境的变化。然而物理模型在大范围的植被信息反演中存在精度仍然较差且计算量大导致无法满足实际生产应用需求的问题,主要是由于两个原因:一是物理模型对定量遥感的要求很高,需要通过遥感影像反演出地表反射率,同时需要多个难以获得的精确参数作为物理模型的输入参数;另一方面,当前遥感物理模型大多在冠层尺度上,而冠层光谱受到叶片光谱信息,土壤背景反射率及冠层结构等因素的影响,限制了生化参数反演的精度也加大了反演的难度。Vegetation information inversion has always been the most promising research field of quantitative remote sensing, which provides a favorable basis for the development of vegetation ecological environment monitoring and evaluation research. Scholars at home and abroad have proposed many vegetation parameter inversion models, which can be mainly divided into two categories: statistical models and physical models. Among them, the physical model is favored for its excellent wide applicability and stability. The physical inversion model of vegetation information has a fairly strong physical basis and does not depend on the specific types of vegetation and changes in the background environment. However, the accuracy of the physical model in large-scale vegetation information inversion is still poor and the calculation is too large to meet the actual production and application requirements. This is mainly due to two reasons: first, the physical model has high requirements for quantitative remote sensing. It is necessary to invert the surface reflectance through remote sensing images, and at the same time, many difficult-to-obtain accurate parameters are required as input parameters of the physical model; The influence of factors such as soil background reflectance and canopy structure limits the accuracy of biochemical parameter inversion and increases the difficulty of inversion.

近年来研究和应用最多的模型有适用于阔叶的PROSPECT模型、适用于针叶的LIBERTY模型及冠层SAIL模型。PROSPECT模型将阔叶叶片看作是由N 层含有叶片生化物质的粗糙平板和N-1层空气构成的复合平板模型,通过输入各色素浓度、等效水厚度、白物质浓度及叶片结构参数得到这个复合平板模型的反射率和透射率。LIBERTY模型视针叶叶片的细胞为标准圆形细胞,认为针叶是由无数叶细胞堆叠在空气中形成,通过求得单个细胞的光学特性进一步求得无限细胞的光谱信息。冠层SAIL模型是在辐射传输理论的基础上对辐射传输方程的四流近似,模型通过输入太阳天顶角、太阳方位角、观测天顶角、观测方位角、 LAI、土壤反射率、热点及单叶片的反射率与透射率等参数来模拟冠层400nm到 2500nm的反射率。显而易见的是可以将阔叶与针叶模型的输出参数作为SAIL 模型的输入参数来实现模型的耦合,进一步实现植被冠层信息的模拟。因此,国内外学者先后开展了模型耦合及其应用的研究,当前应用较多的是利用 PROSPECT叶片模型与SAIL冠层反射模型耦合,该耦合模型利用修正后的叶片模型与冠层模型模拟植被冠层反射率,具有较高的反演精度和较快的反演速度。然而,当前所用多为发展较为完善的初期模型耦合而成的PROSAIL模型,在未能考虑植被叶片上下表面不对称性及热点效应等问题的情况下对PROSPECT模型与SAIL模型进行耦合,尽管适应性及精度有一定的保证,但在实际应用过程中仍然暴露出了植被参数反演不足等问题,使得耦合模型在实际应用过程中受到一定程序的限制。The most researched and applied models in recent years are the PROSPECT model for broadleaves, the LIBERTY model for coniferous leaves, and the canopy SAIL model. The PROSPECT model regards broad-leaved leaves as a composite flat plate model composed of N layers of rough flat plates containing leaf biochemical substances and N-1 layers of air. The reflectance and transmittance of this composite slab model. The LIBERTY model regards the cells of coniferous leaves as standard circular cells, and considers that the needles are formed by stacking countless leaf cells in the air, and further obtains the spectral information of infinite cells by obtaining the optical properties of individual cells. The canopy SAIL model is a four-flow approximation to the radiative transfer equation based on the radiative transfer theory. The model inputs the solar zenith angle, solar azimuth angle, observation zenith angle, observation azimuth angle, LAI, soil reflectance, hot spots and Parameters such as the reflectance and transmittance of a single leaf are used to simulate the reflectance of the canopy from 400nm to 2500nm. It is obvious that the output parameters of the broad-leaved and needle-leaved models can be used as the input parameters of the SAIL model to realize the coupling of the models and further realize the simulation of vegetation canopy information. Therefore, scholars at home and abroad have successively carried out research on model coupling and its application. The current application is to use the PROSPECT leaf model to couple with the SAIL canopy reflection model. This coupling model uses the corrected leaf model and canopy model to simulate vegetation canopy. Layer reflectivity, with higher inversion accuracy and faster inversion speed. However, most of the currently used PROSAIL models are couplings of relatively well-developed initial models. The coupling of the PROSPECT model and the SAIL model fails to consider the asymmetry of the upper and lower surfaces of vegetation leaves and the hot spot effect. Although the adaptability However, in the actual application process, problems such as insufficient inversion of vegetation parameters are still exposed, which makes the coupling model subject to certain program restrictions in the actual application process.

因此有必要设计一种新的阔叶植被冠层反射率的计算方法及模型。Therefore, it is necessary to design a new calculation method and model of broad-leaved vegetation canopy reflectance.

发明内容Contents of the invention

本发明所解决的技术问题是,针对物理模型在实际应用过程中受限的问题,也为了解决植被物理模型在应用过程中参数获取及反演精度问题,提出一种阔叶植被冠层反射率的计算方法及模型,将单叶片模型利用所获取参数得到的单叶片反射率与透射率作为冠层模型的输入参数,协同冠层模型的其他输入参数模拟植被冠层反射率,耦合后的植被冠层模型可省略部分复杂参数的获取过程,同时耦合后的模型为一体化模型,更加有利于植被参数的反演。The technical problem solved by the present invention is to propose a broad-leaved vegetation canopy reflectance in view of the limitation of the physical model in the actual application process, and in order to solve the parameter acquisition and inversion accuracy problems of the vegetation physical model in the application process. The calculation method and model of the canopy model, the single-leaf reflectance and transmittance obtained by the single-leaf model using the obtained parameters are used as the input parameters of the canopy model, and other input parameters of the canopy model are used to simulate the reflectance of the vegetation canopy, and the vegetation after coupling The canopy model can omit the acquisition process of some complex parameters, and the coupled model is an integrated model, which is more conducive to the inversion of vegetation parameters.

本发明的技术方案为:Technical scheme of the present invention is:

一种阔叶植被冠层反射率的计算方法,包括以下步骤:A calculation method for broad-leaved vegetation canopy reflectance, comprising the following steps:

S1:参数识别;S1: parameter identification;

输入模型参数;并将输入的参数初步分为三大类:叶片参数、土壤参数和冠层参数;其中叶片参数包括色素含量、干物质含量、等效水厚度及叶片结构参数;土壤参数为土壤的光谱反射率;冠层参数为剩余其他参数;Input model parameters; and the input parameters are preliminarily divided into three categories: leaf parameters, soil parameters and canopy parameters; leaf parameters include pigment content, dry matter content, equivalent water thickness and leaf structure parameters; soil parameters are soil parameters The spectral reflectance of ; the canopy parameter is the remaining other parameters;

S2:根据步骤S1中的叶片参数输入PROSPECT模型进行单片叶光谱模拟,计算单个叶片的光谱反射率及透射率;S2: Input the PROSPECT model according to the leaf parameters in step S1 to simulate the spectrum of a single leaf, and calculate the spectral reflectance and transmittance of a single leaf;

S3:根据步骤S1中的土壤参数和冠层参数计算消光系数及散射系数;S3: Calculate the extinction coefficient and the scattering coefficient according to the soil parameters and canopy parameters in step S1;

S4:将步骤S3计算得到的消光系数及散射系数输入SAIL模型,计算冠层的相关反射因子和反射率,包括太阳直射方向半球反射率、观测方向半球反射率和双直射反射率;S4: Input the extinction coefficient and scattering coefficient calculated in step S3 into the SAIL model, and calculate the relevant reflection factor and reflectance of the canopy, including the hemispherical reflectance in the direct sunlight direction, the hemispherical reflectance in the observation direction and the double direct reflectance;

S5:计算冠层反射率。S5: Calculate canopy reflectance.

所述步骤S2具体包括以下步骤:The step S2 specifically includes the following steps:

S2.1:计算吸收系数K;吸收系数是叶片各种化学物质含量的线性表达,计算公式为:S2.1: Calculate the absorption coefficient K; the absorption coefficient is a linear expression of the content of various chemical substances in the leaves, and the calculation formula is:

其中,c(i)为叶片中组分i的浓度,组分i为色素、水、干物质等化学物质;k(i) 为组分i的特定吸收系数;N为叶片结构参数,表示叶片分层数,N可以采用以下经验方程计算得到:Among them, c(i) is the concentration of component i in the leaf, and component i is chemical substances such as pigment, water, and dry matter; k(i) is the specific absorption coefficient of component i; N is the structural parameter of the leaf, indicating that the The number of layers, N, can be calculated using the following empirical equation:

N=(0.9*SLA+0.025)/(SLA-0.1)N=(0.9*SLA+0.025)/(SLA-0.1)

其中,SLA为比叶面积,指每单位干重的叶面积;Among them, SLA is the specific leaf area, which refers to the leaf area per unit dry weight;

S2.2:计算界面处的透射率:S2.2: Calculate the transmittance at the interface:

界面处的透射率包括两个:一个是光从空气进入叶片的透射率,一个是光从叶片进入空气的透射率;The transmittance at the interface includes two: one is the transmittance of light entering the blade from the air, and the other is the transmittance of light entering the air from the blade;

自然光线可看作是非极化光,反射后发生完全极化,透射后折射光线发生部分极化。根据Snell-Descarts定律可知道,两种介质接触面上入射角与折射角及两个折射率之间的关系,再根据Schanda给出的电磁波穿过两种介质的透射率即可计算出光线以立体角α由折射率为1的空气入射折射率为n的叶片的平均透射率tav(α,1,n),令t12=tav(α,1,n);Natural light can be regarded as non-polarized light, fully polarized after reflection, and partially polarized after refraction after transmission. According to the Snell-Descarts law, the relationship between the incident angle, the refraction angle and the two refractive indices on the contact surface of the two media can be known, and then the light can be calculated according to the transmittance of the electromagnetic wave passing through the two media given by Schanda. The solid angle α is the average transmittance t av (α,1,n) of the blade with the incident refractive index n of air with a refractive index of 1, let t 12 =t av (α,1,n);

根据Stern的研究成果,光线从折射率为n的叶片射入折射率为1的空气的透射率t21与t12之间存在关系式t21=n-2·t12,据此计算出界面处的透射率;界面处的透射率的计算为现有技术,可使用现有软件完成计算;According to Stern's research results, there is a relationship between the transmittance t 21 and t 12 of light entering air with a refractive index of n from a leaf with a refractive index of n, and the interface is calculated accordingly. The transmittance at the interface; the calculation of the transmittance at the interface is an existing technology, and the existing software can be used to complete the calculation;

S2.3:计算光线透过平板介质的总透射率τ1S2.3: Calculate the total transmittance τ 1 of the light passing through the flat medium;

对于自然光,其透过平板介质的总透射率τ1为整个半球2π整空间内的积分,与吸收系数K及叶片厚度D相关,计算公式为:For natural light, the total transmittance τ1 through the flat medium is the integral in the whole hemisphere 2π space, which is related to the absorption coefficient K and the blade thickness D. The calculation formula is:

其中,t为中间变量;Among them, t is an intermediate variable;

S2.4:计算单层平板的反射率Rα(1)及透射率Tα(1):S2.4: Calculate the reflectance R α (1) and transmittance T α (1) of the single-layer flat plate:

进行单层平板光谱模拟,单层平板的光谱是整个叶片光谱模拟的核心,主要包括计算单层平板的反射率及透射率,其计算公式为:Perform spectral simulation of a single-layer plate. The spectrum of a single-layer plate is the core of the spectral simulation of the entire leaf. It mainly includes calculating the reflectance and transmittance of a single-layer plate. The calculation formula is:

S2.5:计算单片叶反射率Rα(N)及透射率Tα(N):S2.5: Calculate the single leaf reflectance R α (N) and transmittance T α (N):

进行叶片光谱信息模拟,Stokes对光线穿透有限层平板后的光学现象进行了深入研究,得出了光线穿过N层相同反射率和透射率的平板后的总体反射率和透射率的计算理论,此时应用其理论可得出叶片光谱信息的模拟公式:Carrying out leaf spectral information simulation, Stokes conducted an in-depth study of the optical phenomenon after light penetrates a finite-layer plate, and obtained a calculation theory for the overall reflectance and transmittance of light passing through a plate with N layers of the same reflectance and transmittance , at this time, the simulation formula of leaf spectral information can be obtained by applying its theory:

其中: in:

所述步骤S3具体包括以下步骤:The step S3 specifically includes the following steps:

S3.1阴影补偿:S3.1 Shadow Compensation:

①计算与消光和散射相关的几何因子:首先根据一般叶倾角分布概率加权并离散化,得到一组离散化的叶倾角;之后,计算每个叶倾角对应的消光与散射因子;对于叶倾角θl,计算方法如下:① Calculation of geometric factors related to extinction and scattering: firstly, weighted and discretized according to the distribution probability of general leaf inclination angles to obtain a set of discretized leaf inclination angles; then, calculate the extinction and scattering factors corresponding to each leaf inclination angle; for leaf inclination angle θ l , the calculation method is as follows:

首先,求临界角βs和βo,计算公式为:First, calculate the critical angles β s and β o , the calculation formula is:

其中,为水平面法线方向和叶片法线方向夹角即叶倾角θs为太阳天顶角、θo为观测天顶角;Among them, is the angle between the normal direction of the horizontal plane and the normal direction of the blade, that is, the leaf inclination angle θ s is the sun zenith angle, θ o is the observation zenith angle;

当确定计算公式中分母不为0且cosβ的计算结果小于1时直接计算出两个临界角的值;当cosβ的计算结果等于1时,两个临介角均等于π;其中cosβ泛指βs和βo的余弦;When it is determined that the denominator in the calculation formula is not 0 and the calculation result of cosβ is less than 1, the values of the two critical angles are directly calculated; when the calculation result of cosβ is equal to 1, the two critical angles are equal to π; where cosβ generally refers to β cosine of s and β o ;

然后,计算叶倾角为θl的单个叶片太阳直射方向与观测方向的消光系数,计算公式分别为:Then, calculate the extinction coefficient of a single leaf in the direct sunlight direction and the observation direction with the leaf inclination angle θl , and the calculation formulas are respectively:

其中,L′=lai/h,lai为叶面积指数,h为冠层高度;Among them, L'=lai/h, lai is the leaf area index, h is the canopy height;

②计算辅助方位角β1、β2、β3:辅助方位角的计算主要取决于两个临界角的相对不等关系,取值方法如下:② Calculation of auxiliary azimuth angles β 1 , β 2 , β 3 : the calculation of auxiliary azimuth angles mainly depends on the relative unequal relationship between the two critical angles, and the value selection method is as follows:

If:If: β1 beta 1 β2 beta 2 β3 beta 3 ψ≤|βso|ψ≤|β so | ψψ so|so | 2π-βso 2π-β so so|<ψ<2π-βso so |<ψ<2π-β so so|so | ψψ 2π-βso 2π-β so ψ≥2π-βso ψ≥2π-β so so|so | 2π-βso 2π-β so ψ ψ

其中,ψ为太阳方向与观测方向之间的相对方位角,即两个方向方位角之差;Among them, ψ is the relative azimuth between the sun direction and the observation direction, that is, the difference between the azimuth angles of the two directions;

得到三个辅助方位角后即可计算单叶片反射率与透射率相关的乘子,用于计算双向散射系数ω;After obtaining the three auxiliary azimuth angles, the multiplier related to the reflectance and transmittance of a single blade can be calculated, which is used to calculate the bidirectional scattering coefficient ω;

③计算双向散射系数ω(θl):③ Calculate the two-way scattering coefficient ω(θ l ):

在得到辅助方位角后,配合S2中已计算得到的单叶片反射率和透射率计算得到双向散射系数,计算公式为:After the auxiliary azimuth angle is obtained, the two-way scattering coefficient is calculated in conjunction with the single-blade reflectance and transmittance calculated in S2, and the calculation formula is:

其中,ρ、τ、θl分别表示叶片的反射率、透射率及此时相应的叶倾角;令 S2中的ρ=Rα(N);τ=Tα(N)。Among them, ρ, τ, θ l represent the reflectivity, transmittance and corresponding leaf inclination angle of the blade respectively; let ρ=R α (N) in S2; τ=T α (N).

S3.2计算加入叶片反射率和透射率后的散射系数:S3.2 Calculate the scattering coefficient after adding the reflectance and transmittance of the blade:

①漫辐射E‐和E+的后向散射系数计算公式为:① The calculation formulas for the backscattering coefficients of diffuse radiation E- and E+ are:

②漫辐射E-和E+的前向散射系数计算公式为:② The formula for calculating the forward scattering coefficient of diffuse radiation E- and E+ is:

③太阳直射辐射ES的后向散射系数计算公式为:③ The formula for calculating the backscattering coefficient of direct solar radiation E S is:

④太阳直射辐射ES的前向散射系数计算公式为:④ The formula for calculating the forward scattering coefficient of direct solar radiation E S is:

⑤漫辐射E-和E+的衰减系数计算公式为:⑤ The calculation formula of the attenuation coefficient of diffuse radiation E- and E+ is:

⑥观测方向辐射E0的后向散射系数计算公式为:⑥ The formula for calculating the backscatter coefficient of radiation E 0 in the observation direction is:

⑦观测方向辐射E0的前向散射系数计算公式为:⑦ The formula for calculating the forward scattering coefficient of radiation E 0 in the observation direction is:

S3.3计算一般叶倾角分布概率(叶型分布要素):S3.3 Calculation of general leaf inclination distribution probability (leaf shape distribution elements):

计算平均叶倾角分布下的一般叶倾角分布:叶倾角是指水平面法线方向和叶片法线方向夹角;植被冠层的不同类型对应于不同的植被叶片倾斜角度,同时对应于两个叶分布参数LIDFa和LIDFb。Calculate the general leaf inclination angle distribution under the average leaf inclination angle distribution: the leaf inclination angle refers to the angle between the normal direction of the horizontal plane and the normal direction of the leaves; different types of vegetation canopy correspond to different vegetation leaf inclination angles, corresponding to two leaf distributions at the same time Parameters LIDFa and LIDFb.

在非椭球形分布的情况下,可根据平均叶倾角计算一般叶倾角分布概率,计算过程通过以下迭代完成:In the case of non-ellipsoidal distributions, the general leaf inclination distribution probability can be calculated from the mean leaf inclination, and the calculation process is completed by the following iterations:

x=2θx=2θ

y=LIDFa·sin(x)+0.5LIDFb·sin(2x)y=LIDFa sin(x)+0.5LIDFb sin(2x)

dx=0.5(y‐x+2θ)dx=0.5(y-x+2θ)

x=x+dxx=x+dx

直到|dx|<t;until |dx|<t;

则F(θ)=2(y+θ)/π。Then F(θ)=2(y+θ)/π.

其中,θ为平均叶倾角的离散值,F(θ)为累积叶倾角,即一般叶倾角分布概率。Among them, θ is the discrete value of the average leaf inclination, and F(θ) is the cumulative leaf inclination, that is, the general leaf inclination distribution probability.

对于椭球形分布,参数LIDFa表示的是分布角度,为30度,参数LIDFb为 0,在求一般叶倾角分布概率时,可利用Campbell(1986)所作的叶倾角密度函数求得;For the ellipsoidal distribution, the parameter LIDFa represents the distribution angle, which is 30 degrees, and the parameter LIDFb is 0. When calculating the distribution probability of the general leaf inclination angle, it can be obtained by using the leaf inclination angle density function made by Campbell (1986);

S3.4确定整个冠层的模型参数;S3.4 determine the model parameters of the entire canopy;

对于任何冠层来说,叶片倾角不会是固定的,是一个从0到90不断增加的连续过程,因此确定整个冠层的模型参数时,计算方法为将叶倾角为θl时的一般叶倾角分布概率F(θl)与模型参数乘积后再相加,计算公式为:For any canopy, the leaf inclination will not be fixed, it is a continuous process of increasing from 0 to 90, so when determining the model parameters of the entire canopy, the calculation method is to calculate the general leaf inclination when the leaf inclination is θ l The product of the inclination distribution probability F(θ l ) and the model parameters is added, and the calculation formula is:

Z=∑F(θl)Z(θl)Z=∑F(θ l )Z(θ l )

其中,F(θl)为叶倾角θl对应的一般叶倾角分布概率,Z(θl)为单叶片的参数, Z是经过叶倾角修正模型Z=∑F(θl)Z(θl)加以修正后的整个冠层的参数;,Z(θl) 指代步骤S3.1和S3.2中得到的k(θl)、K(θl)、ω(θl)、σ(θl)、σ′(θl)、s(θl)、s′(θl)、 a(θl)、v(θl)、u(θl)中的任意一个;Z相应地指代针对整个冠层的SAIL模型四个微分方程中的所有系数k、K、w、σ、σ′、s、s′、a、v、u中的任意一个。Among them, F(θ l ) is the general leaf inclination angle distribution probability corresponding to the leaf inclination angle θ l , Z(θ l ) is the parameter of a single blade, and Z is the modified model of leaf inclination angle Z=∑F(θ l )Z(θ l ) to the parameters of the entire canopy after correction; Z(θ l ) refers to k(θ l ), K(θ l ), ω(θ l ), σ( θ l ), σ′(θ l ), s(θ l ), s′(θ l ), a(θ l ), v(θ l ), u(θ l ); Z refers to Substitute any one of all coefficients k, K, w, σ, σ', s, s', a, v, u in the four differential equations of the SAIL model for the entire canopy.

所述步骤S4具体包括以下步骤:Described step S4 specifically comprises the following steps:

S4.1:计算叶面积参数;叶面积参数是评价植被冠层反射率的重要指标,其参数计算公式为:S4.1: Calculate the leaf area parameter; the leaf area parameter is an important indicator for evaluating the albedo of the vegetation canopy, and its parameter calculation formula is:

τss=e-klai τ ss =e -klai

τoo=e-Klai τ oo = e -Klai

ρdd=(emlai-e-mlai)/(h1emlai-h2e-mlai)ρ dd =(e mlai -e -mlai )/(h 1 e mlai -h 2 e -mlai )

τdd=(h1-h2)/(h1emlai-h2e-mlai)τ dd =(h 1 -h 2 )/(h 1 e mlai -h 2 e -mlai )

其中,K和k分别表示观测方向辐射E0的消光系数和太阳直射辐射Es的消光系数;lai表示叶面积指数,为模型输入参数;Among them, K and k represent the extinction coefficient of the observation direction radiation E 0 and the direct solar radiation E s respectively; lai represents the leaf area index, which is the input parameter of the model;

S4.2:计算加入热点效应后的参数,计算公式如下:S4.2: Calculate the parameters after adding the hot spot effect, the calculation formula is as follows:

ρsd=CS(1-τssτdd)-DSρdd ρ sd =C S (1-τ ss τ dd )-D S ρ dd

τsd=DSssdd)-CSτssρdd τ sd =D Sssdd )-C S τ ss ρ dd

ρdo=Co(1-τooτdd)-Doρdd ρ do =C o (1-τ oo τ dd )-D o ρ dd

τdo=Dooodd)-Coτooρdd τ do =D ooodd )-C o τ oo ρ dd

ρso=Ho(1-τssτoo)-Coτsdτoo-Doρsd ρ so =H o (1-τ ss τ oo )-C o τ sd τ oo -D o ρ sd

其中,各个中间变量的计算方法为:Among them, the calculation method of each intermediate variable is:

h1=(a+m)/σh 1 =(a+m)/σ

h2=(a-m)/σ=1/h1 h 2 =(am)/σ=1/h 1

CS=[s′(k-a)-sσ]/(k2-m2)C S =[s'(ka)-sσ]/(k 2 -m 2 )

Co=[v(K-a)-uσ]/(K2-m2)C o =[v(Ka)-uσ]/(K 2 -m 2 )

Ds=[-s(k+a)-s′σ]/(k2-m2)D s =[-s(k+a)-s'σ]/(k 2 -m 2 )

Do=[-u(K+a)-vσ]/(K2-m2)D o =[-u(K+a)-vσ]/(K 2 -m 2 )

Hs=(uCS+vDs+w)/(K+k)H s =(uC S +vD s +w)/(K+k)

Ho=(sCo+s′Do+w)/(K+k)H o =(sC o +s'D o +w)/(K+k)

其中,τssoo为热点效应修正参数;由于太阳辐射的问题,特别是稀疏植被区域的土壤和植被的温差相当大,这与其物理表面和气象特点相关,因此需要一个温度修正的过程,同时也可能提供额外的植被冠层信息。热点效应的修正过程为:Among them, τ ssoo is the hot spot effect correction parameter; due to the problem of solar radiation, especially the temperature difference between the soil and vegetation in the sparse vegetation area is quite large, which is related to its physical surface and meteorological characteristics, so a temperature correction process is required, and it may also be Provides additional vegetation canopy information. The correction process of the hot spot effect is:

根据2/(k+K)效应进行热点纠正,首先根据给定的热点值计算参数:For hotspot correction according to the 2/(k+K) effect, first calculate the parameters according to the given hotspot value:

给定alf的初始值为alf=106Given that the initial value of alf is alf=10 6 ,

1)若热点值q大于0,则认为是有热点效应影响,此时 其中,θs为太阳天顶角、θo为观测天顶角、为太阳方位角;(若α计算结果大于200则其alf值为200);若alf的计算结果为0,则按以下公式计算出无阴影纯热点效应影响下的参数τssoo和sumint:1) If the hotspot value q is greater than 0, it is considered that there is a hotspot effect. At this time Among them, θ s is the solar zenith angle, θ o is the observation zenith angle, is the azimuth of the sun; (if the calculation result of α is greater than 200, its alf value is 200); if the calculation result of alf is 0, the parameters τ ssoo and sumint under the influence of pure hot spot effect without shadow are calculated according to the following formula:

τssoo=τss τ ssoo = τ ss

若alf的计算结果不为0,则认为是无热点效应影响,按2)中的方法计算τssoo和sumint;If the calculation result of alf is not 0, it is considered that there is no hot spot effect, and τ ssoo and sumint are calculated according to the method in 2);

2)若热点值q为0,则认为是无热点效应影响,利用循环相加的方法计算出无热点效应影响下的参数τssoo和sumint:具体步骤为:2) If the hot spot value q is 0, it is considered that there is no hot spot effect, and the parameters τ ssoo and sumint under the no hot spot effect are calculated by the method of circular addition: the specific steps are:

第一步、参数初始化:The first step, parameter initialization:

第二步、通过以下迭代计算τssoo和sumint:In the second step, τ ssoo and sumint are calculated by the following iterations:

步骤1、判断i的取值:Step 1. Determine the value of i:

若i小于20,则令x2=‐log(1‐i*fint)/alf;If i is less than 20, then let x2=-log(1-i*fint)/alf;

若i=20,令x2=1;If i=20, let x2=1;

若i大于20,则结束迭代,令τssoo=f1;;If i is greater than 20, then end the iteration, let τ ssoo = f1;;

步骤2、依次进行以下计算:Step 2. Carry out the following calculations in sequence:

y2=‐(K+k)*lai*x2+fhot*(‐exp(‐alf*x2))/alf;y2=‐(K+k)*lai*x2+fhot*(‐exp(‐alf*x2))/alf;

f2=exp(y2);f2=exp(y2);

sumint=sumint+(f2‐f1)*(x2‐x1)/(y2‐y1);sumint=sumint+(f2‐f1)*(x2‐x1)/(y2‐y1);

x1=x2;x1=x2;

y1=y2;y1=y2;

f1=f2;f1=f2;

步骤3,令i=i+1,并转步骤1;Step 3, let i=i+1, and turn to step 1;

其中,*表示乘法。Among them, * means multiplication.

S4.3:计算双向反射率:S4.3: Calculate bidirectional reflectance:

双向反射率包括两部分,一部分带热点效应的单次散射影响,另一部分未带热点效应的多次散射影响,两部分求和为最终对冠层顶部的反射率影响的计算结果:The two-way reflectance includes two parts, one part is single scattering effect with hot spot effect, and the other part is multiple scattering effect without hot spot effect. The sum of the two parts is the calculation result of the final reflectance effect on the top of the canopy:

ρso2=ρso+w*lai*sumintρ so2 =ρ so +w*lai*sumint

S4.4:引入土壤反射作用:S4.4: Introduce soil reflection:

土壤位于整个冠层反射系统的最底部,电磁波穿透冠层后会射到土壤地面,经反射后再次反射回冠层顶部,形成冠层反射率的一部分,计算方案为:The soil is located at the bottom of the entire canopy reflection system. After the electromagnetic wave penetrates the canopy, it will hit the soil ground, and then reflect back to the top of the canopy to form a part of the canopy reflectance. The calculation scheme is:

dn=1-rsdd d n =1-r s * ρdd

S4.5:计算双半球反射率因子:S4.5: Calculate the bi-hemispheric albedo factor:

S4.6:计算太阳直射方向半球反射率:S4.6: Calculate the hemispheric reflectance in the direction of direct sunlight:

ρsd2=ρdd+(τsdss)*rsdd/dn ρ sd2 = ρ dd +(τ sdss )*r sdd /d n

S4.7:计算观测方向半球反射率:S4.7: Calculate the hemispherical reflectance in the observation direction:

ρdo2=ρdo+(τdooo)*rsdd/dn ρ do2 =ρ do +(τ dooo )*r sdd /d n

S4.8:计算双直射反射率:S4.8: Calculate the double direct reflectance:

ρsod2=ρso+((τsssd)*τdo+(τsdss*rsdd)*τoo)*rs/dn ρ sod2 =ρ so +((τ sssd )*τ do +(τ sdss *r sdd )*τ oo )*r s /d n

ρso3=ρso2sossoo*rs ρ so3 =ρ so2sossoo *r s

其中,rs是土壤反射率。where r s is the soil reflectance.

所述步骤S5具体包括以下步骤:Described step S5 specifically comprises the following steps:

首先,根据数据库资料可以求得太阳直射光线与大气散射光线的基本辐射量,分别记为Es和EdFirst of all, according to the data in the database, the basic radiation amount of direct sunlight and atmospheric scattered light can be obtained, which are recorded as E s and E d respectively;

然后,计算表示大气中散射辐射占总辐射比例的系数skyl:Then, calculate the coefficient skyl representing the proportion of scattered radiation in the atmosphere to the total radiation:

skyl=0.847-1.61*sin(90-θs)+1.04*sin(90-θs)2 skyl=0.847-1.61*sin(90-θ s )+1.04*sin(90-θ s ) 2

最后,计算观测方向测定到的辐射量与入射的辐射量的比值,得到冠层反射率,公式为:Finally, calculate the ratio of the radiation measured in the observation direction to the incident radiation to obtain the canopy reflectance, the formula is:

一种阔叶植被冠层反射率的计算模型,公式如下:A calculation model of broad-leaved vegetation canopy reflectance, the formula is as follows:

其中,R为冠层反射率,Es和Ed分别为太阳直射光线与大气散射光线的基本辐射量,skyl为表示大气中散射辐射占总辐射比例的系数;ρdo2和ρso3分别为观测方向半球反射率和直射反射率;模型参数根据上述阔叶植被冠层反射率的计算方法求解。Among them, R is the reflectivity of the canopy, E s and E d are the basic radiation amount of direct sunlight and atmospheric scattered light respectively, skyl is the coefficient indicating the proportion of scattered radiation in the atmosphere to the total radiation; ρ do2 and ρ so3 are the observed Directional hemispheric reflectance and direct reflectance; model parameters are solved according to the above calculation method of broad-leaved vegetation canopy reflectance.

有益效果:Beneficial effect:

本发明以最新的PROSPECT阔叶模型及SAIL冠层模型研究成果为基础,将模拟阔叶叶片光谱信息的PROSPECT模型与模拟冠层光谱信息的SAIL模型进行耦合,充分利用可获取的参数省去叶片光谱模拟这一过程,取消植被冠层反射率模拟过程中叶片反射率及透射率输入的过程,将叶片模型模拟算法加入冠层 SAIL模型完成耦合过程,直接由植被理化参数模拟冠层光谱。利用物理模型最新研究成果进行耦合可大大提高物理模型模拟光谱的精度,提高模型业务化动作能力,同时有效简化植被冠层光谱信息模拟过程中的参数获取问题并优化算法,加速计算过程,提高植被信息的反演能力。Based on the research results of the latest PROSPECT broad-leaf model and SAIL canopy model, the present invention couples the PROSPECT model for simulating broad-leaf leaf spectral information with the SAIL model for simulating canopy spectral information, making full use of available parameters to save leaves In the process of spectral simulation, the process of inputting leaf reflectance and transmittance in the process of vegetation canopy reflectance simulation is canceled, and the leaf model simulation algorithm is added to the canopy SAIL model to complete the coupling process, and the canopy spectrum is directly simulated by vegetation physical and chemical parameters. Coupling with the latest research results of the physical model can greatly improve the accuracy of the physical model simulation spectrum, improve the model's operational capability, and effectively simplify the parameter acquisition problem and optimize the algorithm in the simulation process of vegetation canopy spectral information, speed up the calculation process, and improve the vegetation performance. information retrieval capability.

附图说明Description of drawings

图1为本发明原理图;Fig. 1 is a schematic diagram of the present invention;

图2为本发明输入的模型参数;Fig. 2 is the model parameter that the present invention inputs;

图3为本发明实验结果Fig. 3 is experimental result of the present invention

具体实施方式Detailed ways

以下结合附图对本发明进行进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.

本发明采用热点效应改进后的SAILH冠层模型为基础,首先将给定的参数进行分类,分为叶片参数和冠层参数两部分,之后利用叶片的理化参数,计算叶片的基础吸收作用,再结合无界面吸收作用下的透射率计算导出单层平板的反射率与透射率,最后利用分层理论导出给定结构参数下叶片的光谱信息;同时,对于冠层参数首先利用给定的叶倾角分布模型参数计算叶型分布要素,再结合计算出的几何要素计算冠层模型的消光系数及散射系数并与叶型分布模型结合,经过循环过程得到完整叶片分布下的成套冠层参数,最后,利用求得的两个辐射参数及天空散射系数求定冠层的反射率。The present invention adopts the improved SAILH canopy model based on the hot spot effect, firstly classifies the given parameters, and divides them into two parts: leaf parameters and canopy parameters, and then uses the physical and chemical parameters of the leaves to calculate the basic absorption of the leaves, and then The reflectance and transmittance of a single-layer flat plate are derived from the calculation of the transmittance under the action of no interface absorption, and finally the spectral information of the leaves under the given structural parameters is derived by using the layering theory; at the same time, for the canopy parameters, the given leaf inclination angle is first used The distribution model parameters are used to calculate the leaf type distribution elements, and then combined with the calculated geometric elements to calculate the extinction coefficient and scattering coefficient of the canopy model and combined with the leaf type distribution model, a complete set of canopy parameters under the complete leaf distribution is obtained through a cyclic process. Finally, The reflectivity of the canopy is determined by using the obtained two radiation parameters and the sky scattering coefficient.

本实施案例以高速公路边某颗生长情况良好且冠层光谱容易测定的树为例对本发明的技术方案进行进一步说明。如附图所示,本发明所涉及的改进型物理模型PROSAILH的计算方法如下:In this implementation case, a tree in good growth condition and whose canopy spectrum can be easily measured by the highway is taken as an example to further illustrate the technical solution of the present invention. As shown in the accompanying drawings, the calculation method of the improved physical model PROSAILH involved in the present invention is as follows:

经过测定,该树的参数如下表:After determination, the parameters of the tree are as follows:

叶绿素含量Chlorophyll content 45.8045.80 叶倾角分布类型Leaf inclination distribution type 倾斜型Inclined 等效水厚度Equivalent water thickness 0.020.02 叶面积指数LAI 4.304.30 干物质含量dry matter content 0.020.02 太阳天顶角solar zenith angle 30.0030.00 叶片结构参数Blade structure parameters 1.301.30 观测天顶角observation zenith angle 10.0010.00 热点hotspot 8.008.00 相对方位角relative azimuth 0.00 0.00

选择实验波长为400nm-2399nmSelect the experimental wavelength as 400nm-2399nm

S1参数分类:在得到植被的相关参数后分为两部分,其中叶片参数包括叶片的色素含量、等效水厚度、干物质含量及最大入射角(一般为59度);冠层参数包括叶倾角分布参数、叶面积指数、太阳天顶角、观测天顶角、相对方位角及热点和土壤的背景反射率。S1 parameter classification: After obtaining the relevant parameters of the vegetation, it is divided into two parts. Among them, the leaf parameters include the pigment content of the leaves, the equivalent water thickness, the dry matter content and the maximum incident angle (generally 59 degrees); the canopy parameters include the leaf inclination angle. Distribution parameters, leaf area index, solar zenith angle, observed zenith angle, relative azimuth, and background reflectance of hotspots and soils.

S2:叶片光谱信息解算:在取得相应参数后,首先需要计算单个叶片的光谱反射率及透射率,计算方案如下:S2: Leaf spectral information calculation: After obtaining the corresponding parameters, it is first necessary to calculate the spectral reflectance and transmittance of a single leaf. The calculation scheme is as follows:

(1)吸收系数K计算:吸收系数是叶片各种化学物质含量的线性表达,计算公式为:(1) Calculation of the absorption coefficient K: the absorption coefficient is a linear expression of the content of various chemical substances in the leaves, and the calculation formula is:

(2)无界面吸收作用下透射率计算:自然光线可看作是非极化光,反射后发生完全极化,透射后折射光线发生部分极化。根据Snell-Descarts定律可知道两种介质接触面上入射角与折射角及两个折射率之间的关系,再根据 Schanda给出的电磁波穿过两种介质的透射率即可计算出光线以α立体角由折射率为1的空气入射折射率为n的叶片的平均透射率tav(α,1,n),此时赋予其代码t12,根据Stern的研究成果,光线从折射率为n的叶片射入折射率为1的空气透射率t21与t12之间存在关系式t21=n-2t12,据此计算出界面处的透射率。(2) Calculation of transmittance without interface absorption: natural light can be regarded as non-polarized light, fully polarized after reflection, and partially polarized by refracted light after transmission. According to the Snell-Descarts law, the relationship between the incident angle, the refraction angle and the two refractive indices on the contact surface of the two media can be known, and then the transmission rate of the electromagnetic wave passing through the two media given by Schanda can be calculated. The solid angle is determined by the average transmittance t av (α,1,n) of the blade with the incident refractive index n of the air with a refractive index of 1. At this time, it is given the code t 12 . According to the research results of Stern, the light from the refractive index n There is a relational formula t 21 =n −2 t 12 between the air transmittance t 21 and t 12 of the blade incident refractive index of 1, and the transmittance at the interface is calculated accordingly.

(3)光线在各向同性介质中的传输:对于自然光,其透过平板介质的总透射率τ为整个半球2π空间内的积分,与吸收系数K及叶片厚度D相关,计算公式为:(3) Transmission of light in isotropic media: For natural light, the total transmittance τ through the flat medium is the integral in the 2π space of the entire hemisphere, which is related to the absorption coefficient K and the blade thickness D. The calculation formula is:

(4)单层平板光谱模拟:单层平板的光谱是整个叶片光谱模拟的核心,主要包括单层平板的反射率及透射率,其计算公式为:(4) Single-layer plate spectrum simulation: The spectrum of a single-layer plate is the core of the spectrum simulation of the entire leaf, mainly including the reflectance and transmittance of a single-layer plate, and its calculation formula is:

(5)单片叶反射率及透射率模拟:Stokes对光线穿透有限层平板后的光学现象进行了深入研究,得出了光线穿过N层相同反射率和透射率的平板后的总体反射率和透射率,此时应用其理论可得出叶片光谱信息的模拟公式:(5) Simulation of reflectance and transmittance of a single leaf: Stokes conducted an in-depth study of the optical phenomenon after light penetrates a finite-layer plate, and obtained the overall reflection of light passing through a plate with N layers of the same reflectance and transmittance rate and transmittance, at this time, the simulation formula of leaf spectral information can be obtained by applying its theory:

其中: in:

S3:计算消光系数及散射系数S3: Calculation of extinction coefficient and scattering coefficient

(6)几何要素计算:(6) Calculation of geometric elements:

(7)叶型分布要素计算:(7) Calculation of leaf shape distribution elements:

平均叶倾角分布下的一般叶倾角分布:植被冠层的不同类型对应于不同的植被叶片倾斜角度,同时对应于两个叶分布参数LIDFa和LIDFb。在非椭球形分布的情况下,可根据平均叶倾角计算一般倾角,计算过程可用一个简单的迭代完成,伪代码为:General leaf inclination angle distribution under average leaf inclination angle distribution: Different types of vegetation canopy correspond to different vegetation leaf inclination angles, corresponding to two leaf distribution parameters LIDFa and LIDFb at the same time. In the case of non-ellipsoidal distributions, the general inclination can be calculated from the average leaf inclination, which can be done in a simple iteration with the pseudocode:

x=2θx=2θ

y=LIDFa·sin(x)+0.5LIDFb·sin(2x)y=LIDFa sin(x)+0.5LIDFb sin(2x)

dx=0.5(y‐x+2θ)dx=0.5(y-x+2θ)

x=x+dxx=x+dx

直到|dx|<t;until |dx|<t;

则F(θ)=2(y+θ)/πThen F(θ)=2(y+θ)/π

其中θ为平均叶倾角的离散值,F(θ)为累积叶倾角。where θ is the discrete value of the mean leaf inclination and F(θ) is the cumulative leaf inclination.

对于椭球形分布,参数LIDFa表示的是分布角度,为30度,参数LIDFb 为0,在求一般角度分布时,可利用Campbell(1986)所作的叶倾角密度函数求得。For the ellipsoidal distribution, the parameter LIDFa represents the distribution angle, which is 30 degrees, and the parameter LIDFb is 0. When calculating the general angle distribution, it can be obtained by using the leaf inclination angle density function made by Campbell (1986).

(8)消光及散射系数计算:(8) Calculation of extinction and scattering coefficient:

阴影补偿:Shadow compensation:

①与消光和散射相关的几何因子计算:首先给叶倾角分布加权并离散化,得到一组离散化的中心角度值叶倾角分布。之后,每个叶倾角对应计算一组消光与散射因子,单次计算方案如下:① Calculation of geometric factors related to extinction and scattering: firstly, the leaf inclination distribution is weighted and discretized to obtain a set of discretized center angle value leaf inclination distributions. Afterwards, a set of extinction and scattering factors is calculated corresponding to each leaf inclination angle, and the single calculation scheme is as follows:

首先求临界角βs和βo,计算公式为:Firstly, the critical angles β s and β o are calculated, and the calculation formula is:

当确定计算公式中分母不为0且cosβ的计算结果小于1时直接计算出两个临界角的值;当cosβ的计算结果大于1时,两个临介角均等于π;其中cosβ泛指βs和βo的余弦;When it is determined that the denominator in the calculation formula is not 0 and the calculation result of cosβ is less than 1, the values of the two critical angles are directly calculated; when the calculation result of cosβ is greater than 1, the two critical angles are equal to π; where cosβ generally refers to β cosine of s and β o ;

计算出两个临时界角后就可以计算太阳直射方向与观测方向的消光系数,计算公式分别为:After calculating the two temporary critical angles, the extinction coefficients of the direct sunlight direction and the observation direction can be calculated, and the calculation formulas are:

其中,L′=lai/h,lai为叶面积指数,h为冠层高度;Among them, L'=lai/h, lai is the leaf area index, h is the canopy height;

②用于计算双向散射系数W的辅助方位角β1、β2、β3计算:辅助方位角的计算主要取决于两个临界角的相对不等关系,取值方法如下:②Calculation of auxiliary azimuth angles β 1 , β 2 , and β 3 for calculating bidirectional scattering coefficient W: the calculation of auxiliary azimuth angles mainly depends on the relative inequality between the two critical angles, and the value method is as follows:

If:If: β1 beta 1 β2 beta 2 β3 beta 3 ψ≤|βso|ψ≤|β so | ψψ so|so | 2π-βso 2π-β so so|<ψ<2π-βso so |<ψ<2π-β so so|so | ψψ 2π-βso 2π-β so ψ≥2π-βso ψ≥2π-β so so|so | 2π-βso 2π-β so ψ ψ

其中,ψ为太阳方向与观测方向之间的相对方位角,即两个方向方位角之差;Among them, ψ is the relative azimuth between the sun direction and the observation direction, that is, the difference between the azimuth angles of the two directions;

得到三个辅助方位角后即可计算单叶片反射率与透射率相关的乘子,用于计算双向散射系数W。After obtaining the three auxiliary azimuth angles, the multiplier related to the reflectance and transmittance of a single blade can be calculated, which is used to calculate the bidirectional scattering coefficient W.

③双向散射系数计算:在得到辅助方位角后,配合S2中已计算得到的单叶片反射率和透射率即可计算得到双向散射系数,计算公式为:③Calculation of two-way scattering coefficient: After obtaining the auxiliary azimuth angle, the two-way scattering coefficient can be calculated in conjunction with the calculated single-blade reflectance and transmittance in S2, and the calculation formula is:

其中,ρ、τ、θl分别表示叶片的反射率、透射率及此时相应的叶倾角;令S2中的ρ=Rα(N);τ=Tα(N)。Among them, ρ, τ, θ l represent the reflectivity, transmittance and corresponding leaf inclination angle of the blade respectively; let ρ=R α (N) in S2; τ=T α (N).

模型参数解算Model parameter solution

(9)散射系数的计算(叶片反射率和透射率的加入):(9) Calculation of scattering coefficient (addition of blade reflectance and transmittance):

①漫辐射E‐和E+的后向散射系数计算公式为:① The calculation formulas for the backscattering coefficients of diffuse radiation E- and E+ are:

②漫辐射E-和E+的前向散射系数计算公式为:② The formula for calculating the forward scattering coefficient of diffuse radiation E- and E+ is:

③太阳直射辐射ES的后向散射系数计算公式为:③ The formula for calculating the backscattering coefficient of direct solar radiation E S is:

④太阳直射辐射ES的前向散射系数计算公式为:④ The formula for calculating the forward scattering coefficient of direct solar radiation E S is:

⑤漫辐射E-和E+的衰减系数计算公式为:⑤ The calculation formula of the attenuation coefficient of diffuse radiation E- and E+ is:

⑥观测方向E0的后向散射系数计算公式为:⑥ The formula for calculating the backscatter coefficient in the observation direction E 0 is:

⑦观测方向E0的前向散射系数计算公式为:⑦ The formula for calculating the forward scattering coefficient in the observation direction E 0 is:

对于任何冠层来说,叶片倾角不会是固定的,是一个从0到90不断增加的连续过程,因此确定整个冠层的模型参数时,计算方法为叶倾角分布函数作为概率函数F(θ)与模型参数乘积后再相加,计算公式为:For any canopy, the leaf inclination will not be fixed, it is a continuous process from 0 to 90, so when determining the model parameters of the entire canopy, the calculation method is the leaf inclination distribution function as the probability function F(θ ) and the model parameters are multiplied and then added, the calculation formula is:

Z=∑F(θl)Z(θl)Z=∑F(θ l )Z(θ l )

其中,F(θl)为叶倾角θl对应的一般叶倾角分布概率,Z(θl)为单叶片的参数, Z是经过叶倾角修正模型Z=∑F(θl)Z(θl)加以修正后的整个冠层的参数;,Z(θl) 指代步骤1)和步骤2)中得到的k(θl)、K(θl)、ω(θl)、σ(θl)、σ′(θl)、s(θl)、s′(θl)、 a(θl)、v(θl)、u(θl)中的任意一个;Z相应地指代针对整个冠层的SAIL模型四个微分方程中的所有系数k、K、w、σ、σ′、s、s′、a、v、u中的任意一个。Among them, F(θ l ) is the general leaf inclination angle distribution probability corresponding to the leaf inclination angle θ l , Z(θ l ) is the parameter of a single blade, and Z is the modified model of leaf inclination angle Z=∑F(θ l )Z(θ l ) to the parameters of the entire canopy after correction; Z(θ l ) refers to k(θ l ), K(θ l ), ω(θ l ), σ(θ l ), σ′(θ l ), s(θ l ), s′(θ l ), a(θ l ), v(θ l ), u(θ l ); Z refers to Any one of all coefficients k, K, w, σ, σ′, s, s′, a, v, u in the four differential equations of the SAIL model for the entire canopy.

S4:计算冠层的相关反射因子和反射率,包括太阳直射方向半球反射率、观测方向半球反射率和双直射反射率;S4: Calculate the relative reflectance factor and reflectance of the canopy, including the hemispherical reflectance in the direct sun direction, the hemispherical reflectance in the observation direction and the double direct reflectance;

(1)叶面积系数的加入:叶面积指数是评价植被冠层反射率的重要指标,其参数计算公式为:(1) Addition of leaf area index: leaf area index is an important indicator for evaluating the albedo of vegetation canopy, and its parameter calculation formula is:

τss=e-klai τ ss =e -klai

τoo=e-Klai τ oo = e -Klai

ρdd=(emlai-e-mlai)/(h1emlai-h2e-mlai)ρ dd =(e mlai -e -mlai )/(h 1 e mlai -h 2 e -mlai )

τdd=(h1-h2)/(h1emlai-h2e-mlai)τ dd =(h 1 -h 2 )/(h 1 e mlai -h 2 e -mlai )

(2)解的参数计算:加入热点效应后的参数较复杂,计算公式如下:(2) Calculation of the parameters of the solution: the parameters after adding the hot spot effect are more complicated, and the calculation formula is as follows:

ρsd=CS(1-τssτdd)-DSρdd ρ sd =C S (1-τ ss τ dd )-D S ρ dd

τsd=DSssdd)-CSτssρdd τ sd =D Sssdd )-C S τ ss ρ dd

ρdo=Co(1-τooτdd)-Doρdd ρ do =C o (1-τ oo τ dd )-D o ρ dd

τdo=Dooodd)-Coτooρdd τ do =D ooodd )-C o τ oo ρ dd

ρso=Ho(1-τssτoo)-Coτsdτoo-Doρsd ρ so =H o (1-τ ss τ oo )-C o τ sd τ oo -D o ρ sd

其中各个变量的计算方法为:The calculation method of each variable is as follows:

h1=(a+m)/σh 1 =(a+m)/σ

h2=(a-m)/σ=1/h1 h 2 =(am)/σ=1/h 1

CS=[s′(k-a)-sσ]/(k2-m2)C S =[s'(ka)-sσ]/(k 2 -m 2 )

Co=[v(K-a)-uσ]/(K2-m2)C o =[v(Ka)-uσ]/(K 2 -m 2 )

Ds=[-s(k+a)-s′σ]/(k2-m2)D s =[-s(k+a)-s'σ]/(k 2 -m 2 )

Do=[-u(K+a)-vσ]/(K2-m2)D o =[-u(K+a)-vσ]/(K 2 -m 2 )

Hs=(uCS+vDs+w)/(K+k)H s =(uC S +vD s +w)/(K+k)

Ho=(sCo+s′Do+w)/(K+k)H o =(sC o +s'D o +w)/(K+k)

(3)热点效应的修正:由于太阳辐射的问题,特别是稀疏植被区域的土壤和植被的温差相当大,这与其物理表面和气象特点相关,因此需要一个温度修正的过程,同时也可能提供额外的植被冠层信息。热点效应的修正过程为:(3) Correction of hotspot effect: Due to the problem of solar radiation, especially the temperature difference between soil and vegetation in sparsely vegetated areas is quite large, which is related to its physical surface and meteorological characteristics, so a temperature correction process is required, and it may also provide additional vegetation canopy information. The correction process of the hot spot effect is:

根据2/(k+K)效应进行热点纠正,首先根据给定的热点值计算参数:For hotspot correction according to the 2/(k+K) effect, first calculate the parameters according to the given hotspot value:

给定alf的初始值为alf=106Given that the initial value of alf is alf=10 6 ,

1)若热点值q大于0,则认为是有热点效应影响,此时 其中,θs为太阳天顶角、θo为观测天顶角、为太阳方位角;(若α计算结果大于200则其alf值为200);若alf的计算结果为0 则,计算出无阴影纯热点效应影响下的参数τssoo和sumint,计算公式为:1) If the hotspot value q is greater than 0, it is considered that there is a hotspot effect. At this time Among them, θ s is the solar zenith angle, θ o is the observation zenith angle, is the azimuth of the sun; (if the calculation result of α is greater than 200, its alf value is 200); if the calculation result of alf is 0, the parameters τ ssoo and sumint under the influence of pure hot spot effect without shadow are calculated, and the calculation formula is:

τssoo=τss τ ssoo = τ ss

若alf的计算结果不为0,则认为是无热点效应影响,按2)中的方法计算τssoo和sumint;If the calculation result of alf is not 0, it is considered that there is no hot spot effect, and τ ssoo and sumint are calculated according to the method in 2);

2)若热点值q为0,则认为是无热点效应影响,利用循环相加的方法计算出无热点效应影响下的参数τssoo和sumint:具体步骤为:2) If the hot spot value q is 0, it is considered that there is no hot spot effect, and the parameters τ ssoo and sumint under the no hot spot effect are calculated by the method of circular addition: the specific steps are:

第一步给出循环中的初始参数:The first step gives the initial parameters in the loop:

fhot=lai*sqrt(K*k);fhot=lai*sqrt(K*k);

x1=0;x1=0;

y1=0;y1=0;

f1=1;f1=1;

fint=(‐exp(‐alf))*0.05;fint=(-exp(-alf))*0.05;

sumint=0;sumint = 0;

第二步计算参数:The second step calculates the parameters:

最后令τssoo=f1;Finally let τ ssoo = f1;

上述代码中的*表示乘法;The * in the above code means multiplication;

在程序计算中,前19次循环中令中间参数x2根据给定公式计算结果并代入后面的公式中计算出sumint,第20次循环中令中间参数x2值为1并代入后面的公式中计算出sumint,令τssoo等于第20次循环计算出的f1。In the program calculation, in the first 19 cycles, let the intermediate parameter x2 calculate the result according to the given formula and substitute it into the following formula to calculate sumt; in the 20th cycle, set the value of the intermediate parameter x2 to 1 and substitute it into the following formula to calculate sumt sumint, let τ ssoo be equal to f1 calculated in the 20th loop.

(4)双向反射率计算:双向反射率包括两部分,一部分带热点效应,另一部分未带热点效应,两部分求和为最终的计算结果:(4) Two-way reflectivity calculation: The two-way reflectivity includes two parts, one with hot spot effect and the other without hot spot effect. The sum of the two parts is the final calculation result:

ρso2=ρso+w*lai*sumρ so2 =ρ so +w*lai*sum

(5)土壤反射作用的引入:土壤位于整个冠层反射系统的最底部,电磁波穿透冠层后会射到土壤地面,经反射后再次反射回冠层顶部,形成冠层反射率的一部分,计算方案为:1-rsdd (5) The introduction of soil reflection: the soil is located at the bottom of the entire canopy reflection system. After the electromagnetic wave penetrates the canopy, it will hit the soil ground and reflect back to the top of the canopy after reflection, forming a part of the canopy reflectance. The calculation scheme is: 1-r sdd

(6)双半球反射率因子计算:(6) Calculation of the reflectivity factor of the two hemispheres:

(7)太阳直射方向半球反射率计算:(7) Calculation of hemispherical reflectance in the direction of direct sunlight:

ρsd2=ρdd+(τsdss)*rsdd/(1-rs*ρdd)ρ sd2 =ρ dd +(τ sdss )*r sdd /(1-rs*ρ dd )

(8)观测方向半球反射率计算:(8) Calculation of hemispherical reflectance in the observation direction:

ρdo2=ρdo+(τdooo)*rsdd/(1-rs*ρdd)ρ do2 =ρ do +(τ dooo )*r sdd /(1-rs*ρ dd )

(9)双直射反射率计算:(9) Calculation of double direct reflectance:

ρsod2=ρso+((τsssd)*τdo+(τsdss*rsdd)*τoo)*rs/(1-rs*ρdd)ρ sod2 =ρ so +((τ sssd )*τ do +(τ sdss *r sdd )*τ oo )*r s /(1-rs*ρ dd )

ρso3=ρso2sossoo*rs ρ so3 =ρ so2sossoo *r s

S5:计算冠层反射率:S5: Calculate canopy reflectance:

根据数据库资料可以将太阳直射光线与大气散射光线的基本辐射量求得,分别为ES和Ed,其次计算大气散射系数skyl参数:According to the data in the database, the basic radiation amounts of direct sunlight and atmospheric scattered light can be obtained, which are E S and E d respectively, and then calculate the skyl parameter of the atmospheric scattering coefficient:

sskyl=0.847-1.61*sin(90-θs)+1.04*sin(90-θs)2 sskyl=0.847-1.61*sin(90-θ s )+1.04*sin(90-θ s ) 2

冠层反射率的计算方法为观测方向测定到的辐射量与入射的辐射量的比值,公式为:The calculation method of the canopy reflectance is the ratio of the measured radiation amount in the observation direction to the incident radiation amount, and the formula is:

计算出的植被反射率如图3所。The calculated vegetation reflectance is shown in Figure 3.

本次选取的高速公路路域植被理化参数及对比所用光谱均为实测值,模型模拟结果利用RMSE确定可用性及精度问题。The physical and chemical parameters of the vegetation in the highway area selected this time and the spectra used for comparison are all measured values, and the RMSE is used to determine the usability and accuracy of the model simulation results.

经检测,该模型本例模拟的光谱信息均方根误差(RMSE)为0.15706,模拟算法模拟结果可用且精度较高。After testing, the root mean square error (RMSE) of the spectral information simulated by this model in this example is 0.15706, and the simulation results of the simulation algorithm are available and have high precision.

所描述的实例是本发明的一部分实例,而不是全部实例,不能理解为对本发明的限制。基于本发明中的实例,本领域普通技术人员在没有做出创新性劳动的前提下所获得的所有其他实施方式都属于本发明的保护范围。The described examples are some, not all examples of the present invention, and should not be construed as limiting the present invention. Based on the examples in the present invention, all other implementations obtained by persons of ordinary skill in the art without making innovative efforts belong to the protection scope of the present invention.

Claims (3)

1.一种阔叶植被冠层反射率的计算方法,其特征在于,包括以下步骤:1. a calculation method of broad-leaved vegetation canopy albedo, is characterized in that, comprises the following steps: S1:参数识别;S1: parameter identification; 输入模型参数;并将输入的参数初步分为三大类:叶片参数、土壤参数和冠层参数;Input the model parameters; and initially divide the input parameters into three categories: leaf parameters, soil parameters and canopy parameters; S2:根据步骤S1中的叶片参数输入PROSPECT模型进行单片叶光谱模拟,计算单个叶片的光谱反射率及透射率;S2: Input the PROSPECT model according to the leaf parameters in step S1 to simulate the spectrum of a single leaf, and calculate the spectral reflectance and transmittance of a single leaf; S3:根据步骤S1中的土壤参数和冠层参数、步骤S2得到的单个叶片的光谱反射率及透射率计算消光系数及散射系数;S3: Calculate the extinction coefficient and the scattering coefficient according to the soil parameters and canopy parameters in step S1, the spectral reflectance and transmittance of a single leaf obtained in step S2; S4:将步骤S3计算得到的消光系数及散射系数输入SAIL模型,计算冠层的相关反射因子和反射率;S4: Input the extinction coefficient and the scattering coefficient calculated in step S3 into the SAIL model, and calculate the relevant reflection factor and reflectance of the canopy; S5:计算冠层反射率;S5: Calculate canopy reflectance; 所述步骤S2具体包括以下步骤:The step S2 specifically includes the following steps: S2.1:计算吸收系数K:S2.1: Calculate the absorption coefficient K: <mrow> <mi>K</mi> <mo>=</mo> <mo>&amp;Sigma;</mo> <mfrac> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>*</mo> <mi>k</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </mrow> <mrow><mi>K</mi><mo>=</mo><mo>&amp;Sigma;</mo><mfrac><mrow><mi>c</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>*</mo><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow><mi>N</mi></mfrac></mrow> 其中,c(i)为叶片中组分i的浓度;k(i)为组分i的特定吸收系数;N为叶片结构参数,表示叶片分层数;N采用以下经验方程计算得到:Among them, c(i) is the concentration of component i in the leaf; k(i) is the specific absorption coefficient of component i; N is the leaf structure parameter, indicating the number of leaf layers; N is calculated by the following empirical equation: N=(0.9*SLA+0.025)/(SLA-0.1)N=(0.9*SLA+0.025)/(SLA-0.1) 其中,SLA为比叶面积,指每单位干重的叶面积;Among them, SLA is the specific leaf area, which refers to the leaf area per unit dry weight; S2.2:计算界面处的透射率:S2.2: Calculate the transmittance at the interface: 计算出光线以立体角α由折射率为1的空气入射折射率为n的叶片的平均透射率tav(α,1,n),令t12=tav(α,1,n);Calculate the average transmittance t av (α, 1, n) of the light from air with a refractive index of 1 incident on a blade with a refractive index n at a solid angle α, let t 12 =t av (α, 1, n); S2.3:计算光线透过平板介质的总透射率τ1S2.3: Calculate the total transmittance τ 1 of the light passing through the flat medium; <mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>K</mi> <mi>D</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>K</mi> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mi>D</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>K</mi> <mi>D</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <msup> <mi>t</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>exp</mi> <mrow> <mo>-</mo> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> </mrow> <mrow><msub><mi>&amp;tau;</mi><mn>1</mn></msub><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>K</mi><mi>D</mi><mo>)</mo></mrow><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mi>K</mi><mi>D</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mo>(</mo><mi>K</mi><mi>D</mi><mo>)</mo></mrow><mn>2</mn></msup><msubsup><mo>&amp;Integral;</mo><mrow><mi>K</mi><mi>D</mi></mrow><mi>&amp;infin;</mi></msubsup><msup><mi>t</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>exp</mi><mrow><mo>-</mo><mi>t</mi></mrow></msup><mi>d</mi><mi>t</mi></mrow> 其中,t为中间变量,K为吸收系数,D为叶片厚度;Among them, t is the intermediate variable, K is the absorption coefficient, and D is the blade thickness; S2.4:计算单层平板的反射率Rα(1)及透射率Tα(1):S2.4: Calculate the reflectance R α (1) and transmittance T α (1) of the single-layer flat plate: <mrow> <msub> <mi>R</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>12</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>n</mi> <mn>4</mn> </msup> <mo>-</mo> <msup> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mrow><msub><mi>R</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><msub><mi>t</mi><mn>12</mn></msub><mo>+</mo><mfrac><mrow><msup><msub><mi>&amp;tau;</mi><mn>1</mn></msub><mn>2</mn></msup><msubsup><mi>t</mi><mn>12</mn><mn>2</mn></msubsup><mrow><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><msub><mi>t</mi><mn>12</mn></msub><mo>)</mo></mrow></mrow><mrow><msup><mi>n</mi><mn>4</mn></msup><mo>-</mo><msup><msub><mi>&amp;tau;</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mrow><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><msub><mi>t</mi><mn>12</mn></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow> <mrow> <msub> <mi>T</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>12</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <msup> <mi>n</mi> <mn>4</mn> </msup> <mo>-</mo> <msup> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mrow><msub><mi>T</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><msup><msub><mi>&amp;tau;</mi><mn>1</mn></msub><mn>2</mn></msup><msubsup><mi>t</mi><mn>12</mn><mn>2</mn></msubsup></mrow><mrow><msup><mi>n</mi><mn>4</mn></msup><mo>-</mo><msup><msub><mi>&amp;tau;</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mrow><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><msub><mi>t</mi><mn>12</mn></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow> 其中,n为叶片的折射率;Among them, n is the refractive index of the blade; S2.5:计算单片叶反射率Rα(N)及透射率Tα(N),即光线穿过N层相同反射率和透射率的平板后的总体反射率和透射率:S2.5: Calculate the reflectance R α (N) and transmittance T α (N) of a single leaf, that is, the overall reflectance and transmittance after the light passes through N plates with the same reflectance and transmittance: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>ab</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <msub> <mi>T</mi> <mn>90</mn> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>-</mo> <msub> <mi>R</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <msub> <mi>R</mi> <mn>90</mn> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>ab</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>R</mi> <mn>90</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><msub><mi>R</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mfrac><mrow><msub><mi>R</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>ab</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>a</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msub><mi>T</mi><mi>&amp;alpha;</mi></msub><mo>(</mo><mn>1</mn><mo>)</mo><msub><mi>T</mi><mn>90</mn></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>-</mo><msub><mi>R</mi><mi>&amp;alpha;</mi></msub><mo>(</mo><mn>1</mn><mo>)</mo><msub><mi>R</mi><mn>90</mn></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>b</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><msup><mi>ab</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>a</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>-</mo><msub><mi>R</mi><mn>90</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>b</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></mfrac></mrow></mtd></mtr></mtable></mfenced> <mrow> <msub> <mi>T</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>T</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>-</mo> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>ab</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>R</mi> <mn>90</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>N</mi> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>T</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>T</mi><mi>&amp;alpha;</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><msup><mi>a</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><msup><mi>ab</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>a</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>-</mo><msub><mi>R</mi><mn>90</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>b</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>-</mo><msup><mi>b</mi><mrow><mn>1</mn><mo>-</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></mfrac></mrow> 其中: in: <mrow> <mi>&amp;delta;</mi> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>90</mn> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>T</mi> <mn>90</mn> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <msub> <mi>T</mi> <mn>90</mn> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow><mi>&amp;delta;</mi><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>R</mi><mn>90</mn></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><msub><mi>T</mi><mn>90</mn></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mn>4</mn><msub><mi>T</mi><mn>90</mn></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mo>;</mo></mrow> 所述步骤S3具体包括以下步骤:The step S3 specifically includes the following steps: S3.1阴影补偿:S3.1 Shadow Compensation: ①计算与消光和散射相关的几何因子:① Calculate the geometric factors related to extinction and scattering: 首先根据一般叶倾角分布概率加权并离散化,得到一组离散化的叶倾角(即水平面法线方向和叶片法线方向夹角);之后,计算每个叶倾角对应的消光与散射因子;对于叶倾角θl,计算方法如下:Firstly, it is weighted and discretized according to the distribution probability of general leaf inclination angles to obtain a set of discretized leaf inclination angles (that is, the angle between the normal direction of the horizontal plane and the normal direction of the leaves); after that, the extinction and scattering factors corresponding to each leaf inclination angle are calculated; for Leaf inclination angle θ l , the calculation method is as follows: 首先,求临界角βs和βo,计算公式为:First, calculate the critical angles β s and β o , the calculation formula is: <mrow> <msub> <mi>&amp;beta;</mi> <mi>s</mi> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>cos&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;beta;</mi><mi>s</mi></msub><mo>=</mo><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><msub><mi>cos&amp;theta;</mi><mi>l</mi></msub><msub><mi>cos&amp;theta;</mi><mi>s</mi></msub></mrow><mrow><msub><mi>sin&amp;theta;</mi><mi>l</mi></msub><msub><mi>sin&amp;theta;</mi><mi>s</mi></msub></mrow></mfrac><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>&amp;beta;</mi> <mi>o</mi> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>cos&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>o</mi> </msub> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>o</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;beta;</mi><mi>o</mi></msub><mo>=</mo><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><msub><mi>cos&amp;theta;</mi><mi>l</mi></msub><msub><mi>cos&amp;theta;</mi><mi>o</mi></msub></mrow><mrow><msub><mi>sin&amp;theta;</mi><mi>l</mi></msub><msub><mi>sin&amp;theta;</mi><mi>o</mi></msub></mrow></mfrac><mo>)</mo></mrow></mrow> 其中,θs为太阳天顶角、θo为观测天顶角;Among them, θ s is the solar zenith angle, θ o is the observation zenith angle; 当确定计算公式中分母不为0且cosβ的计算结果小于1时直接计算出两个临界角的值;当cosβ的计算结果等于1时,两个临介角均等于π;其中cosβ泛指βs和βo的余弦;When it is determined that the denominator in the calculation formula is not 0 and the calculation result of cosβ is less than 1, the values of the two critical angles are directly calculated; when the calculation result of cosβ is equal to 1, the two critical angles are equal to π; where cosβ generally refers to β cosine of s and β o ; 然后,计算叶倾角为θl的单个叶片太阳直射方向与观测方向的消光系数,计算公式分别为:Then, calculate the extinction coefficient of a single leaf in the direct sunlight direction and the observation direction with the leaf inclination angle θl , and the calculation formulas are respectively: <mrow> <mi>k</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mi>s</mi> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <msub> <mi>cos&amp;theta;</mi> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;</mi> <mi>s</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>s</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>l</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow><mi>k</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mn>2</mn><mi>&amp;pi;</mi></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mo>&amp;lsqb;</mo><mrow><mo>(</mo><msub><mi>&amp;beta;</mi><mi>s</mi></msub><mo>-</mo><mfrac><mi>&amp;pi;</mi><mn>2</mn></mfrac><mo>)</mo></mrow><msub><mi>cos&amp;theta;</mi><mi>l</mi></msub><mo>+</mo><msub><mi>sin&amp;beta;</mi><mi>s</mi></msub><msub><mi>tan&amp;theta;</mi><mi>s</mi></msub><msub><mi>sin&amp;theta;</mi><mi>l</mi></msub><mo>&amp;rsqb;</mo></mrow> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>2</mn> <mi>&amp;pi;</mi> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mi>o</mi> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <msub> <mi>cos&amp;theta;</mi> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;</mi> <mi>o</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>o</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>l</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow><mi>K</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mn>2</mn><mi>&amp;pi;</mi></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mo>&amp;lsqb;</mo><mrow><mo>(</mo><msub><mi>&amp;beta;</mi><mi>o</mi></msub><mo>-</mo><mfrac><mi>&amp;pi;</mi><mn>2</mn></mfrac><mo>)</mo></mrow><msub><mi>cos&amp;theta;</mi><mi>l</mi></msub><mo>+</mo><msub><mi>sin&amp;beta;</mi><mi>o</mi></msub><msub><mi>tan&amp;theta;</mi><mi>o</mi></msub><msub><mi>sin&amp;theta;</mi><mi>l</mi></msub><mo>&amp;rsqb;</mo></mrow> 其中,L′=lai/h,lai为叶面积指数,h为冠层高度;Among them, L'=lai/h, lai is the leaf area index, h is the canopy height; ②计算辅助方位角β1、β2、β3:取值方法如下:②Calculation of auxiliary azimuth angles β 1 , β 2 , β 3 : the value method is as follows: If:If: β1ββ 1 β β2ββ 2 β β3ββ 3 β ψ≤|βso|ψ≤|β so | ψψ so|so | 2π-βso 2π-β so so|<ψ<2π-βso so |<ψ<2π-β so so|so | ψψ 2π-βso 2π-β so ψ≥2π-βso ψ≥2π-β so so|so | 2π-βso 2π-β so ψψ
其中,ψψ为太阳方向与观测方向之间的相对方位角,即两个方向方位角之差;Among them, ψψ is the relative azimuth between the sun direction and the observation direction, that is, the difference between the azimuth angles of the two directions; ③计算双向散射系数ω(θl):③ Calculate the two-way scattering coefficient ω(θ l ): 在得到辅助方位角后,配合S2中已计算得到的单叶片反射率Rα(N)及透射率Tα(N)和透射率计算得到双向散射系数,计算公式为:After the auxiliary azimuth angle is obtained, the two-way scattering coefficient can be obtained by combining the single-blade reflectance R α (N) and transmittance T α (N) and transmittance calculated in S2. The calculation formula is: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>{</mo> <mo>&amp;lsqb;</mo> <mi>&amp;pi;</mi> <mi>&amp;rho;</mi> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>+</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>s</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>o</mi> </msub> <mi>cos</mi> <mi>&amp;Psi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>(</mo> <mi>&amp;rho;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>&amp;tau;</mi> <mo>)</mo> <msub> <mi>sin&amp;beta;</mi> <mn>2</mn> </msub> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> </mrow> <mrow> <msub> <mi>cos&amp;beta;</mi> <mi>s</mi> </msub> <msub> <mi>cos&amp;beta;</mi> <mi>o</mi> </msub> </mrow> </mfrac> <mo>+</mo> <msub> <mi>cos&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>cos&amp;beta;</mi> <mn>3</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>s</mi> </msub> <msub> <mi>tan&amp;theta;</mi> <mi>o</mi> </msub> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>&amp;omega;</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mrow><mn>2</mn><mi>&amp;pi;</mi></mrow></mfrac><mo>{</mo><mo>&amp;lsqb;</mo><mi>&amp;pi;</mi><mi>&amp;rho;</mi><mo>-</mo><msub><mi>&amp;beta;</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>&amp;tau;</mi><mo>+</mo><mi>p</mi><mo>)</mo></mrow><mo>&amp;rsqb;</mo><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><msub><mi>tan&amp;theta;</mi><mi>s</mi></msub><msub><mi>tan&amp;theta;</mi><mi>o</mi></msub><mi>cos</mi><mi>&amp;Psi;</mi><mo>)</mo></mrow><mo>+</mo><mo>(</mo><mi>&amp;rho;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mi>&amp;tau;</mi><mo>)</mo><msub><mi>sin&amp;beta;</mi><mn>2</mn></msub><mo>&amp;lsqb;</mo><mfrac><mrow><mn>2</mn><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub></mrow><mrow><msub><mi>cos&amp;beta;</mi><mi>s</mi></msub><msub><mi>cos&amp;beta;</mi><mi>o</mi></msub></mrow></mfrac><mo>+</mo><msub><mi>cos&amp;beta;</mi><mn>1</mn></msub><msub><mi>cos&amp;beta;</mi><mn>3</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><msub><mi>tan&amp;theta;</mi><mi>s</mi></msub><msub><mi>tan&amp;theta;</mi><mi>o</mi></msub><mo>&amp;rsqb;</mo><mo>}</mo></mrow></mtd></mtr></mtable></mfenced> 其中,ρ、τ、θl分别表示叶片的反射率、透射率及此时相应的叶倾角;ρ=Rα(N);τ=Tα(N);Among them, ρ, τ, θ l represent the reflectivity, transmittance and corresponding leaf inclination angle of the blade respectively; ρ=R α (N); τ=T α (N); S3.2计算加入叶片反射率和透射率后的散射系数:S3.2 Calculate the scattering coefficient after adding the reflectance and transmittance of the blade: ①漫辐射E-和E+的后向散射系数计算公式为:① The formula for calculating the backscatter coefficient of diffuse radiation E- and E+ is: <mrow> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;tau;</mi> <mo>+</mo> <mi>&amp;rho;</mi> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><mi>&amp;sigma;</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><mfrac><mrow><mi>&amp;tau;</mi><mo>+</mo><mi>&amp;rho;</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow></mrow> ②漫辐射E-和E+的前向散射系数计算公式为:② The formula for calculating the forward scattering coefficient of diffuse radiation E- and E+ is: <mrow> <msup> <mi>&amp;sigma;</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;tau;</mi> <mo>+</mo> <mi>&amp;rho;</mi> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>&amp;sigma;</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><mfrac><mrow><mi>&amp;tau;</mi><mo>+</mo><mi>&amp;rho;</mi></mrow><mn>2</mn></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow></mrow> ③太阳直射辐射ES的后向散射系数计算公式为:③ The formula for calculating the backscattering coefficient of direct solar radiation E S is: <mrow> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mi>k</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> </mrow> <mrow><mi>s</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>+</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><mi>k</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>-</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub></mrow> ④太阳直射辐射ES的前向散射系数计算公式为:④ The formula for calculating the forward scattering coefficient of direct solar radiation E S is: <mrow> <msup> <mi>s</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mi>k</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> </mrow> <mrow><msup><mi>s</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>+</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><mi>k</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub></mrow> ⑤漫辐射E-和E+的衰减系数计算公式为:⑤ The calculation formula of the attenuation coefficient of diffuse radiation E- and E+ is: <mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><mi>a</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>L</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>+</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow></mrow> ⑥观测方向辐射E0的后向散射系数计算公式为:⑥ The formula for calculating the backscatter coefficient of radiation E 0 in the observation direction is: <mrow> <mi>v</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> </mrow> <mrow><mi>v</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>+</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><mi>K</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub></mrow> ⑦观测方向辐射E0的前向散射系数计算公式为:⑦ The formula for calculating the forward scattering coefficient of radiation E 0 in the observation direction is: <mrow> <mi>u</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <msup> <mi>L</mi> <mo>&amp;prime;</mo> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;theta;</mi> <mi>l</mi> </msub> </mrow> <mrow><mi>u</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>+</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><mi>K</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>l</mi></msub><mo>)</mo></mrow><mo>-</mo><mfrac><mrow><mi>&amp;rho;</mi><mo>-</mo><mi>&amp;tau;</mi></mrow><mn>2</mn></mfrac><msup><mi>L</mi><mo>&amp;prime;</mo></msup><msup><mi>cos</mi><mn>2</mn></msup><msub><mi>&amp;theta;</mi><mi>l</mi></msub></mrow> S3.3首先针对①中离散化得到的每一个叶倾角θ,计算其对应的一般叶倾角分布概率F(θ):S3.3 First, for each leaf inclination θ obtained by discretization in ①, calculate its corresponding general leaf inclination distribution probability F(θ): 在非椭球形分布的情况下,根据平均叶倾角计算一般叶倾角分布概率,计算过程通过以下迭代完成:In the case of non-ellipsoidal distributions, the general leaf inclination distribution probability is calculated from the mean leaf inclination, and the calculation process is done by the following iterations: x=2θx=2θ y=LIDFa·sin(x)+0.5LIDFb·sin(2x)y=LIDFa sin(x)+0.5LIDFb sin(2x) dx=0.5(y-x+2θ)dx=0.5(y-x+2θ) x=x+dxx=x+dx 直到|dx|<t;until |dx|<t; 则F(θ)=2(y+θ)/π;Then F(θ)=2(y+θ)/π; 其中,LIDFa和LIDFb为叶分布参数;θ为平均叶倾角的离散值,F(θ)为累积叶倾角,即一般叶倾角分布概率;Among them, LIDFa and LIDFb are the leaf distribution parameters; θ is the discrete value of the average leaf inclination, F(θ) is the cumulative leaf inclination, that is, the general leaf inclination distribution probability; 对于椭球形分布,利用Campbell叶倾角密度函数求一般叶倾角分布概率F(θ);For the ellipsoidal distribution, the general leaf inclination distribution probability F(θ) is obtained by using the Campbell leaf inclination density function; S3.4确定整个冠层的模型参数;S3.4 determine the model parameters of the entire canopy; 将①中离散化得到的各个叶倾角对应的叶倾角分布概率分别与模型参数相乘后再相加,得到新的模型参数,计算公式为:Multiply the leaf inclination angle distribution probability corresponding to each leaf inclination angle obtained by discretization in (1) by the model parameters and then add them together to obtain new model parameters. The calculation formula is: Z=∑F(θl)Z(θl)Z=∑F(θ l )Z(θ l ) 其中,F(θl)为叶倾角θl对应的一般叶倾角分布概率,Z(θl)指代步骤S3.1和S3.2中得到的k(θl)、K(θl)、ω(θl)、σ(θl)、σ′(θl)、s(θl)、s′(θl)、a(θl)、v(θl)、u(θl)中的任意一个;Z相应地指代针对整个冠层的SAIL模型四个微分方程中的所有系数k、K、w、σ、σ′、s、s′、a、v、u中的任意一个。Among them, F(θ l ) is the general leaf inclination angle distribution probability corresponding to leaf inclination angle θ l , and Z(θ l ) refers to k(θ l ), K(θ l ), ω(θ l ), σ(θ l ), σ′(θ l ), s(θ l ), s′(θ l ), a(θ l ), v(θ l ), u(θ l ) Any one of ; Z correspondingly refers to any one of all coefficients k, K, w, σ, σ′, s, s′, a, v, u in the four differential equations of the SAIL model for the entire canopy.
2.根据权利要求1所述的阔叶植被冠层反射率的计算方法,其特征在于,所述步骤S4具体包括以下步骤:2. the computing method of broad-leaved vegetation canopy reflectance according to claim 1, is characterized in that, described step S4 specifically comprises the following steps: S4.1:计算叶面积参数:S4.1: Calculation of leaf area parameters: τss=e-klai τ ss =e -klai τoo=e-Klai τ oo = e -Klai ρdd=(emlai-e-mlai)/(h1emlai-h2e-mlai)ρ dd =(e mlai -e -mlai )/(h 1 e mlai -h 2 e -mlai ) τdd=(h1-h2)/(h1emlai-h2e-mlai)τ dd =(h 1 -h 2 )/(h 1 e mlai -h 2 e -mlai ) 其中,lai表示叶面积指数,为模型输入参数;Among them, lai represents the leaf area index, which is the input parameter of the model; S4.2:计算加入热点效应后的参数,计算公式如下:S4.2: Calculate the parameters after adding the hot spot effect, the calculation formula is as follows: ρsd=CS(1-τssτdd)-DSρdd ρ sd =C S (1-τ ss τ dd )-D S ρ dd τsd=DSssdd)-CSτssρdd τ sd =D Sssdd )-C S τ ss ρ dd ρdo=Co(1-τooτdd)-Doρdd ρ do =C o (1-τ oo τ dd )-D o ρ dd τdo=Dooodd)-Coτooρdd τ do =D ooodd )-C o τ oo ρ dd ρso=Ho(1-τssτoo)-Coτsdτoo-Doρsd ρ so =H o (1-τ ss τ oo )-C o τ sd τ oo -D o ρ sd 其中,各个中间变量的计算方法为:Among them, the calculation method of each intermediate variable is: <mrow> <mi>m</mi> <mo>=</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow><mi>m</mi><mo>=</mo><msqrt><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><msup><mi>&amp;sigma;</mi><mn>2</mn></msup></mrow></msqrt></mrow> h1=(a+m)/σh 1 =(a+m)/σ h2=(a-m)/σ=1/h1 h 2 =(am)/σ=1/h 1 CS=[s′(k-a)-sσ]/(k2-m2)C S =[s'(ka)-sσ]/(k 2 -m 2 ) Co=[v(K-a)-uσ]/(K2-m2)C o =[v(Ka)-uσ]/(K 2 -m 2 ) Ds=[-s(k+a)-s′σ]/(k2-m2)D s =[-s(k+a)-s'σ]/(k 2 -m 2 ) Do=[-u(K+a)-vσ]/(K2-m2)D o =[-u(K+a)-vσ]/(K 2 -m 2 ) Hs=(uCS+vDs+w)/(K+k)H s =(uC S +vD s +w)/(K+k) Ho=(sCo+s′Do+w)/(K+k)H o =(sC o +s'D o +w)/(K+k) 其中,τssoo和sumint为热点效应修正参数;Among them, τ ssoo and sumint are hot spot effect correction parameters; S4.3:计算双向反射率:S4.3: Calculate bidirectional reflectance: 双向反射率包括两部分,一部分带热点效应的单次散射影响,另一部分未带热点效应的多次散射影响,两部分求和为最终对冠层顶部的反射率影响的计算结果:The two-way reflectance includes two parts, one part is single scattering effect with hot spot effect, and the other part is multiple scattering effect without hot spot effect. The sum of the two parts is the calculation result of the final reflectance effect on the top of the canopy: ρso2=ρso+w*lai*sumintρ so2 =ρ so +w*lai*sumint S4.4:引入土壤反射作用:S4.4: Introduce soil reflection: dn=1-rsdd d n =1-r sdd S4.5:计算双半球反射率因子:S4.5: Calculate the bi-hemispheric albedo factor: <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>dd</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;rho;</mi> <mi>dd</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;tau;</mi> <mi>dd</mi> <mn>2</mn> </msubsup> <mo>*</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>d</mi> <mi>n</mi> </msub> </mrow> <mrow><msub><mi>&amp;rho;</mi><mrow><mi>dd</mi><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>&amp;rho;</mi><mi>dd</mi></msub><mo>+</mo><mrow><mo>(</mo><msubsup><mi>&amp;tau;</mi><mi>dd</mi><mn>2</mn></msubsup><mo>*</mo><msub><mi>r</mi><mi>s</mi></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>d</mi><mi>n</mi></msub></mrow> S4.6:计算太阳直射方向半球反射率:S4.6: Calculate the hemispheric reflectance in the direction of direct sunlight: ρsd2=ρdd+(τsdss)*rsdd/dn ρ sd2 = ρ dd +(τ sdss )*r sdd /d n S4.7:计算观测方向半球反射率:S4.7: Calculate the hemispherical reflectance in the observation direction: ρdo2=ρdo+(τdooo)*rsdd/dn ρ do2 =ρ do +(τ dooo )*r sdd /d n S4.8:计算双直射反射率:S4.8: Calculate the double direct reflectance: ρsod2=ρso+((τsssd)*τdo+(τsdss*rsdd)*τoo)*rs/dn ρ sod2 =ρ so +((τ sssd )*τ do +(τ sdss *r sdd )*τ oo )*r s /d n ρso3=ρso2sossoo*rs ρ so3 =ρ so2sossoo *r s 其中,rs是土壤反射率。where r s is the soil reflectance. 3.根据权利要求2所述的阔叶植被冠层反射率的计算方法,其特征在于,所述步骤S5具体包括以下步骤:3. the computing method of broad-leaved vegetation canopy reflectivity according to claim 2, is characterized in that, described step S5 specifically comprises the following steps: 首先,根据数据库资料求得太阳直射光线与大气散射光线的基本辐射量,分别记为Es和EdFirst, according to the data in the database, the basic radiation amount of direct sunlight and atmospheric scattered light is obtained, which are recorded as E s and E d respectively; 然后,计算表示大气中散射辐射占总辐射比例的系数skyl:Then, calculate the coefficient skyl representing the proportion of scattered radiation in the atmosphere to the total radiation: skyl=0.847-1.61*sin(90-θs)+1.04*sin(90-θs)2 skyl=0.847-1.61*sin(90-θ s )+1.04*sin(90-θ s ) 2 最后,计算观测方向测定到的辐射量与入射的辐射量的比值,得到冠层反射率,公式为:Finally, calculate the ratio of the radiation measured in the observation direction to the incident radiation to obtain the canopy reflectance, the formula is: <mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>d</mi> <mi>o</mi> <mn>2</mn> </mrow> </msub> <mo>*</mo> <mi>s</mi> <mi>k</mi> <mi>y</mi> <mi>l</mi> <mo>*</mo> <msub> <mi>E</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>s</mi> <mi>o</mi> <mn>3</mn> </mrow> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>s</mi> <mi>k</mi> <mi>y</mi> <mi>l</mi> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>E</mi> <mi>s</mi> </msub> </mrow> <mrow> <mi>s</mi> <mi>k</mi> <mi>y</mi> <mi>l</mi> <mo>*</mo> <msub> <mi>E</mi> <mi>d</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>s</mi> <mi>k</mi> <mi>y</mi> <mn>1</mn> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>E</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>.</mo> </mrow> <mrow><mi>R</mi><mo>=</mo><mfrac><mrow><msub><mi>&amp;rho;</mi><mrow><mi>d</mi><mi>o</mi><mn>2</mn></mrow></msub><mo>*</mo><mi>s</mi><mi>k</mi><mi>y</mi><mi>l</mi><mo>*</mo><msub><mi>E</mi><mi>d</mi></msub><mo>+</mo><msub><mi>&amp;rho;</mi><mrow><mi>s</mi><mi>o</mi><mn>3</mn></mrow></msub><mo>*</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>s</mi><mi>k</mi><mi>y</mi><mi>l</mi><mo>)</mo></mrow><mo>*</mo><msub><mi>E</mi><mi>s</mi></msub></mrow><mrow><mi>s</mi><mi>k</mi><mi>y</mi><mi>l</mi><mo>*</mo><msub><mi>E</mi><mi>d</mi></msub><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>s</mi><mi>k</mi><mi>y</mi><mn>1</mn><mo>)</mo></mrow><mo>*</mo><msub><mi>E</mi><mi>s</mi></msub></mrow></mfrac><mo>.</mo></mrow>
CN201710141821.0A 2017-03-10 2017-03-10 A kind of computational methods of broad-leaved Vegetation canopy reflectivity Active CN106909750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710141821.0A CN106909750B (en) 2017-03-10 2017-03-10 A kind of computational methods of broad-leaved Vegetation canopy reflectivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710141821.0A CN106909750B (en) 2017-03-10 2017-03-10 A kind of computational methods of broad-leaved Vegetation canopy reflectivity

Publications (2)

Publication Number Publication Date
CN106909750A CN106909750A (en) 2017-06-30
CN106909750B true CN106909750B (en) 2018-02-27

Family

ID=59186335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710141821.0A Active CN106909750B (en) 2017-03-10 2017-03-10 A kind of computational methods of broad-leaved Vegetation canopy reflectivity

Country Status (1)

Country Link
CN (1) CN106909750B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033562B (en) * 2018-07-05 2020-08-11 浙江大学 A Calculation Method for the Dichroic Reflection Value of the Leaf in the Curled State
CN111007024B (en) * 2019-12-25 2021-01-26 武汉大学 Cloud reflectance rapid determination method suitable for oxygen A band
CN112254820B (en) * 2020-10-14 2021-04-27 中国科学院空天信息创新研究院 A simulation method for thermal infrared radiation transfer in discrete forest scene
CN112666121B (en) * 2020-12-17 2024-04-05 淮阴师范学院 Vegetation and non-vegetation identification method based on infrared spectrum
CN114528728B (en) * 2022-01-20 2024-05-28 北京航空航天大学 Monte Carlo computer simulation method for canopy reflection of aquatic vegetation in line sowing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630495B (en) * 2013-11-13 2015-08-12 北京航空航天大学 A kind of aquatic vegetation-air coupled radiation mode
CN103632040B (en) * 2013-11-14 2016-05-04 北京航空航天大学 A kind of general aquatic vegetation radiative transfer model

Also Published As

Publication number Publication date
CN106909750A (en) 2017-06-30

Similar Documents

Publication Publication Date Title
CN106909750B (en) A kind of computational methods of broad-leaved Vegetation canopy reflectivity
CN106874621B (en) A kind of aciculignosa canopy reflectance spectrum computational methods
WO2019149147A1 (en) Method for dividing ecological and geological environment types based on coal resource development
CN102314546B (en) Method for estimating plant growth biomass liveweight variation based on virtual plants
CN102455282B (en) Method for measuring soil water content
CN107607692B (en) Optimal distribution method of soil moisture monitoring based on soil maximum water storage capacity
CN105678236B (en) A kind of land vehicles canopy reflection of polarization modeling method
CN107818238A (en) A kind of method for determining coupling between evapotranspiration change main cause and differentiation factor
CN106226260A (en) A kind of combination microwave and the Soil Moisture Inversion method of infrared remote sensing image
CN104699952B (en) A kind of wetland aquatic vegetation canopy BRDF Monte Carlo models
CN111598045A (en) Remote sensing farmland change detection method based on object spectrum and mixed spectrum
Huo et al. Simulation of the urban space thermal environment based on computational fluid dynamics: A comprehensive review
Lu et al. Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques
Liu et al. Wind dynamics over a highly heterogeneous oasis area: An experimental and numerical study
CN112924401B (en) Semi-empirical inversion method for chlorophyll content of vegetation canopy
CN109272179A (en) A kind of solar power generation returns of investment overall evaluation system implementation method
Yang et al. Optimizing building spatial morphology to alleviate human thermal stress
Li et al. Assessing urban micro-climates with vertical and horizontal building morphological cutting deep transfer learning neural networks
Zhao et al. Variations and driving mechanisms of desertification in the southeast section of the China-Mongolia-Russia Economic Zone
CN106651195A (en) Evaluation method for determining soil compaction degree
CN105608296A (en) Leaf potassium concentration reversing method based on litchi canopy spectrum
CN106447072A (en) Explicit genetic algorithm and singular spectrum analysis-based meteorological and hydrological element forecast method
CN114547896B (en) A Modeling Method of Total Reflection Spectral Radiative Transfer in Wetland Aquatic Vegetation Canopy
CN114529618B (en) A radiometric-based method for modeling aquatic vegetation canopy reflectance
CN116542536A (en) Sponge construction implementation effect evaluation method and device based on high-resolution remote sensing image

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Guo Yunkai

Inventor after: An Guanxing

Inventor after: Liu Haiyang

Inventor after: Jiang Ming

Inventor after: Xie Qiong

Inventor after: Zhou Fengsong

Inventor before: Guo Yunkai

Inventor before: An Guanxing

Inventor before: Xie Qiong

Inventor before: Zhou Fengsong

Inventor before: Li Jian

Inventor before: Zhu Luhong

GR01 Patent grant
GR01 Patent grant