CN106909136A - 一种基于指数正则化零空间线性鉴别分析的故障诊断方法 - Google Patents

一种基于指数正则化零空间线性鉴别分析的故障诊断方法 Download PDF

Info

Publication number
CN106909136A
CN106909136A CN201710096603.XA CN201710096603A CN106909136A CN 106909136 A CN106909136 A CN 106909136A CN 201710096603 A CN201710096603 A CN 201710096603A CN 106909136 A CN106909136 A CN 106909136A
Authority
CN
China
Prior art keywords
kernel
matrix
exp
regularization
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710096603.XA
Other languages
English (en)
Inventor
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Engineering
Original Assignee
Hunan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Engineering filed Critical Hunan Institute of Engineering
Priority to CN201710096603.XA priority Critical patent/CN106909136A/zh
Publication of CN106909136A publication Critical patent/CN106909136A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明公开了一种基于指数正则化零空间线性鉴别分析的故障诊断方法,将正则化鉴别分析与零空间鉴别分析相融合,集成了NSLDA和RLDA在模式识别上的优势,用正则化的类内样本矩阵Sw1代替零空间鉴别分析中的类别样本矩阵Sw,以进一步解决小样本问题;其次在鉴别分析的判别准则中,引入指数函数,分别将正则化类内样本矩阵Sw1和类间样本矩阵Sb进行指数化运算,从而获得更多的特征信息;能够有效、精确的对故障进行识别,有效地提高了故障诊断的精度,为基于数据驱动的微小故障诊断提出了一种新的思路。

Description

一种基于指数正则化零空间线性鉴别分析的故障诊断方法
技术领域
本发明涉及一种故障诊断方法,具体是一种基于指数正则化零空间线性鉴别分析的故障诊断方法。
背景技术
随着现代控制系统的设备复杂化和规模大型化,有关系统的异常检测和故障诊断一直是学术界关注的重点问题。机械故障诊断对于保障设备安全运行意义重大,机械设备一旦发生故障,如果不能及时发现并处理,将造成巨大的经济损失和人员伤亡。因此设备和系统的安全性和可靠性成为人们关注的焦点之一,如果能够及时在可控范围的工业运行过程中检测出故障,避免异常事件的发生,因而对复杂系统进行合理的故障诊断是亟待解决的问题。
故障是指在一个过程中,观测变量和计算参数在一定范围内的偏离,由于故障对系统的影响可由其引起的征兆体现,考虑到故障的演变过程,可将其氛围显著性故障和微小故障。微小故障幅值低,故障特性不明显,易被未知信号扰动和噪声掩盖,且具有隐蔽性和随机性,初期特征不明显。但是在设备运行中,任何一个局部微小故障都可能演变导致设备的误报警和误切换,进而导致系统性能退化。故障诊断的核心是诊断方法,针对复杂系统的微小 故障诊断,现有的文献方法主要集中在基于解析模型的故障诊断技术、基于知识的诊断技术和基于数据驱动的方法。
基于解析模型的微小诊断方法从系统的本质特性出发,以期待对故障达到实时性诊断,主要包括状态估计法、等价空间法和粒子滤波等。基于解析模型的方法一般是利用系统残差构建数学模型进行在线近似和状态估计,需要精确的数学模型,但是在手机工业系过程中不确定因素过多,难以建立精确的数学模型。在数学建模过程中难以避免误差和未知噪声干扰,很难同时保证干扰鲁棒性和故障灵敏度,因此在实际应用中有其局限性。
基于知识的故障诊断技术主要依赖于专家的经验知识,包括神经网络方法、模糊推理和专家系统等。虽然基于知识的故障诊断技术相比基于解析模型的方法不再需要精确的数学模型,但是其诊断的精度很大程度上依赖于知识库中专家经验的丰富程度和专家知识水平的高低,学习和自适应能力差、推理效率低、对奇异的模式判断能力差,缺乏自完善能力。
基于数据驱动的故障诊断技术是在对象难以建立精确的数学模型的前提下,以采集到的检测数据为基底,利用数据挖掘技术获取有用信息以表征系统运行的模式,从而达到检测和诊断的目的,是目前的研究热点方向之一。主要包括机器学习方法、多元统计方法、信号处理技术和信息融合技术等。
而多元统计技术是这类方法的代表,代表性方法有主成分分析(PrincipleComponent Analysis,PCA)、鉴别成分分析(Linear Discriminant,LDA)、偏最小二乘法(Partial Least Square,PLS)和非负矩阵分解(Non-negative Matrix Factor,NMF)等。
虽然传统的线性统计分析方法如PCA、LDA和LPP等方法能够实现故障诊断特征的维数约简,但得到的效果往往不是最优的。原因其一是因为在训练过程中由于样本数目过少造成的奇异矩阵问题,即“小样本”问题;其二
虽然通过引入核函数能够实现非线性约简,一定程度上避免“小样本” 问题,但是其无监督的基本属性导致了维数约简过程中的盲目性。
零空间线性鉴别分析(Null Space Linear Discriminant Analysis,NSLDA)利用类内样本矩阵的零空间信息提取鉴别特征,一定程度上克服了LDA的小样本问题,但其终归是一种线性特征提取方法,不能提取非线性特征,而且其解决奇异矩阵的能力有限。
发明内容
本发明的目的在于提供一种精度高且有效的基于指数正则化零空间线性鉴别分析的故障诊断方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于指数正则化零空间线性鉴别分析的故障诊断方法,具体步骤如下:
(1)首先将类内散度矩阵Sw正则化,则:
Sw1=Sw+αI (1);
(2)对类间散度矩阵Sw1和类内散度矩阵Sb进行指数化操作,即:
Sw2=exp(Sw1) (2);
Sb2=exp(Sb) (3);
通过指数化操作,Sw1和Sb实现了非线性化,并且通过指数运算,Sw2矩阵实现了满秩,从而解决了小样本问题;
(3)对于任意n×n的矩阵A,矩阵的指数化操作为:
exp(A)是一个有限的非奇异矩阵,则此时判别准则变成:
(4)对公式(5)所代表的判别准则进行零空间鉴别分析操作,即对Sw2和Sb2进行零空间鉴别分析,首先去除总体散度矩阵St2的零空间,对St2求特征值和特征向量,若U是非零特征值所对应的特征向量,将Sw2和Sb2分别向U投影,得到Sw3和Sb3
Sw3=UtSw3U (6);
Sb3=UtSb2U (7);
计算Sw3的零空间;
(5)若P为Sw3的零空间,则有Sw4=PTSw3P=(UP)TSw2(UP)以及Sb4=PTSb3P=(UP)TSb2(UP);其中UP为Sw2的有效零空间;
(6)则最后的基于指数正则化零空间鉴别分析算法的投影矩阵表征为:
WNRNSLDA=UP(8)。
与现有技术相比,本发明的有益效果是:
本发明将正则化鉴别分析与零空间鉴别分析相融合,集成了NSLDA和RLDA在模式识别上的优势,用正则化的类内样本矩阵Sw1代替零空间鉴别分析中的类别样本矩阵Sw,以进一步解决小样本问题;其次在鉴别分析的判别准则中,引入指数函数,分别将正则化类内样本矩阵Sw1和类间样本矩阵Sb进行指数化运算,从而获得更多的特征信息;能够有效、精确的对故障进行识别,有效地提高了故障诊断的精度,为基于数据驱动的微小故障诊断提出了一种新的思路。
附图说明
图1为本发明实施例1中发动机正常状态时域信号波形示意图。
图2为本发明实施例1中发动机正常状态频域信号波形示意图。
图3为本发明实施例1中发动机一缸失火状态时域信号波形示意图。
图4为本发明实施例1中发动机一缸失火状态频域信号波形示意图。
图5为本发明实施例1中发动机一二缸失火状态时域信号波形示意图。
图6为本发明实施例1中发动机一二缸失火状态频域信号波形示意图。
图7为本发明实施例1中发动机一四缸失火状态时域信号波形示意图。
图8为本发明实施例1中发动机一四缸失火状态频域信号波形示意图。
图9为本发明实施例1中训练样本为40%、低维维数为2-10时各个算法的识别错误率示意图。
图10为本发明实施例1中训练样本为60%、低维维数为2-10时各个算法的识别错误率示意图。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
一种基于指数正则化零空间线性鉴别分析的故障诊断方法,具体步骤如下:
(1)首先将类内散度矩阵Sw正则化,则:
Sw1=Sw+αI (1);
(2)对类间散度矩阵Sw1和类内散度矩阵Sb进行指数化操作,即:
Sw2=exp(Sw1) (2);
Sb2=exp(Sb) (3);
通过指数化操作,Sw1和Sb实现了非线性化,并且通过指数运算,Sw2矩阵实现了满秩并且不会再奇异化,从而解决了小样本问题;
(3)对于任意n×n的矩阵A,矩阵的指数化操作为:
exp(A)是一个有限的非奇异矩阵,则此时判别准则变成:
(4)对公式(5)所代表的判别准则进行零空间鉴别分析操作,即对Sw2和Sb2进行零空间鉴别分析,首先去除总体散度矩阵St2的零空间,对St2求 特征值和特征向量,若U是非零特征值所对应的特征向量,将Sw2和Sb2分别向U投影,得到Sw3和Sb3
Sw3=UtSw3U (6);
Sb3=UtSb2U (7);
计算Sw3的零空间;
(5)若P为Sw3的零空间,则有Sw4=PTSw3P=(UP)TSw2(UP)以及Sb4=PTSb3P=(UP)TSb2(UP);其中UP为Sw2的有效零空间;
(6)则最后的基于指数正则化零空间鉴别分析算法的投影矩阵表征为:
WNRNSLDA=UP(8)。
实施例1
发动机AVL仿真模型:其能够模拟发动机正常状态、一缸失火故障、一二缸失火和一四缸失火故障四种状态。在每种状态下,又分别设计了800r/min,1200r/min和2000r/min三种转速。在实验中,提取每种转速状态下四种类型故障的振动信号,一共12组振动信号,采样时间为10秒,采样点数为57000。
对于发动机来说,其缸盖振动信号含有丰富的信息,能够有效反映转速、缸压和活塞冲击等变化,故利用其进行发动机故障诊断和状态监测普适性高、信号获取容易。在本实验中,通过研究发动机振动信号的变化,提取相应的时域特征和频域特征,结合本发明所提出的ERNSLDA算法,有效的诊断出发动机的失火状态,验证本发明算法在高维非线性动力学问题的适用性。
请参阅图1-8,对于同一种发动机状态,当转速从800增加到2000时,其对应的时域幅值也随之正佳,并且正常状态与三种失火故障的幅值和冲击也明显不同。从图中可以发现,一缸失火的振动信号与两缸失火的振动信号幅值不一样,并且对于两缸失火而言,不同的失火顺序,其振动信号也明显不同。
对于四种状态下的频谱信号波形,在2f处幅值均为最大值。在正常状态下,频率在0.5f、f、1.5f三处的幅值均不明显,而在其它三种失火故障状态下,在这三处的幅值却明显出现,例如在一缸失火状态下,出现了频率0.5f、f、1.5f的幅值,在一四缸失火时,出现了频率f的幅值。
通过研究振动信号的变化,提取相应的特征向量,利用本发明所提出的ERNSLDA算法对发动机失火状态进行分类识别,并将算法与LDA、PCA、NSLDA、RLDA进行对比。为了有效提取发动机的状态信息,实现智能诊断,在本发明实验中随机选取总样本数40%和60%的样本用于训练样本,而剩余的样本用于分类识别。图9和图10分别为训练样本为40%和60%,低维维数为2-10时各个算法的识别错误率。实验重复进行20次,取最后的平均识别错误率。
从图9和图10中的识别结果可以看出,5种识别算法的正确识别率均高于95%,取得了较好的识别效果。当训练样本为40%和60%时,本发明所提ERNSLDA算法的识别效果最好,最低的错误识别率为0。而在5种识别算法中,PCA和LDA的错误识别率较高,当训练样本为40%时,PCA的最低错误识别率及维数为[2%,7-10],LDA的最低错误识别率及维数为[1.8%,9];当训练样本为60%时,PCA的最低错误识别率及维数为[1%,3],LDA的最低错误识别率及维数为[0.9%,3-4]。之所以PCA和LDA识别效果会较差,主要是两者无法有效处理非线性数据所造成。而本发明所提ERNSLDA算法通过指数运算,很好的解决了这个问题。
实施例2
齿轮箱故障模拟:齿轮箱故障模拟实验台主要模拟轴承外圈故障、内圈故障、滚动体故障、齿轮齿面损失和断齿故障5种状态,分别记为(f1,f2,f3,f4,f5),其中输入端齿轮数为55,输出端齿轮数为75,模数为2。振动信号由振动加速传感器采集获取,在信号采集过程中,电机转速设定为1200r/min,采样频率为10KHz,分别取5种状态下的振动信号各20组,共100组振动信号。
从原始振动信号中提取时域、频域和时频域信号特征组成相应的高维故障特征集,利用本文所提出的ERNSLDA算法对齿轮箱故障状态进行分类识别,并将算法与LDA、PCA、NSLDA、RLDA进行对比。实验主要从以下两个方面验证本文所提方法的有效性。实验重复进行20次,取最后的平均识别率。
(1)选取样本数为30%(30组)的样本作为训练样本,其余的70%(70组)作为测试样本,验证5种算法对于齿轮箱5种故障状态的识别率(见表1)。
从表1中的数据可以看出,对于齿轮箱5种不同的故障状态,本文所提出的ERNSLDA方法识别效果最好,均高于96%,并且最终的平均识别率达到97.6%。而PCA方法在5种故障状态下的识别率均最低,其平均识别率也仅有83.2%。这是因为本文所提出的ERNSLDA方法一是融合RLDA技术和NSLDA技术,一定程度上有效解决了小样本问题,解决了所谓的维数灾难问题,二是由于本文所提方法利用指数函数将类内散度矩阵和类间散度矩阵进行非线性操作,相比核函数的非线性操作,指数化非线性操作简单实用,且计算复杂度和计算时间大幅度降低。
表1训练样本数为30%时不同方法识别效果比较
(2)分别选取10组、20组、30组、40组样本作为训练样本,其余的90组、80组、70组、60组作为测试样本,验证5种算法对于齿轮箱5种故障状态的识别率(见表2)。
表2不同训练样本数对应的识别效果
从表2中的实验数据可以看出,随着训练样本数目的增加,5种识别方法的识别效果都有所增加,对于同一种方法而言,如NSLDA方法,当训练样本从10增加到40时,识别率也从89.71%增加到97.86%,本文方法从93.43%增加到98.8%,这是由于当训练样本数目增加时,投影矩阵训练更加充分。当训练样本为40时,PCA和LDA方法的识别效果分别为85.5%和92.8%,而本文所提方法达到98.8%,取得了不错的识别效果。
本发明将正则化鉴别分析与零空间鉴别分析相融合,集成了NSLDA和RLDA在模式识别上的优势,用正则化的类内样本矩阵Sw1代替零空间鉴别分析中的类别样本矩阵Sw,以进一步解决小样本问题;其次在鉴别分析的判别准则中,引入指数函数,分别将正则化类内样本矩阵Sw1和类间样本矩阵Sb进行指数化运算,从而获得更多的特征信息;能够有效、精确的对故障进行识别,有效地提高了故障诊断的精度,为基于数据驱动的微小故障诊断提出了一种新的思路。
上面对本专利的较佳实施方式作了详细说明,但是本专利并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本专利宗旨的前提下作出各种变化。

Claims (1)

1.一种基于指数正则化零空间线性鉴别分析的故障诊断方法,其特征在于,具体步骤如下:
(1)首先将类内散度矩阵Sw正则化,则:
Sw1=Sw+αI (1);
(2)对类间散度矩阵Sw1和类内散度矩阵Sb进行指数化操作,即:
Sw2=exp(Sw1) (2);
Sb2=exp(Sb) (3);
通过指数化操作,Sw1和Sb实现了非线性化,并且通过指数运算,Sw2矩阵实现了满秩,从而解决了小样本问题;
(3)对于任意n×n的矩阵A,矩阵的指数化操作为:
exp ( A ) = I + A + A 2 2 + ... + A m m ! + ... - - - ( 4 ) ;
exp(A)是一个有限的非奇异矩阵,则此时判别准则变成:
J ( W , α ) E R N S L D A = | W T ( S b 2 ) W | | W T ( S w 2 ) W | = | W T exp ( S b ) W | | W T exp ( S w 1 ) W | = | W T exp ( S b ) W | | W T exp ( S w + α I ) W | - - - ( 5 ) ;
(4)对公式(5)所代表的判别准则进行零空间鉴别分析操作,即对Sw2和Sb2进行零空间鉴别分析,首先去除总体散度矩阵St2的零空间,对St2求特征值和特征向量,若U是非零特征值所对应的特征向量,将Sw2和Sb2分别向U投影,得到Sw3和Sb3
Sw3=UtSw3U (6);
Sb3=UtSb2U (7);
计算Sw3的零空间;
(5)若P为Sw3的零空间,则有Sw4=PTSw3P=(UP)TSw2(UP)以及Sb4=PTSb3P=(UP)TSb2(UP);其中UP为Sw2的有效零空间;
(6)则最后的基于指数正则化零空间鉴别分析算法的投影矩阵表征为:WNRNSLDA=UP(8)。
CN201710096603.XA 2017-02-22 2017-02-22 一种基于指数正则化零空间线性鉴别分析的故障诊断方法 Pending CN106909136A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710096603.XA CN106909136A (zh) 2017-02-22 2017-02-22 一种基于指数正则化零空间线性鉴别分析的故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710096603.XA CN106909136A (zh) 2017-02-22 2017-02-22 一种基于指数正则化零空间线性鉴别分析的故障诊断方法

Publications (1)

Publication Number Publication Date
CN106909136A true CN106909136A (zh) 2017-06-30

Family

ID=59208008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710096603.XA Pending CN106909136A (zh) 2017-02-22 2017-02-22 一种基于指数正则化零空间线性鉴别分析的故障诊断方法

Country Status (1)

Country Link
CN (1) CN106909136A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337257A (zh) * 2020-04-29 2020-06-26 沈阳建筑大学 一种球轴承故障检测方法
CN112378670A (zh) * 2020-11-10 2021-02-19 北京航空航天大学 一种基于改进粒子滤波的火箭发动机故障检测方法
CN114154400A (zh) * 2021-11-15 2022-03-08 中国人民解放军63963部队 无人车辆健康状态检测系统及检测方法
CN115467752A (zh) * 2021-06-11 2022-12-13 广州汽车集团股份有限公司 汽车发动机失火诊断分析的方法、系统及计算机存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337257A (zh) * 2020-04-29 2020-06-26 沈阳建筑大学 一种球轴承故障检测方法
CN112378670A (zh) * 2020-11-10 2021-02-19 北京航空航天大学 一种基于改进粒子滤波的火箭发动机故障检测方法
CN112378670B (zh) * 2020-11-10 2021-10-15 北京航空航天大学 一种基于改进粒子滤波的火箭发动机故障检测方法
CN115467752A (zh) * 2021-06-11 2022-12-13 广州汽车集团股份有限公司 汽车发动机失火诊断分析的方法、系统及计算机存储介质
CN115467752B (zh) * 2021-06-11 2024-05-28 广州汽车集团股份有限公司 汽车发动机失火诊断分析的方法、系统及计算机存储介质
CN114154400A (zh) * 2021-11-15 2022-03-08 中国人民解放军63963部队 无人车辆健康状态检测系统及检测方法
CN114154400B (zh) * 2021-11-15 2023-12-05 中国人民解放军63963部队 无人车辆健康状态检测系统及检测方法

Similar Documents

Publication Publication Date Title
CN110567720B (zh) 非平衡小样本场景下风机轴承故障深度对抗诊断方法
CN110110768B (zh) 基于并行特征学习和多分类器的滚动轴承故障诊断方法
CN106909136A (zh) 一种基于指数正则化零空间线性鉴别分析的故障诊断方法
CN106555788A (zh) 基于模糊处理的深度学习在液压装备故障诊断中的应用
CN108896299A (zh) 一种齿轮箱故障检测方法
CN105466693B (zh) 基于灰色模型的柴油机燃油系统故障预诊断方法
CN105275833A (zh) 一种基于CEEMD-STFT时频信息熵和multi-SVM的离心泵故障诊断方法
CN106017876A (zh) 基于等权局部特征稀疏滤波网络的轮对轴承故障诊断方法
CN108196143A (zh) 电力变压器故障深度诊断方法及终端设备
CN109858352A (zh) 一种基于压缩感知与改进多尺度网络的故障诊断方法
CN111583592B (zh) 一种基于多维卷积神经网络的实验环境安全预警方法
CN105487009A (zh) 基于k均值的RBF神经网络算法的电机故障诊断方法
CN109932179A (zh) 一种基于ds自适应谱重构的滚动轴承故障检测方法
CN110060368A (zh) 基于潜在特征编码的机械异常检测方法
CN112729834B (zh) 一种轴承故障的诊断方法、装置和系统
CN105626502A (zh) 基于小波包和拉普拉斯特征映射的柱塞泵健康评估方法
CN111881594B (zh) 一种核动力设备的非平稳信号状态监测方法及系统
CN108153987A (zh) 一种基于超限学习机的液压泵多故障诊断方法
CN111678699A (zh) 一种面向滚动轴承早期故障监测与诊断方法及系统
Li et al. Intelligent fault diagnosis of aeroengine sensors using improved pattern gradient spectrum entropy
CN117609836A (zh) 一种综合模块的电磁敏感预测与健康管理方法
CN106339720A (zh) 一种汽车发动机的失效检测方法
Sun et al. A sparse approach to fault severity classification for gearbox monitoring
CN116186642B (zh) 一种基于多维特征融合的分布式光纤传感事件预警方法
CN116541771A (zh) 一种基于多尺度特征融合的非平衡样本轴承故障诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170630

RJ01 Rejection of invention patent application after publication