CN106908660A - 非电网大扰动条件下的电网频率静态特性系数测试方法 - Google Patents

非电网大扰动条件下的电网频率静态特性系数测试方法 Download PDF

Info

Publication number
CN106908660A
CN106908660A CN201710109551.5A CN201710109551A CN106908660A CN 106908660 A CN106908660 A CN 106908660A CN 201710109551 A CN201710109551 A CN 201710109551A CN 106908660 A CN106908660 A CN 106908660A
Authority
CN
China
Prior art keywords
frequency
grid
power network
power
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710109551.5A
Other languages
English (en)
Other versions
CN106908660B (zh
Inventor
李华
孙强
万天虎
孙骁强
张江滨
白兴忠
李鹏
褚云龙
李成家
迟方德
程松
刘鑫
王康
唐浩
吴子豪
李立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GRID NORTHWEST CHINA GRID Co Ltd
State Grid Corp of China SGCC
Xian University of Technology
State Grid Shaanxi Electric Power Co Ltd
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Original Assignee
STATE GRID NORTHWEST CHINA GRID Co Ltd
State Grid Corp of China SGCC
Xian University of Technology
State Grid Shaanxi Electric Power Co Ltd
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GRID NORTHWEST CHINA GRID Co Ltd, State Grid Corp of China SGCC, Xian University of Technology, State Grid Shaanxi Electric Power Co Ltd, Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd filed Critical STATE GRID NORTHWEST CHINA GRID Co Ltd
Priority to CN201710109551.5A priority Critical patent/CN106908660B/zh
Publication of CN106908660A publication Critical patent/CN106908660A/zh
Application granted granted Critical
Publication of CN106908660B publication Critical patent/CN106908660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开一种非电网大扰动条件下的电网频率静态特性系数测试方法,包括:1)、退出电网并网机组的AGC及其他二次调频调节操作;2)、选择电网中作为电网功率扰动的试验机组;逐步增减试验机组出力,每次增减出力后,稳定一段时间,以便电网通过调节形成新的稳态频率;3)、试验结束后,分析试验过程中电网各个稳点运行工况点总出力与稳定频率,绘制电网总出力与电网稳态频率的关系图,进一步通过数据拟合,得到电网在不同频率段内的频率静态特性关系曲线;该曲线的斜率为实测的电网频率静态特性系数。本发明有效的解决目前电网频率静态特性系数测试方法或者局限性、不确定性很强,易受二次调频影响,或者试验难度和安全风险大的问题。

Description

非电网大扰动条件下的电网频率静态特性系数测试方法
技术领域
本发明涉及电力系统技术领域,特别涉及一种电网频率静态特性系数的测试方法。
背景技术
一次调频是维持电力系统频率稳定不可或缺的方式之一。电力系统的规模越大、复杂程度越高,对一次调频能力的要求就越高。而且近年来风力发电、太阳能发电等新能源发电不断并入电网,更是需要一次调频发挥其巨大作用。频率静态特性系数β(单位为MW/0.1HZ)的实测值是反映一次调频特性的重要依据,频率偏差系数B的取值要尽可能接近频率静态特性系数β,频率偏差系数B是设计事故频率控制系统和实施频率控制考核的重要参数,在ACE计算、CPS考核等方面广泛应用,一般应每年设定一次。因此设计发明一种电网频率静态系数的测试方法具有十分重要的意义。
电网的静态频率特性是发电机组的静态特性和负荷静态特性的共同作用的结果,当电力系统发生扰动时,电网的静态频率特性系数β数值上等于系统功率缺额ΔP和系统频率偏差Δf之比,可以用式(1)表示,
式中f1表示电网发生扰动后稳定时刻系统频率,f0表示电网发生扰动前系统频率。
国内目前对电网频率静态特性系数的实测方法,基本上有两种,一种是根据电网运行中发生的满足特定要求的频率大扰动事件,利用电网对该事件的数据记录详细分析扰动前后电网的功率、频率稳定值,以及事件发生时的电网出力或负载扰动量分析计算电网频率静态特性系数。在实际应用中,该方法存在两个问题,其一,该实测方法对电网频率扰动过程的特定要求导致该方法的局限性很强。譬如按照国调中心印发的《联络线偏差控制技术规范》(试行)中所规定的电网控制区频率静态特性系数实测和分析方法,若要进行控制区频率静态特性系数的实测,扰动过程应同时具备三个条件:1、全网系统频率低于49.967Hz,此时启动对控制区频率静态特性系数的实测计算;2、频率发生较大幅度突变,3秒内频率变化超过0.033Hz,3秒内联络线功率变化大于超过50MW。3、频率稳定时3秒内频率变化不超过0.005Hz,3秒内联络线功率变化小于超过10MW。同时满足此三项要求的电网频率扰动事件,才能应用此方法对频率下扰过程(仅对频率下扰过程)进行电网频率静态特性系数的实测。而此类电网频率大扰动过程出现的频次很低,用该方法实测频率静态特性系数只能被动等待该类电网扰动事件的发生,有极大的不确定性。其二,由于电网日常运行中很多并网机组的AGC功能投入,并由调频厂机组承担电网的二次调频任务,所以该方法下很难避免机组二次调频对电网频率波动过程的影响,进而严重影响对电网频率静态特性系数的实测分析精度。
目前对电网频率静态特性系数的实测方法第二种方法,是通过人为造成网内机组出力大阶跃的试验手段(若利用负载扰动,则会严重影响电力用户的正常生产、生活,并带来较大的电量损失),产生整个电网的频率大扰动过程,分析计算电网频率静态特性系数。该方法下,试验前一般均要求电网并网机组的自动发电功能(Automatic GenerationControl,AGC)退出,以便避免并网机组AGC对电网频率静特性的影响。试验一般选取电网内1~2台单机容量最大的水电机组,通过机组突甩负荷实现电网频率扰动。该方法避免了并网机组AGC以及其他二次调频过程的影响,而且试验前通过人为控制,电网频率扰动过程也可严格满足特定要求。但由于是全网的频率大扰动试验,而且机组出力大阶跃带来电网频率扰动过程产生的频率极值偏差大,试验风险的可控性差。试验涉及网、省公司各级电力调度部门、并网发电厂,并且需要调度、方式、自动化、通讯、电站运行、维护、试验等各专业的配合,试验的组织实施、风险控制、安全措施的落实都极具难度,耗时耗力。
此外,两种方法均是通过扰动前后的两个电网稳态工况点来分析电网的静态频率特性,很难准确分析电网在某一运行方式下整个运行频率段的静态频率全特性。
发明内容
本发明的目的是提供一种非电网大扰动条件下的电网频率静态特性系数测试方法,以解决目前电网频率静态特性系数测试方法或者局限性、不确定性很强,易受二次调频影响,或者试验难度和安全风险大的问题。
为了实现上述目的,本发明采用如下技术方案:
非电网大扰动条件下的电网频率静态特性系数测试方法,包括以下步骤:
1)、测试前人为退出电网并网机组的AGC及其他二次调频调节操作;
2)、选择电网中的一台或几台机组作为电网功率扰动的试验机组,进行所测同步电网的频率、总出力、联络线功率的测试;然后在电网发电出力和负载稳定时段,逐步增减试验机组出力,每次增减出力后,稳定一段时间,以便电网通过调节形成新的稳态频率;
3)、试验结束后,分析试验过程中电网各个稳点运行工况点总出力与稳定频率,绘制电网总出力与电网稳态频率的关系图,进一步通过数据拟合,得到电网在不同频率段内的频率静态特性关系曲线;该关系曲线的斜率为实测的电网频率静态特性系数,单位归化为MW/0.1Hz。
进一步的,步骤2)中试验机组的出力变化以为单方向增加或减少,直至达到试验预设的电网频率最大值或最小值。
进一步的,步骤2)中试验机组每次出力的增/减量,在最小值ΔPmin和最大值ΔPmax之间选定;最小值ΔPmin以所造成电网频率的稳态变化量能够精确测量的下限为准;最大值ΔPmax以所造成的电网扰动安全可控为准。最大值ΔPmax兼顾考虑步骤3)中试验过程所得到电网稳点运行工况点的个数。
进一步的,步骤2)中试验机组每次出力增减量,以所造成电网频率的稳态变化量可以精确测量为宜,譬如:0.01Hz。
进一步的,稳定一段时间为15~25秒。
进一步的,试验机组的可调节出力占电网总负荷的1%以上。
相对于现有技术,本发明具有以下有益效果:
(1)本测试方法采用可控的斜坡出力扰动或多次逐步增减出力的方法作为激励,使得电网由某一稳态运行频率逐步过渡到另一个稳态运行频率。进而实测电网各稳态运行工况下功率与频率的对应关系,分析计算电网频率静态特性系数。试验过程电网频率的可控性强,可以人为控制电网频率的渐变过程,避免电网频率大的突变过程,试验安全风险小,便于组织实施。
(2)试验选择电网发电出力和负载较稳定的时段进行,以避免电网运行方式改变或负载扰动带来的影响;试验前可人为退出全网的AGC及其他二次调频调节操作,确保试验过程不受电网二次调频的影响。确保该测试方法下,电网频率静态特性系数的测试精度。
(3)在一定的电网稳定负载水平下,通过人为改变电网运行方式,可以实测同一电网负载水平,不同电网运行方式下的电网频率静态特性系数。也可以在同一电网运行方式下(同一并网机组开机方式)实测不同电网负载水平(譬如晚高峰、深夜低谷负荷等不同工况)的电网频率静态特性系数。与目前其他方法相比,该方法的使用更为灵活、适用性强。
(4)该测试方法下,采用多次逐步增减机组出力的方法作为激励,可以人为造成电网的多个稳态运行工况点。一方面,通过多个稳态运行工况点的测试、曲线拟合,使得实测结果更加准确。另一方面,可以实测更大电网频率范围内的电网频率静态特性系数,并可通过一次试验进行电网频率运行范围内(包括机组一次调频死区内)的频率静态全特性分析。该测试方法下,可以减小测试的系统误差,也可以使得对电网频率静特性的研究更为全面、深入。
附图说明
图1为2016年西北电网四次功率大阶跃扰动试验频率波动过程。
图2为逐步增减机组出力时的电网频率变化过程。
图3a为实测电网频率与功率变化静态曲线。
图3b为实测电网频率与功率变化静态曲线。
图4为降出力方向数据拟合曲线。
图5为升出力方向数据拟合曲线。
图6为西北电网频率静态特性示意图。
具体实施方式
下面结合附图对本发明作详尽的说明。
图1为国内目前电网频率静态特性系数的测试方法,激励采用拉西瓦水电厂机增减出力进行四次试验,频率在扰动前后出现明显的稳定值,但是现在这种方法出现较大的频率极值,试验过程风险较大,且未涉及电网在机组一次调频死区内的频率静态特性,仅用大扰动前后的两个稳态工况点,计算β值,试验系统误差较大。
本发明一种非电网大扰动条件下的电网频率静态特性系数测试方法,具体包括:
本发明采用可控的斜坡出力扰动和定步长逐步增减出力的方法作为激励,下面结合附图详细介绍:
1)、试验选择电网发电出力和负载较稳定的时段进行;试验前人为退出电网并网机组的AGC及其他二次调频调节操作,确保试验过程不受电网二次调频的影响。
2)、选择电网中可调节出力较大的一台或几台机组作为电网功率扰动的试验机组(试验机组的可调节出力应占电网总负荷的1%以上)。做好所测同步电网的频率、总出力、联络线功率等相关物理量的测试工作。逐步增减试验机组出力,每次增减出力(出力增减量在电网一次调频死区内外应有明显不同,以能改变电网频率0.01Hz左右为宜)后,稳定15~25秒,以便电网通过调节形成新的稳态频率。注意试验机组的出力变化以单方向增加或减少为宜,避免试验过程中机组出力的反复调整,直至达到试验预设的电网频率最大值或最小值。
3)、试验结束后,详细分析试验过程中电网各个稳点运行工况点总出力与稳定频率,绘制电网总出力与电网稳态频率的关系图,进一步通过数据拟合,得到电网在不同频率段内的频率静态特性关系曲线。该关系曲线的斜率即为实测的电网频率静态特性系数(单位归化为MW/0.1Hz)。
利用拉西瓦水电厂机组定步长逐步增减出力的方法,测定西北电网在多个稳定工况点频率与功率的关系,再通过数据拟合,分段测定电网的频率静态特性系数。如图2为试验过程中机组功率和电网频率的变化过程。
图3a和图3b是利用拉西瓦水电厂机组定步长逐步增减出力的方法,用四次测试所测得各稳态点拟合的曲线,可以看出电网频率在50±0.035Hz范围内和之外,电网频率静态特性有着明显差别。在50±0.035Hz范围内,频率静态特性系数在-300MW/0.1Hz左右;在50±0.035Hz范围以外,频率静态特性系数在-3000MW/0.1Hz以上。
进一步分析整理调节过程中各稳态点的电网频率和机组功率数据,如图4和图5,拟合功率与电网频率关系曲线,测得电网频率在50±0.035Hz范围之外的频率静态特性系数在升、降出力方向分别为-3125MW/0.1Hz和-3100MW/0.1Hz。
依据上述西北电网各控制区、各省电网频率静态特性的测试分析结果,绘制西北电网频率静态特性示意图如图6,横坐标为电网频率(单位Hz),纵坐标为电网功率不平衡量(正数为发电出力缺额,负数为负载损失)。实线部分为本次试验实际测试结果,直线斜率为-3100MW/0.1Hz(实际测得西北电网频率静态特性系数β为3100~3600MW/0.1Hz)。中间虚线部分为并网机组一次调频死区的影响,实测分析频率死区内(50±0.035Hz)的频率静态特性系数β为300MW/0.1Hz左右,两头的虚线部分为并网火电机组一次调频限幅的影响。
电网内并网机组AGC退出,通过机组定步长逐步增、减出力,实测各调节稳定工况点的电网频率和功率变化,可以分频率段实测电网的频率静态特性系数。该方法与电网功率大阶跃试验相比,试验风险和测试系统误差都相对小。

Claims (6)

1.非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,包括以下步骤:
1)、测试前人为退出所测电网或所测电网控制区并网机组的AGC及其他二次调频调节操作;
2)、选择电网中的若干台机组作为电网功率扰动的试验机组,在电网发电出力和负载稳定时段,逐步增/减试验机组出力,每次增/减出力后,稳定一段时间,使电网通过调节形成新的稳态频率;试验过程中,进行所测同步电网和所测电网控制区的频率、总出力、联络线功率的测试;
3)、试验结束后,分析试验过程中所测电网或所测某电网控制区各个稳点运行工况点总出力、联络线功率与稳定频率,绘制总出力或联络线交换功率与电网稳态频率的关系图,进一步通过数据拟合,得到电网在不同频率段内的频率静态特性关系曲线;该关系曲线的斜率为实测的电网频率静态特性系数,单位归化为MW/0.1Hz。
2.根据权利要求1所述的非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,步骤2)中试验机组的出力变化以为单方向增加或减少,直至达到试验预设的电网频率最大值或最小值。
3.根据权利要求1所述的非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,步骤2)中试验机组每次出力的增/减量,在最小值ΔPmin和最大值ΔPmax之间选定;最小值ΔPmin以所造成电网频率的稳态变化量能够精确测量为准;最大值ΔPmax以所造成的电网扰动安全可控为准。
4.根据权利要求1所述的非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,步骤2)中试验机组每次出力的增减量,所造成电网频率的稳态变化量为0.01Hz。
5.根据权利要求1所述的非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,稳定一段时间约为15~25秒。
6.根据权利要求1所述的非电网大扰动条件下的电网频率静态特性系数测试方法,其特征在于,试验机组的可调节出力占电网总负荷的1%以上。
CN201710109551.5A 2017-02-27 2017-02-27 非电网大扰动条件下的电网频率静态特性系数测试方法 Active CN106908660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710109551.5A CN106908660B (zh) 2017-02-27 2017-02-27 非电网大扰动条件下的电网频率静态特性系数测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710109551.5A CN106908660B (zh) 2017-02-27 2017-02-27 非电网大扰动条件下的电网频率静态特性系数测试方法

Publications (2)

Publication Number Publication Date
CN106908660A true CN106908660A (zh) 2017-06-30
CN106908660B CN106908660B (zh) 2019-07-12

Family

ID=59208074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710109551.5A Active CN106908660B (zh) 2017-02-27 2017-02-27 非电网大扰动条件下的电网频率静态特性系数测试方法

Country Status (1)

Country Link
CN (1) CN106908660B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258722A (zh) * 2018-01-09 2018-07-06 国网辽宁省电力有限公司 一种提升电网新能源接纳能力的功频技术
CN110021967A (zh) * 2019-04-16 2019-07-16 国网陕西省电力公司电力科学研究院 一种用于自动发电控制的区域控制偏差计算方法及系统
CN110376482A (zh) * 2019-06-28 2019-10-25 国电南瑞科技股份有限公司 一种适用于送端大电网的频率特性试验方法
CN110687385A (zh) * 2019-11-01 2020-01-14 国网山东省电力公司电力科学研究院 基于负荷区间动态调整的并网机组远程频率扰动测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510060A (zh) * 2011-11-29 2012-06-20 武汉大学 一种电力系统频率特性系数的计算方法
WO2012117132A1 (es) * 2011-02-28 2012-09-07 Abengoa Solar New Technologies, S.A. Controlador de la característica electromecánica virtual para convertidores estáticos de potencia
CN103246206A (zh) * 2013-05-15 2013-08-14 国家电网公司 基于pmu的负荷特性电网负荷在线建模方法
CN104897956A (zh) * 2015-05-18 2015-09-09 华南理工大学 一种在线主动测量电网的有功功率与频率特性系数的方法
CN105353211A (zh) * 2015-11-18 2016-02-24 中国电力科学研究院 一种负荷元件频率特性的测试方法
CN105429131A (zh) * 2015-12-07 2016-03-23 中国电力科学研究院 一种考虑负荷频率特性的负荷模型构建方法
CN105445582A (zh) * 2015-11-26 2016-03-30 广东电网有限责任公司电力科学研究院 一种互联电网一次调频响应性能评估方法
CN105808889A (zh) * 2016-04-25 2016-07-27 中国电力科学研究院 一种频率偏差系数仿真配置方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117132A1 (es) * 2011-02-28 2012-09-07 Abengoa Solar New Technologies, S.A. Controlador de la característica electromecánica virtual para convertidores estáticos de potencia
CN102510060A (zh) * 2011-11-29 2012-06-20 武汉大学 一种电力系统频率特性系数的计算方法
CN103246206A (zh) * 2013-05-15 2013-08-14 国家电网公司 基于pmu的负荷特性电网负荷在线建模方法
CN104897956A (zh) * 2015-05-18 2015-09-09 华南理工大学 一种在线主动测量电网的有功功率与频率特性系数的方法
CN105353211A (zh) * 2015-11-18 2016-02-24 中国电力科学研究院 一种负荷元件频率特性的测试方法
CN105445582A (zh) * 2015-11-26 2016-03-30 广东电网有限责任公司电力科学研究院 一种互联电网一次调频响应性能评估方法
CN105429131A (zh) * 2015-12-07 2016-03-23 中国电力科学研究院 一种考虑负荷频率特性的负荷模型构建方法
CN105808889A (zh) * 2016-04-25 2016-07-27 中国电力科学研究院 一种频率偏差系数仿真配置方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258722A (zh) * 2018-01-09 2018-07-06 国网辽宁省电力有限公司 一种提升电网新能源接纳能力的功频技术
CN108258722B (zh) * 2018-01-09 2022-08-09 国网辽宁省电力有限公司 一种提升电网新能源接纳能力的功频技术
CN110021967A (zh) * 2019-04-16 2019-07-16 国网陕西省电力公司电力科学研究院 一种用于自动发电控制的区域控制偏差计算方法及系统
CN110376482A (zh) * 2019-06-28 2019-10-25 国电南瑞科技股份有限公司 一种适用于送端大电网的频率特性试验方法
CN110687385A (zh) * 2019-11-01 2020-01-14 国网山东省电力公司电力科学研究院 基于负荷区间动态调整的并网机组远程频率扰动测试方法

Also Published As

Publication number Publication date
CN106908660B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN106908660A (zh) 非电网大扰动条件下的电网频率静态特性系数测试方法
CN101931241B (zh) 风电场并网协调控制方法
Okedu et al. Optimization of renewable energy efficiency using HOMER
CA2715932C (en) Reactive power regulation and voltage support for renewable energy plants
Oshnoei et al. Disturbance observer and tube-based model predictive controlled electric vehicles for frequency regulation of an isolated power grid
CN103715700B (zh) 适用于风电场并网点电压控制的无功控制系统及控制方法
Yang et al. Wear reduction for hydropower turbines considering frequency quality of power systems: a study on controller filters
CN103914741A (zh) 一种配电网的线损智能评价及辅助决策系统
CN112564127B (zh) 一种光伏并网电力系统频率暂态稳定性分析方法
CN107168101A (zh) 考虑调频及稳定约束的机组调速系统控制参数整定方法
Hou et al. Optimal successive start-up strategy of two hydraulic coupling pumped storage units based on multi-objective control
CN103474986A (zh) 一种长时间尺度电力系统频率波动仿真方法
Bekri et al. Optimal location of SVC and TCSC for voltage stability enhancement
CN104485670B (zh) 孤立电网中电压敏感性工业负荷时变阻尼特性的控制方法
CN108711868A (zh) 一种计及孤岛运行电压安全的配电网无功优化规划方法
CN108933441A (zh) 新能源消纳能力的分析方法
CN107346889B (zh) 考虑一二次调频及最小频率偏差的负荷削减优化模型构建方法
Wang et al. Dynamic economic dispatch considering transmission–distribution coordination and automatic regulation effect
Jiang et al. Hydraulic turbine system identification and predictive control based on GASA-BPNN
CN104965954A (zh) 一种基于全特性空间曲面建模的梯级负荷经济分配方法
CN106684931A (zh) 一种新能源发电场有功控制方法及控制系统
Zhang et al. Frequency-constrained unit commitment for power systems with high renewable energy penetration
Zhu et al. $\mu $-Synthesis Robust Control of Variable Speed Wind Turbine Generators for Participating in Microgrid Frequency Regulation
Wu et al. Cyber-enabled intelligence control and security optimization for complex microgrid networks transient frequency stability analysis of power systems considering photovoltaic grid connection
CN113507111B (zh) 基于盲数理论的规划目标年电力盈亏评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant