CN106908249A - 一种汽轮机高压缸通流级效率异常的诊断方法 - Google Patents

一种汽轮机高压缸通流级效率异常的诊断方法 Download PDF

Info

Publication number
CN106908249A
CN106908249A CN201710109546.4A CN201710109546A CN106908249A CN 106908249 A CN106908249 A CN 106908249A CN 201710109546 A CN201710109546 A CN 201710109546A CN 106908249 A CN106908249 A CN 106908249A
Authority
CN
China
Prior art keywords
flow
steam
pressure
pressure cylinder
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710109546.4A
Other languages
English (en)
Other versions
CN106908249B (zh
Inventor
裴东升
付昶
王伟锋
吴涛
文乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN201710109546.4A priority Critical patent/CN106908249B/zh
Publication of CN106908249A publication Critical patent/CN106908249A/zh
Application granted granted Critical
Publication of CN106908249B publication Critical patent/CN106908249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Turbines (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种汽轮机高压缸通流级效率异常的诊断方法。本发明的研究内容为:如何诊断出高压缸通流参数异常的原因。本发明的方案为:首先,测试进汽温度变化对高压缸通流级效率的影响,根据水蒸汽在汽轮机级内的膨胀过程线化趋势来判断高压缸内部是否存在漏汽现象;然后,关闭高压缸各段抽汽的电动门,测量进汽、排汽和各段抽汽的压力和温度,变工况计算出抽汽压力与级后流量比,比较抽汽压力与对应通流级后压力的差异,最终确定高压缸通流级效率异常的原因。本发明利用过热蒸汽在汽轮机内的膨胀特性和道内的流动特性,通过边界条件来诊断出汽轮机高压缸通流级效率异常的原因,填补了国内汽轮机高压缸通流级效率异常诊断的技术空白。

Description

一种汽轮机高压缸通流级效率异常的诊断方法
技术领域:
本发明属于火力发电领域,具体涉及一种汽轮机高压缸通流级效率异常的诊断方法。
背景技术:
在火力发电领域中,汽轮机是将蒸汽热能转化为电能的关键设备之一,国内汽轮机的发展路线是“引进产品-引进技术-部分设备自主生产-完全独立生产-独立开发创新型产品”。随着设计和制造水平的提高,国内汽轮机制造厂的生产和研发出的部分产品性能已经接近国际一流水平,但部分型号汽轮机仍然存在很多问题,汽轮机高压缸通流级效率异常(低于设计值)是常见的问题之一。通常来说,汽轮机高压缸通流级效率异常有两种情况:(1)由于设计或制造存在缺陷造成高压缸通流级效率真实偏低。(2)高压缸内部有高品质蒸汽漏汽至抽汽管道或者抽汽腔室有节流现象,导致实测通流参数异常目前,造成实测通流级效率异常。国内汽轮机设备性能验收试验或大修试验均有相关试验标准参考(比如PTC62004和GB/T 8117),试验标准或规程对汽轮机性能试验的操作流程、试验需要的测点种类及数量和试验仪表的精度作了详细要求,但均未提及高压缸通流级效率异常等汽轮机故障诊断分析相关方法。
发明内容:
本发明的目的是提供一种汽轮机高压缸通流级效率异常的诊断方法,该方法能够有效解决如何汽轮机高压缸通流级效率异常的原因。利用该方法对某一具体的汽轮机高压缸及其通流级进行研究分析,根据测量结果绘制出蒸汽膨胀过程线和计算出的级后流量与压力比值关系,诊断出高压缸通流级效率异常的原因。
为达到上述目的,本发明采用如下技术方案来实现:
一种汽轮机高压缸通流级效率异常的诊断方法,包括以下步骤:
在机组还未投入运行时,在汽轮机高压缸的进汽、排汽和各段抽汽管道上安装温度和压力试验测点;在机组投入运行时,在额定进汽参数下试汽轮机高压缸进汽、排汽和各段抽汽的压力和温度,计算汽轮机高压缸通流级效率,根据焓熵图绘制蒸汽在汽轮机高压缸内部的膨胀过程线,并与设计值比较;如果通流级后蒸汽或抽汽温度偏离设计值5℃以上,则改变汽轮机高压缸进汽温度,测试汽轮机高压缸进汽、排汽和各段抽汽的压力和温度,计算汽轮机高压缸通流级效率,判断是否是由漏汽现象造成通流级效率异常;如果通流级后蒸汽抽汽压力偏离设计值1%以上,关闭汽轮机高压缸各段抽汽的电动门,测量进汽、排汽和各段抽汽的压力和温度,计算此时抽汽压力与级后流量比,并进行变工况计算,判断出抽汽压力是否与对应通流级后压力的关系,判断抽汽腔室是否存在流动损失,从而诊断出造成汽轮机高压缸通流级效率偏低的原因。
本发明进一步的改进在于:当机组正常运行时,将汽轮机高压调门开度强制不变,汽轮机进汽在保持机组回热系统正常投入运行,测量高压缸的进汽、排汽和抽汽参数,计算高压缸通流级效率,其计算公式如下:
式中:Hin—通流级进汽焓值,kJ/kg;
Ho'ut—通流级等熵排汽焓,kJ/kg;
Hout—通流级排汽焓,kJ/kg;
在压力保持不变时,改变汽轮机高压缸进汽温度,此时,高压缸通流级真实效率不变,如果汽轮机存在内漏现象,相当于有一部分蒸汽从通流级前直接漏至高压缸排汽或各段抽汽参数,实测的通流级效率会随级前蒸汽温度变化而变化,在调门开度和进汽压力不变的情况下,蒸汽温度变化影响汽轮机进汽比容的变化,蒸汽比容根据国际公式化委员会1967年工业用IFC水和水蒸汽状态方程V=f(P,T),从而会影响汽轮机进汽通流能力,新蒸汽温度下的汽轮机进汽质量流量影响的计算公式如下:
式中:G—初始工况下汽轮机进汽流量,t/h;
G'—变工况下汽轮机进汽流量,t/h;
V—初始工况下汽轮机进汽比容,m3/kg;
V'—变工况下汽轮机进汽比容,m3/kg;
测量靠近汽缸本体的抽汽管内的蒸汽压力代替测量,但是如果因设计或安装的原因导致通流级后蒸汽流动至抽汽管道的流动损失偏大,实测抽汽管道内的蒸汽压力会低于通流级后蒸汽压力,此时计算出的通流级效率会低于实际值,关闭抽汽管道上的电动门后,抽汽管道内的水蒸汽的压力为静压,与通流级后蒸汽压力基本相当;关闭抽汽电动门后,会造成对应通流级后的流量增大,从而会导致级后压力发生变化,汽轮机级后压力与流量的折算公式如下:
式中:G0—初始工况下汽轮机级段通流量,t/h;
G1—变工况下汽轮机级段通流量,t/h;
P0—初始工况下汽轮机级段前压力,MPa;
P01—变工况下汽轮机级段前压力,MPa;
P0—初始工况下汽轮机级段后压力,MPa;
P21—变工况下汽轮机级段后压力,MPa;
根据过热蒸汽在汽轮机通流级内的膨胀特性和汽轮机抽汽管道内蒸汽流动特性,诊断出汽轮机高压缸通流级效率异常的原因。
本发明具有如下的优点:
事先布置好测试通流级效率的相关测点,在机组正常运行时,将汽轮机高压缸进汽调节阀门开度保持不变,测试并分析出汽轮机高压缸进汽参数变化对汽轮机高压缸通流级效率(测试效率)的影响,根据水蒸汽在汽轮机级内的膨胀过程线(膨胀效率)的变化趋势来判断汽轮机高压缸内部是否存在漏汽现象;然后,关闭汽轮机高压缸各段抽汽的电动门,测量进汽、排汽和各段参数,计算此时抽汽压力(静压)与级后流量比,据此判断出抽汽压力是否与对应通流级后的压力一致,最终确定汽轮机高压缸通流级效率异常的原因。
为了提高汽轮机高压缸通流效率诊断的准确性,可以增大汽轮机高压缸进汽温度的变化梯度和变化次数,在测试过程中尽量保持汽轮高压缸进汽压力稳定。
附图说明:
图1为本发明在测点安装示意图。
图2为不同参数下的无内部漏汽现象时的汽轮机高压缸通流膨胀过程线。
图3为不同参数下的有内部漏汽现象时的汽轮机高压缸通流膨胀过程线。
图4为不同参数下的通流级后至抽汽压力测点之间存在流动损失时的汽轮机高压缸通流膨胀过程线。
图5为主蒸汽漏汽至零段抽汽和一段抽汽漏汽量分别为0t/h、2t/h、4t/h和6t/h时的抽汽膨胀过程线。
图6为汽轮机变工况计算流程图。
图7为汽轮机高压缸通流效率诊断方法的流程图。
具体实施方式:
下面结合附图对本发明做进一步地详细说明。
如图1所示,机组还未投入运行时,参考ASME PTC6标准,在汽轮机高压缸的进汽、排汽和各段抽汽管道上安装温度和压力试验测点,压力测点装在上游,压力测量采用精度为0.075级的压力变送器,温度测点布置双重测点,试验专用精密级E型热电偶为一次测量元件,二次仪表采用温度变送器测量,采集系统采用EIC分布式数据采集装置结合英国施伦伯杰公司生产的IMP数据采集板,压力和温度信号送入数据采集系统实现自动存储和记录试验数据。
强制汽轮机高压调阀开度不变,保持主蒸汽压力不变,在进汽温度分别为538℃、523℃和508℃下测试汽轮机高压缸通流级效率,根据焓熵图绘制出的蒸汽膨胀过程线,会出现以下几种情况:
如图2所示,根据测试数据和焓熵图绘制出的蒸汽膨胀过程线基本平行,此时可认为通流级效率偏低是由于高压缸本体效率偏低导致的。
如图3所示,各段抽汽压力基本不变,根据测试数据和焓熵图绘制出的蒸汽膨胀过程线出现熵减现象,违背了热力学第二定律,若测试通流效率的此时可认为通流级效率偏低是与高压缸内部漏汽现象有关。
表1测试工况通流级效率与设计值的比较
如图4所示,各段抽汽温度基本不变,零段抽汽和一段抽汽压力偏低,根据测试数据和焓熵图绘制出的蒸汽膨胀过程线与设计状态偏离,这可能是由于设计制造偏差或测试抽汽压力低于汽轮机级后压力(通流级后至对应抽汽压力测试位置有压损)造成的,各级段效率与如表1所示。
表2测试工况通流级效率与设计值的比较
为了确认是否是由于测试抽汽压力低于汽轮机级后压力造成的,将零段抽汽电动阀V1和零段抽汽电动阀V2(见图),此时由于抽汽流量减小,通流级后的流量会增加(通流级后压力升高),级后压力可通过公式3折算。表3为某压临界600M机组设计状态下投和不投0号高加时的各段抽汽压力及级后流量对比。
表3投和不投0号高加时的各段抽汽压力及级后流量对比
根据表3提供的计算数据可以看出,采用变工况计算得出的汽轮机第零段和第一段抽汽压力与设计值偏差分别为0.17%和0.14%,不影响分析测试结果。
根据关闭抽汽电动门的测试参数,变工况计算至回热系统正常投用状态下,得出的各段抽汽压力与回热系统正常投用时的实测值偏差在0.5%以内,可认为汽轮机通流级效率异常是由于汽轮机通流制造与设计值偏差造成的,如果偏差大于0.5%,将变工况计算得出的压力代替投用回热系统时的实测压力,重新绘制蒸汽膨胀过程线,此时膨胀过程线若与设计状态近似平行,可认为通流效率异常是由于汽轮机通流级后蒸汽到抽汽压力测点之间存在压力损失造成的。
如图5所示,根据设计数据变工况计算出主蒸汽漏汽至零段抽汽和一段抽汽漏汽量分别为0t/h、2t/h、4t/h和6t/h时的抽汽膨胀过程线。
如图6所示,为汽轮机变工况计算详细过程,计算过程保持加热器端差不变,当初参数变化时,重新计算出各通流级后的流量,根据弗留格尔公式计算出新的抽汽压力,反复迭代计算,直至相邻两次计算的压力误差小于0.01%,输出计算结果。
如图7所示,为汽轮机高压缸通流效率异常诊断的详细流程图。
综上所述,本发明一种汽轮机高压缸通流级效率异常的诊断方法,涉及的测试系统简单,测试条件的变化不影响汽轮机组安全性,具有很强的可操作性,变工况计算有成熟的理论支撑,误差在可控范围内,通流级效率异常的准确性较高。

Claims (2)

1.一种汽轮机高压缸通流级效率异常的诊断方法,其特征在于,包括以下步骤:
在机组还未投入运行时,在汽轮机高压缸的进汽、排汽和各段抽汽管道上安装温度和压力试验测点;在机组投入运行时,在额定进汽参数下试汽轮机高压缸进汽、排汽和各段抽汽的压力和温度,计算汽轮机高压缸通流级效率,根据焓熵图绘制蒸汽在汽轮机高压缸内部的膨胀过程线,并与设计值比较;如果通流级后蒸汽或抽汽温度偏离设计值5℃以上,则改变汽轮机高压缸进汽温度,测试汽轮机高压缸进汽、排汽和各段抽汽的压力和温度,计算汽轮机高压缸通流级效率,判断是否是由漏汽现象造成通流级效率异常;如果通流级后蒸汽抽汽压力偏离设计值1%以上,关闭汽轮机高压缸各段抽汽的电动门,测量进汽、排汽和各段抽汽的压力和温度,计算此时抽汽压力与级后流量比,并进行变工况计算,判断出抽汽压力是否与对应通流级后压力的关系,判断抽汽腔室是否存在流动损失,从而诊断出造成汽轮机高压缸通流级效率偏低的原因。
2.根据权利要求1所述的一种汽轮机高压缸通流级效率异常的诊断方法,其特征在于:当机组正常运行时,将汽轮机高压调门开度强制不变,汽轮机进汽在保持机组回热系统正常投入运行,测量高压缸的进汽、排汽和抽汽参数,计算高压缸通流级效率,其计算公式如下:
η H = H i n - H o u t H i n - H o u t ′ × 100 % - - - ( 1 )
式中:Hin—通流级进汽焓值,kJ/kg;
H′out—通流级等熵排汽焓,kJ/kg;
Hout—通流级排汽焓,kJ/kg;
在压力保持不变时,改变汽轮机高压缸进汽温度,此时,高压缸通流级真实效率不变,如果汽轮机存在内漏现象,相当于有一部分蒸汽从通流级前直接漏至高压缸排汽或各段抽汽参数,实测的通流级效率会随级前蒸汽温度变化而变化,在调门开度和进汽压力不变的情况下,蒸汽温度变化影响汽轮机进汽比容的变化,蒸汽比容根据国际公式化委员会1967年工业用IFC水和水蒸汽状态方程V=f(P,T),从而会影响汽轮机进汽通流能力,新蒸汽温度下的汽轮机进汽质量流量影响的计算公式如下:
G ′ = G PV ′ P ′ V - - - ( 2 )
式中:G—初始工况下汽轮机进汽流量,t/h;
G'—变工况下汽轮机进汽流量,t/h;
V—初始工况下汽轮机进汽比容,m3/kg;
V'—变工况下汽轮机进汽比容,m3/kg;
测量靠近汽缸本体的抽汽管内的蒸汽压力代替测量,但是如果因设计或安装的原因导致通流级后蒸汽流动至抽汽管道的流动损失偏大,实测抽汽管道内的蒸汽压力会低于通流级后蒸汽压力,此时计算出的通流级效率会低于实际值,关闭抽汽管道上的电动门后,抽汽管道内的水蒸汽的压力为静压,与通流级后蒸汽压力基本相当;关闭抽汽电动门后,会造成对应通流级后的流量增大,从而会导致级后压力发生变化,汽轮机级后压力与流量的折算公式如下:
G 1 G 0 = P 01 2 - P 21 2 P 0 2 - P 2 2 - - - ( 3 )
式中:G0—初始工况下汽轮机级段通流量,t/h;
G1—变工况下汽轮机级段通流量,t/h;
P0—初始工况下汽轮机级段前压力,MPa;
P01—变工况下汽轮机级段前压力,MPa;
P0—初始工况下汽轮机级段后压力,MPa;
P21—变工况下汽轮机级段后压力,MPa;
根据过热蒸汽在汽轮机通流级内的膨胀特性和汽轮机抽汽管道内蒸汽流动特性,诊断出汽轮机高压缸通流级效率异常的原因。
CN201710109546.4A 2017-02-27 2017-02-27 一种汽轮机高压缸通流级效率异常的诊断方法 Active CN106908249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710109546.4A CN106908249B (zh) 2017-02-27 2017-02-27 一种汽轮机高压缸通流级效率异常的诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710109546.4A CN106908249B (zh) 2017-02-27 2017-02-27 一种汽轮机高压缸通流级效率异常的诊断方法

Publications (2)

Publication Number Publication Date
CN106908249A true CN106908249A (zh) 2017-06-30
CN106908249B CN106908249B (zh) 2018-11-30

Family

ID=59208865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710109546.4A Active CN106908249B (zh) 2017-02-27 2017-02-27 一种汽轮机高压缸通流级效率异常的诊断方法

Country Status (1)

Country Link
CN (1) CN106908249B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365083A (zh) * 2020-04-10 2020-07-03 西安热工研究院有限公司 一种基于热力参数的汽轮机通流部分故障诊断方法
CN112145244A (zh) * 2020-09-22 2020-12-29 西安热工研究院有限公司 一种提高燃煤发电机组给水温度和供汽能力的系统和方法
CN112228158A (zh) * 2020-11-06 2021-01-15 国电泉州热电有限公司 一种适应高压抽汽的新型亚临界300mw汽轮机通流结构
CN112485011A (zh) * 2020-10-26 2021-03-12 华北电力科学研究院有限责任公司 积盐情况的确定方法、装置和设备
CN114718663A (zh) * 2022-04-14 2022-07-08 杭州汽轮机股份有限公司 可调抽汽汽轮机通流结构及其设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634385B2 (en) * 2003-05-22 2009-12-15 General Electric Company Methods of measuring steam turbine efficiency
US20110038712A1 (en) * 2009-08-17 2011-02-17 General Electric Company System and method for measuring efficiency and leakage in a steam turbine
CN102004460A (zh) * 2010-11-24 2011-04-06 东北电力大学 一种汽轮机通流部分结垢程度的在线监测方法
CN102680144A (zh) * 2012-05-21 2012-09-19 东南大学 汽轮机中间分隔轴封漏汽率对机组热耗率影响的测算方法
CN103217292A (zh) * 2013-03-29 2013-07-24 国家电网公司 发电机组热经济指标的实时监测方法和监测系统
CN103530504A (zh) * 2013-09-27 2014-01-22 广东电网公司电力科学研究院 热电联产机组以热定电下可行运行区间的计算系统及方法
CN103900819A (zh) * 2014-03-27 2014-07-02 华电国际电力股份有限公司山东分公司 汽轮机组通流部分汽封改造的节能效果测试与评价方法
CN105201564A (zh) * 2015-08-26 2015-12-30 国网河南省电力公司电力科学研究院 一种基于主蒸汽流量的汽轮机滑压优化的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634385B2 (en) * 2003-05-22 2009-12-15 General Electric Company Methods of measuring steam turbine efficiency
US20110038712A1 (en) * 2009-08-17 2011-02-17 General Electric Company System and method for measuring efficiency and leakage in a steam turbine
CN102004460A (zh) * 2010-11-24 2011-04-06 东北电力大学 一种汽轮机通流部分结垢程度的在线监测方法
CN102680144A (zh) * 2012-05-21 2012-09-19 东南大学 汽轮机中间分隔轴封漏汽率对机组热耗率影响的测算方法
CN103217292A (zh) * 2013-03-29 2013-07-24 国家电网公司 发电机组热经济指标的实时监测方法和监测系统
CN103530504A (zh) * 2013-09-27 2014-01-22 广东电网公司电力科学研究院 热电联产机组以热定电下可行运行区间的计算系统及方法
CN103900819A (zh) * 2014-03-27 2014-07-02 华电国际电力股份有限公司山东分公司 汽轮机组通流部分汽封改造的节能效果测试与评价方法
CN105201564A (zh) * 2015-08-26 2015-12-30 国网河南省电力公司电力科学研究院 一种基于主蒸汽流量的汽轮机滑压优化的控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹小玲: ""汽轮机通流部分热力参数在线计算方法"", 《汽轮机技术》 *
陈汉平等: ""汽轮机热力参数在线监测及故障诊断系统"", 《汽轮机技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365083A (zh) * 2020-04-10 2020-07-03 西安热工研究院有限公司 一种基于热力参数的汽轮机通流部分故障诊断方法
CN112145244A (zh) * 2020-09-22 2020-12-29 西安热工研究院有限公司 一种提高燃煤发电机组给水温度和供汽能力的系统和方法
CN112145244B (zh) * 2020-09-22 2023-02-24 西安热工研究院有限公司 一种提高燃煤发电机组给水温度和供汽能力的系统和方法
CN112485011A (zh) * 2020-10-26 2021-03-12 华北电力科学研究院有限责任公司 积盐情况的确定方法、装置和设备
CN112228158A (zh) * 2020-11-06 2021-01-15 国电泉州热电有限公司 一种适应高压抽汽的新型亚临界300mw汽轮机通流结构
CN112228158B (zh) * 2020-11-06 2023-10-31 国电泉州热电有限公司 一种适应高压抽汽的亚临界300mw汽轮机通流结构
CN114718663A (zh) * 2022-04-14 2022-07-08 杭州汽轮机股份有限公司 可调抽汽汽轮机通流结构及其设计方法
CN114718663B (zh) * 2022-04-14 2024-04-02 杭州汽轮动力集团股份有限公司 可调抽汽汽轮机通流结构及其设计方法

Also Published As

Publication number Publication date
CN106908249B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN106908249B (zh) 一种汽轮机高压缸通流级效率异常的诊断方法
CN100437015C (zh) 汽轮机通流间隙变化在线监测方法
CN108181099B (zh) 一种核反应堆稳压器安全阀水封试验系统及其试验方法
CN103646176B (zh) 汽轮机汽封改造后节能效果的综合计算方法
CN105699062A (zh) 一种阀门流量流阻测试系统及其进行小微流量测试的方法
CN111365083B (zh) 一种基于热力参数的汽轮机通流部分故障诊断方法
CN103308293A (zh) 一种高温阀门检测试验系统
CN103900819A (zh) 汽轮机组通流部分汽封改造的节能效果测试与评价方法
CN106053105A (zh) 一种核电站回热加热器能效监测与诊断的方法和系统
CN105225008A (zh) 一种预测汽轮机热力系统内部运行参数的方法
CN110532681B (zh) 基于narx网络-箱线图和常模式提取的燃机异常检测方法
Martini et al. Data Reconciliation for power systems monitoring: Application to a microturbine-based test rig
CN102680144B (zh) 汽轮机中间分隔轴封漏汽率对机组热耗率影响的测算方法
Álvarez-Fernández et al. Thermal analysis of closed feedwater heaters in nuclear power plants
CN111305914B (zh) 一种基于能量平衡的核电汽轮机高压缸效率测试方法
CN103175658A (zh) 核电站管道泄漏率的试验方法及系统
Wack et al. A turbulence model assessment for deep part load conditions of a Francis turbine
CN112326252B (zh) 一种降低汽轮机性能试验不确定度的方法
CN109459195A (zh) 用于判断高压加热器系统泄漏的方法及系统
CN103091027B (zh) 液体管路设备流动压力损失测试方法
Cho et al. Advancement of reactor coolant pump (RCP) performance verification test in KAERI
CN106568074B (zh) 锅炉受热面故障诊断方法、装置和系统
CN106383026B (zh) 一种测试或检定稳压器安全阀排量的试验系统及试验方法
Wan et al. Study of the leakage tracer gas transport property in condenser: He and SF6
Le et al. Comparison of model-driven soft measurement methods for compressor air flow in gas-steam combined cycle power units

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant