CN106899810A - A kind of mine video image fusion method and device - Google Patents
A kind of mine video image fusion method and device Download PDFInfo
- Publication number
- CN106899810A CN106899810A CN201510952077.3A CN201510952077A CN106899810A CN 106899810 A CN106899810 A CN 106899810A CN 201510952077 A CN201510952077 A CN 201510952077A CN 106899810 A CN106899810 A CN 106899810A
- Authority
- CN
- China
- Prior art keywords
- image
- mine
- module
- block
- fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 12
- 230000004927 fusion Effects 0.000 claims abstract description 64
- 230000006835 compression Effects 0.000 claims abstract description 27
- 238000007906 compression Methods 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000005070 sampling Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 72
- 239000013598 vector Substances 0.000 claims description 22
- 238000007499 fusion processing Methods 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000003786 synthesis reaction Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 8
- 238000012937 correction Methods 0.000 claims description 7
- 230000008447 perception Effects 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims description 4
- 238000002407 reforming Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/265—Mixing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明公开了一种矿井视频图像融合方法,用于实现矿井图像的采样、融合和重构。该方法首先对矿井视频图像分块压缩采样,然后对图像块压缩采样信号进行信源熵融合,最后对融合的信号进行重构、拼接后恢复变成原始图像。本发明进一步公开了一种矿井视频图像融合装置,该装置包括矿井图像采集设备、矿井图像融合节点和矿井图像接收设备。该装置采用无线传输方式,图像压缩处理和传输能力强,视频图像处理的冗余计算少,所需存储空间小,井下传输信道带宽要求低,满足井下特定的使用环境,有效提高了井下视频图像的压缩处理和传输能力,保证了矿井WSN、Zigbee无线网络环境下视频信号的实时性传输。
The invention discloses a mine video image fusion method, which is used to realize the sampling, fusion and reconstruction of mine images. The method first compresses and samples mine video images in blocks, then performs source entropy fusion on the compressed and sampled signals of the image blocks, and finally reconstructs the fused signals and restores them to the original image after splicing. The invention further discloses a mine video image fusion device, which includes a mine image collection device, a mine image fusion node and a mine image receiving device. The device adopts a wireless transmission mode, has strong image compression processing and transmission capabilities, less redundant calculations for video image processing, requires less storage space, and has low bandwidth requirements for downhole transmission channels. The excellent compression processing and transmission capabilities ensure the real-time transmission of video signals under mine WSN and Zigbee wireless network environments.
Description
技术领域technical field
本发明涉及一种无线通信和图像融合技术,具体地说,涉及一种矿井视频图像融合方法与装置。The invention relates to a wireless communication and image fusion technology, in particular to a mine video image fusion method and device.
背景技术Background technique
现有的矿井图像信息融合技术需要考虑图像的所有像素点,即需要对压缩编码的图像信息解压缩恢复后再对其融合,采用这种技术装置存在设计复杂、传输带宽要求高、存储空间需求大等问题。尤其是,矿井环境中视频图像受噪声干扰影响较大,在矿井视频中存在分辨率低、图像模糊等现象,但由于矿井监控和视频通信对矿井视频图像质量和实时性要求较高,加之井下通信环境带宽资源有限,采用传统的图像融合技术难以解决视频图像压缩处理时出现的视频信号传输延迟、图像抖动等问题。因此,迫切需要研究和发明一种新的矿井视频图像融合方法及装置,以解决现存问题。The existing mine image information fusion technology needs to consider all the pixels of the image, that is, it needs to decompress and restore the compressed and encoded image information and then fuse it. The use of this technology device has complex design, high transmission bandwidth requirements, and storage space requirements. Big and other issues. In particular, the video image in the mine environment is greatly affected by noise interference, and there are low resolution and blurred images in the mine video. The communication environment has limited bandwidth resources, and it is difficult to solve the problems of video signal transmission delay and image jitter during video image compression processing by using traditional image fusion technology. Therefore, it is urgent to research and invent a new mine video image fusion method and device to solve the existing problems.
2006年,Donoho等提出了压缩感知(Compressed Sensing,CS)理论,通过分析信号本身的稀疏矩阵,试图突破传统信息论中的带宽瓶颈,对信号处理和压缩极限产生了很大的提升。该理论表明,如果信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的随机观测矩阵将变换所得的高维信号投影到一个低维空间上,然后通过求解一个稀疏优化问题来实现信号的精确重构,可以用远低于采样定理要求的采样次数重构信号。而且,已有研究表明使用信息熵作为加权系数在感知域进行信息的融合,可以完整地重构原图像,能够降低传输性能的要求,硬件设计的复杂度以及存储空间的需求。In 2006, Donoho et al. proposed the Compressed Sensing (CS) theory. By analyzing the sparse matrix of the signal itself, it tried to break through the bandwidth bottleneck in traditional information theory, which greatly improved the signal processing and compression limits. The theory shows that if the signal is compressible or sparse in some transform domain, then the transformed high-dimensional signal can be projected onto a low-dimensional space with a random observation matrix uncorrelated with the transform basis, and then By solving a sparse optimization problem to achieve accurate reconstruction of the signal, the signal can be reconstructed with a sampling number much lower than that required by the sampling theorem. Moreover, existing studies have shown that using information entropy as a weighting coefficient to fuse information in the perceptual domain can completely reconstruct the original image, which can reduce the requirements for transmission performance, the complexity of hardware design, and the requirements for storage space.
因此,基于上述CS理论,研究索基于压缩感知理论的矿井视频图像融合技术和方法,将为矿井无线网环境下矿井无线视频图像的压缩处理提供了一个新思路。Therefore, based on the above-mentioned CS theory, the research on mine video image fusion technology and method based on compressive sensing theory will provide a new idea for the compression processing of mine wireless video images under mine wireless network environment.
发明内容Contents of the invention
本发明主要解决现有技术所存在的问题,发明了一种基于分块压缩感知的矿井视频图像融合方法与装置。将分块压缩感知和信源熵融合算法运用于矿井视频图像的压缩采样和图像融合,采用分块压缩感知的算法,降低了信号的采样速率和随机观测矩阵的复杂性,从而减少视频图像处理的冗余计算、节省存储空间;采用信源熵融合算法,能够在图像重构之前实现信息融合,从而减少对传输信道带宽的要求。The invention mainly solves the problems existing in the prior art, and invents a mine video image fusion method and device based on block compression sensing. Apply the block compressed sensing and source entropy fusion algorithm to the compressed sampling and image fusion of mine video images, and use the block compressed sensing algorithm to reduce the sampling rate of the signal and the complexity of the random observation matrix, thereby reducing the video image processing Redundant calculations, saving storage space; the use of information source entropy fusion algorithm can achieve information fusion before image reconstruction, thereby reducing the requirements for transmission channel bandwidth.
本发明采用的技术方案是:一种矿井视频图像融合方法与装置,采用基于分块压缩感知的信源熵融合算法,用于实现矿井视频图像信号的采样、融合和重构。所述矿井视频图像融合方法,包括如下步骤:The technical solution adopted in the present invention is: a mine video image fusion method and device, which adopts a source entropy fusion algorithm based on block compressed sensing to realize the sampling, fusion and reconstruction of mine video image signals. The mine video image fusion method comprises the steps of:
步骤1、信号的采样,包括以下子步骤:Step 1, the sampling of the signal comprises the following sub-steps:
1.1)将输入的矿井视频图像信号分成S个大小K×K像素的图像块,其中S,K∈N;1.1) Divide the input mine video image signal into S image blocks of size K×K pixels, where S, K∈N;
1.2)构建第s(s=1,2,...S)个图像块对应的观测矩阵为ΦK,其中,ms<K2,且ΦK为Hadamard矩阵;1.2) Construct the observation matrix corresponding to the sth (s=1, 2, ... S) image block as Φ K , where, m s <K 2 , and Φ K is a Hadamard matrix;
1.3)获得第s个图像块的不同观测向量分别为x1=ΦKΘ1和x2=ΦKΘ2,其中且Θ1,Θ2分别为源图像第s块的列向量;1.3) Obtaining the different observation vectors of the sth image block are respectively x 1 =Φ K Θ 1 and x 2 =Φ K Θ 2 , where And Θ 1 , Θ 2 are the column vectors of the sth block of the source image respectively;
步骤2、信号的融合,包括以下子步骤:Step 2, fusion of signals, including the following sub-steps:
2.1)计算观测向量x1和x2的信源熵entropy(x1)和entropy(x2)、联合熵entropy(x1,x2)、互信息量MI(x1,x2),2.1) Calculate the source entropy entropy(x 1 ) and entropy(x 2 ), the joint entropy entropy(x 1 , x 2 ), and the mutual information MI(x 1 , x 2 ) of the observation vectors x 1 and x 2 ,
2.2)计算观测向量x1和x2的权系数,2.2) Calculate the weight coefficients of the observation vectors x 1 and x 2 ,
2.3)融合不同的观测向量为最终的观测值xb=t1x1+t2x2,其中,t1,t2经过归一化处理,满足t1+t2=1;2.3) Fusing different observation vectors into the final observation value x b =t 1 x 1 +t 2 x 2 , where t 1 and t 2 are normalized to satisfy t 1 +t 2 =1;
步骤3、信号的重构,根据图像块信号对应的感知矩阵,采用正交匹配追踪算法重构图像块信号对应的重构值;Step 3, signal reconstruction, according to the perception matrix corresponding to the image block signal, using the orthogonal matching pursuit algorithm to reconstruct the reconstruction value corresponding to the image block signal;
步骤4、信号的整合,根据对源图像块划分的方法,将各个块对应的重构值进行拼接、重整,获得重构图像。Step 4, signal integration, according to the method of dividing the source image blocks, the reconstruction values corresponding to each block are spliced and reorganized to obtain a reconstructed image.
本发明进一步公开了一种基于压缩感知的矿井视频图像融合装置,应用于所述矿井视频图像融合方法,该装置包括:矿井图像采集设备、矿井图像融合节点和矿井图像接收设备;其中,所述矿井图像采集设备,用于矿井图像分块采集、图像压缩编码;所述矿井图像融合节点用于在感知域上图像融合;所述矿井图像接收设备用于矿井图像重构解码、视频处理和图像显示;所述矿井图像采集设备、矿井图像融合节点和矿井图像接收设备通过无线通信接口连接,用于对采集的矿井图像信号融合后传输给矿井图像接收设备;所述无线通信接口采用Zigbee、WiFi或/和WCDMA、WiMAX或/和LTE空中接口。The present invention further discloses a mine video image fusion device based on compressed sensing, which is applied to the mine video image fusion method, and the device includes: a mine image collection device, a mine image fusion node and a mine image receiving device; wherein, the The mine image collection equipment is used for mine image block collection and image compression encoding; the mine image fusion node is used for image fusion in the perceptual domain; the mine image receiving device is used for mine image reconstruction decoding, video processing and image processing Display; the mine image acquisition equipment, mine image fusion node and mine image receiving device are connected through a wireless communication interface, and are used to fuse the collected mine image signal and transmit it to the mine image receiving device; the wireless communication interface adopts Zigbee, WiFi Or/and WCDMA, WiMAX or/and LTE air interface.
所述矿井图像采集设备包括:视频采集单元和图像编码单元;所述视频采集单元用于连续图像的分块采集,包括图像分块模块和图像采集模块;The mine image acquisition device includes: a video acquisition unit and an image encoding unit; the video acquisition unit is used for block acquisition of continuous images, including an image block module and an image acquisition module;
所述图像分块模块用于矿井图像分块处理。The image block module is used for mine image block processing.
所述图像采集模块用于采集连续的分块图像并将采集到的分块图像信息传输到图像编码单元进行压缩编码。The image collection module is used to collect continuous block images and transmit the collected block image information to an image coding unit for compression coding.
所述图像编码单元,用于对采集到的分块图像信息进行压缩编码,包括矩阵模块、存储模块和乘法模块。The image coding unit is used for compressing and coding the collected block image information, including a matrix module, a storage module and a multiplication module.
所述矩阵模块用于生成压缩观测矩阵。The matrix module is used to generate a compressed observation matrix.
所述存储模块用于存储矩阵模块生成的压缩观测矩阵。The storage module is used to store the compressed observation matrix generated by the matrix module.
所述乘法模块用于将视频采集单元采集到的分块图像信号与存储模块存储的压缩观测矩阵相乘,以得到压缩编码后的分块图像编码。The multiplication module is used to multiply the block image signal collected by the video acquisition unit with the compressed observation matrix stored in the storage module, so as to obtain the block image code after compression encoding.
所述矿井图像融合节点包括信源熵计算单元和加权融合处理单元;所述信源熵计算单元,用于相关信源熵的计算,包括信源熵模块、联合熵模块、互信息量模块和存储模块;The mine image fusion node includes a source entropy calculation unit and a weighted fusion processing unit; the source entropy calculation unit is used for the calculation of related source entropy, including a source entropy module, a joint entropy module, a mutual information module and storage module;
所述信源熵模块、联合熵模块和互信息量模块分别用于计算分块采集信号的信源熵、联合熵和互信息量。The source entropy module, the joint entropy module and the mutual information module are respectively used to calculate the source entropy, the joint entropy and the mutual information of the block-collected signals.
所述存储模块用于存储分块采集信号的信源熵、联合熵和互信息量。The storage module is used to store the source entropy, joint entropy and mutual information of the block-collected signals.
所述加权融合处理单元,用于对采样信号的加权融合处理,包括权计算模块和融合模块。The weighted fusion processing unit is used for weighted fusion processing of sampled signals, including a weight calculation module and a fusion module.
所述权计算模块用于计算分块采集图像信息的权系数。The weight calculation module is used to calculate the weight coefficient of the image information collected by blocks.
所述融合模块用于分块采集图像信息的加权融合处理。The fusion module is used for weighted fusion processing of image information collected in blocks.
所述矿井图像接收设备包括图像重构单元和视频合成单元;所述图像重构单元,用于对分块压缩融合后的图像进行解码恢复,包括矩阵模块、存储模块、乘法模块、校正模块和块合成模块。The mine image receiving device includes an image reconstruction unit and a video synthesis unit; the image reconstruction unit is used to decode and restore the image after block compression and fusion, including a matrix module, a storage module, a multiplication module, a correction module and Block synthesis module.
所述矩阵模块用于生成稀疏表达矩阵;The matrix module is used to generate a sparse expression matrix;
所述存储模块用于存储矩阵模块生成的稀疏表达矩阵;The storage module is used to store the sparse expression matrix generated by the matrix module;
所述乘法模块用于计算分块压缩编码后的图像编码与矩阵稀疏表达矩阵的正交基矩阵;The multiplication module is used to calculate the orthogonal base matrix of the image code and the matrix sparse expression matrix after block compression coding;
所述校正模块用于计算正交基矩阵与分块压缩编码后的图像的噪声残差,并迭代计算、校正得到稀疏解码后的恢复图像;The correction module is used to calculate the noise residual of the image after the orthogonal basis matrix and block compression encoding, and iteratively calculate and correct to obtain the restored image after sparse decoding;
所述块合成模块用于将分块图像信息拼接、重整成原图像;The block synthesis module is used to stitch and reorganize the block image information into the original image;
所述视频合成单元用于将稀疏编码后的恢复图像合并为连续视频。The video synthesis unit is used for merging the sparsely coded restored images into a continuous video.
所述矿井视频图像融合装置包括无线摄像机、车载移动台和手持移动台等通信设备。The mine video image fusion device includes communication equipment such as a wireless camera, a vehicle-mounted mobile station, and a hand-held mobile station.
所述矿井图像采集设备、矿井图像融合节点和矿井图像接收设备为本质安全型防爆装置。The mine image acquisition equipment, mine image fusion node and mine image receiving equipment are intrinsically safe explosion-proof devices.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明采用分块压缩采样,所需随机观测矩阵简单,有效减少了图像编码和压缩处理的冗余计算量和存储需求;特别是采用矿井视频图像融合方法,在图像重构之前,就已进行数据融合,从而降低了矿井视频图像对传输信道的要求。The present invention adopts block compression sampling, and the required random observation matrix is simple, which effectively reduces the redundant calculation and storage requirements of image encoding and compression processing; Data fusion, thereby reducing the requirements of mine video images on the transmission channel.
附图说明Description of drawings
图1为一种矿井视频图像融合方法原理图;Fig. 1 is a schematic diagram of a mine video image fusion method;
图2为一种基于分块压缩感知的矿井视频图像融合处理示意图;Fig. 2 is a kind of mine video image fusion processing schematic diagram based on block compressed sensing;
图3为一种矿井视频图像融合装置示意图;Fig. 3 is a schematic diagram of a mine video image fusion device;
具体实施方式detailed description
下面结合附图对本发明的具体实施方式进行详细描述。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
参照图1,为一种矿井视频图像融合方法原理图,其矿井视频图像信号采样和融合过程如下:首先对原始矿井视频图像分块,然后对分块矿井图像进行随机观测,再对观测得到的信号即为矿井图像的分块压缩信号进行信源熵融合,最后对融合所得信号进行重构、拼接,得到原始矿井图像。将分块压缩感知和信源熵融合算法运用于矿井视频图像的压缩采样和图像融合,采用分块压缩感知的算法,降低了信号的采样速率和随机观测矩阵的复杂性,从而减少视频图像处理的冗余计算,节省存储空间;采用信源熵融合算法,在图像重构之前融合信息,旨在减少传输信道带宽要求。Referring to Figure 1, it is a schematic diagram of a mine video image fusion method. The mine video image signal sampling and fusion process is as follows: first, the original mine video image is divided into blocks, and then the block mine images are randomly observed, and then the observed The signal is the block-compressed signal of the mine image for source entropy fusion, and finally the fused signal is reconstructed and spliced to obtain the original mine image. Apply the block compressed sensing and source entropy fusion algorithm to the compressed sampling and image fusion of mine video images, and use the block compressed sensing algorithm to reduce the sampling rate of the signal and the complexity of the random observation matrix, thereby reducing the video image processing Redundant calculations save storage space; the information source entropy fusion algorithm is used to fuse information before image reconstruction, aiming to reduce transmission channel bandwidth requirements.
参照图2,为一种基于分块压缩感知的矿井视频图像融合处理示意图。矿井视频图像的CS观测是一个线性过程,为了保证精确重构,线性方程组存在解的充要条件是观测矩阵和稀疏变换矩阵满足有限等距条件。考虑到Hadamard矩阵与大多数固定正交基构成的矩阵不相关,这一特性决定选它作为分块图像信号的观测矩阵,同时设分块图像信号对应的稀疏基矩阵为Ψ,所以需要构建第s(s=1,2,...S)个图像块对应的观测矩阵为ΦK。Referring to FIG. 2 , it is a schematic diagram of mine video image fusion processing based on block compression sensing. The CS observation of mine video images is a linear process. In order to ensure accurate reconstruction, the necessary and sufficient condition for the existence of solutions to the linear equations is that the observation matrix and the sparse transformation matrix satisfy the finite equidistant condition. Considering that the Hadamard matrix is irrelevant to the matrix composed of most fixed orthogonal bases, this characteristic determines that it is selected as the observation matrix of the block image signal, and the sparse base matrix corresponding to the block image signal is set to Ψ, so it is necessary to construct the first The observation matrix corresponding to s (s=1, 2, ... S) image blocks is Φ K .
矿井视频图像融合处理过称主要包括信号的采样、信号的融合、信号的重构和信号的整合等步骤。具体实现步骤如下:The mine video image fusion process mainly includes the steps of signal sampling, signal fusion, signal reconstruction and signal integration. The specific implementation steps are as follows:
步骤1、信号的采样,包括以下子步骤:Step 1, the sampling of the signal comprises the following sub-steps:
1.1)将输入的矿井视频图像信号分成S个大小K×K像素的图像块,其中S,K∈N;1.1) Divide the input mine video image signal into S image blocks of size K×K pixels, where S, K∈N;
1.2)构建第s(s=1,2,...S)个图像块对应的观测矩阵为ΦK,其中,ms<K2,且ΦK为Hadamard矩阵;1.2) Construct the observation matrix corresponding to the sth (s=1, 2, ... S) image block as Φ K , where, m s <K 2 , and Φ K is a Hadamard matrix;
1.3)获得第s个图像块的不同观测向量分别为x1=ΦKΘ1和x2=ΦKΘ2,其中且Θ1,Θ2分别为源图像第s块的列向量;1.3) Obtaining the different observation vectors of the sth image block are respectively x 1 =Φ K Θ 1 and x 2 =Φ K Θ 2 , where And Θ 1 , Θ 2 are the column vectors of the sth block of the source image respectively;
步骤2、信号的融合,包括以下子步骤:Step 2, fusion of signals, including the following sub-steps:
2.1)计算观测向量x1和x2的信源熵entropy(x1)和entropy(x2)、联合熵entropy(x1,x2)、互信息量MI(x1,x2),2.1) Calculate the source entropy entropy(x 1 ) and entropy(x 2 ), the joint entropy entropy(x 1 , x 2 ), and the mutual information MI(x 1 , x 2 ) of the observation vectors x 1 and x 2 ,
2.2)计算观测向量x1和x2的权系数,2.2) Calculate the weight coefficients of the observation vectors x 1 and x 2 ,
2.3)融合不同的观测向量为最终的观测值xb=t1x1+t2x2,其中,t1,t2经过归一化处理,即满足t1+t2=1;2.3) Fusing different observation vectors into the final observation value x b =t 1 x 1 +t 2 x 2 , where t 1 and t 2 are normalized, that is, t 1 +t 2 =1;
上述公式计算中,其中,观测向量x1和x2的权系数t1,t2中第一项分别描述了信源熵entropy(x1)和entropy(x2)在联合熵的中比例,包含有两项待融合信息公共的部分,需要通过减去第二项以纠正;观测向量x1和x2的权系数t1,t2的第二项中MI互信息量,反映了两项待融合信息共同包含的信息,最后再归一化t1,t2,即满足t1+t2=1;In the calculation of the above formula, among them, the weight coefficients t 1 of the observation vectors x 1 and x 2 , the first item in t 2 respectively describe the proportion of the source entropy entropy(x 1 ) and entropy(x 2 ) in the joint entropy, Contains the common part of two items of information to be fused, which needs to be corrected by subtracting the second item; the weight coefficient t 1 of the observation vector x 1 and x 2 , the MI mutual information in the second item of t 2 reflects the two items The information contained in the information to be fused is finally normalized by t 1 and t 2 , that is, t 1 +t 2 =1;
2.3)融合不同的观测向量为最终的观测值xb=t1x1+t2x2。2.3) Fusing different observation vectors into the final observation value x b =t 1 x 1 +t 2 x 2 .
步骤3、信号的重构,根据图像块信号对应的感知矩阵,采用正交匹配重构算法重构块信号对应的重构值,算法已知参数为:融合测量值xb,观测矩阵(Hadamard矩阵)ΦK,稀疏基矩阵Ψ,稀疏度为k,噪声残差e,服从N(0,σ2),具体信号重构流程如下:Step 3. Reconstruction of the signal. According to the perception matrix corresponding to the image block signal, an orthogonal matching reconstruction algorithm is used to reconstruct the reconstruction value corresponding to the block signal. The known parameters of the algorithm are: fusion measurement value x b , observation matrix (Hadamard Matrix) Φ K , sparse base matrix Ψ, sparsity is k, noise residual e, subject to N(0, σ 2 ), the specific signal reconstruction process is as follows:
3.1)初始化参数:估计信号感知矩阵A=ΦKΨ,所选列向量的索引集迭代次数t=1,噪声残差e0=xb,残差阈值Θthreshold=||et-et-1||2;3.1) Initialization parameters: estimated signal Sensing matrix A = Φ K Ψ, index set of selected column vectors Iteration times t=1, noise residual e 0 =x b , residual threshold Θ threshold =||e t -e t-1 || 2 ;
3.2)计算λt=argjmax|<et-1,aj>|,即感知矩阵A的列向量aj与噪声残差e之间相关系数最大的列向量索引λ;3.2) Calculate λ t =arg j max|<e t-1 , a j >|, that is, the column vector index λ with the largest correlation coefficient between the column vector a j of the perception matrix A and the noise residual e;
3.3)更新索引集Γt=Γt-1∪{λt},同时记录所选列向量 3.3) Update the index set Γ t = Γ t-1 ∪{λ t }, and record the selected column vector at the same time
3.4)求稀疏信号估计并作 3.4) Seek sparse signal estimation And make
3.5)更新残差t=t+1;3.5) Update residuals t=t+1;
3.6)判断是否满足迭代停止条件。当t>k时,或若存在||et-et-1||2<ξ,当||et||2<Θthreshold时迭代结束,否则返回步骤3.2)继续迭代,求解最优解,直到满足条件为止。3.6) Judging whether the iteration stop condition is satisfied. When t>k, or if there is ||e t -e t-1 || 2 <ξ, when ||e t || 2 <Θ threshold , the iteration ends, otherwise return to step 3.2) to continue iterating and solve the optimal solution until the condition is met.
步骤4、信号的整合,图2实施例说明,当s个图像块信号重构均完成以后,根据对原始图像块划分的方法,将各个块对应的重构值进行拼接、重整,获得重构图像。Step 4, signal integration, the embodiment in Figure 2 illustrates that when the reconstruction of the s image block signals is completed, according to the method for dividing the original image block, the reconstruction values corresponding to each block are spliced and reorganized to obtain the reconstructed composition image.
参照图3,为一种矿井视频图像融合装置示意图,该装置主要包括:矿井图像采集设备(10)、矿井图像融合节点(20)和矿井图像接收设备(30);其中,矿井图像采集设备(10),用于图像分块采集、图像压缩编码;矿井图像融合节点(20)用于在感知域上图像融合;矿井图像接收设备(30)用于图像重构解码、视频处理和图像显示。With reference to Fig. 3, it is a kind of mine video image fusion device schematic diagram, and this device mainly comprises: mine image acquisition equipment (10), mine image fusion node (20) and mine image receiving equipment (30); Wherein, mine image acquisition equipment ( 10), used for image block acquisition, image compression encoding; the mine image fusion node (20) is used for image fusion in the perceptual domain; the mine image receiving device (30) is used for image reconstruction decoding, video processing and image display.
图3示出的一种矿井视频图像融合装置,矿井图像采集设备(10)包括:视频采集单元(101)、图像编码单元(102);其中,视频采集单元(101)用于连续图像的分块采集,包括图像分块模块(101A)和图像采集模块(101B);图像分块模块(101A)用于矿井图像分块处理;图像采集模块(101B)用于采集连续的分块图像,并将采集到的分块图像信息传输到图像编码单元(102)进行压缩编码。图像编码单元(102),用于对采集到的分块图像信息进行压缩编码,包括矩阵模块(102A)、存储模块(102B)和乘法模块(102C);矩阵模块(102A)用于生成压缩观测矩阵;存储模块(102B)用于存储矩阵模块生成的压缩观测矩阵;乘法模块(102C)用于将视频采集单元(101)采集到的分块图像与存储模块(102B)存储的压缩观测矩阵相乘,以得到压缩编码后的分块图像编码。A kind of mine video image fusion device shown in Fig. 3, mine image acquisition equipment (10) comprises: video acquisition unit (101), image coding unit (102); Wherein, video acquisition unit (101) is used for the analysis of continuous image Block acquisition, including image block module (101A) and image acquisition module (101B); image block module (101A) is used for mine image block processing; image acquisition module (101B) is used for collecting continuous block images, and The collected block image information is transmitted to an image encoding unit (102) for compression encoding. Image encoding unit (102), used for compressing and encoding the collected block image information, including matrix module (102A), storage module (102B) and multiplication module (102C); matrix module (102A) is used to generate compressed observation matrix; the storage module (102B) is used to store the compressed observation matrix generated by the matrix module; the multiplication module (102C) is used to compare the compressed observation matrix stored by the video acquisition unit (101) with the block image collected by the storage module (102B) Multiply to obtain the block image code after compression coding.
图3示出的一种矿井视频图像融合装置,矿井图像融合节点(20)包括信源熵计算单元(201)和加权融合处理单元(202);其中,信源熵计算单元(201)包括信源熵模块(201A)、联合熵模块(201B)、互信息量模块(201C)和存储模块(201D);信源熵模块(201A)、联合熵模块(201B)和互信息量模块(201C)分别用于计算分块采集信号的信源熵、联合熵和互信息量;存储模块(201D)用于存储分块采集信号的信源熵、联合熵和互信息量。加权融合处理单元(202)包括权计算模块(202A)和融合模块(202B);权计算模块(202A)通过分块图像的信息熵计算权系数;融合模块(202B)将分块图像信息根据权计算模块计算所得权系数进行加权融合处理。A kind of mine video image fusion device shown in Fig. 3, mine image fusion node (20) comprises information source entropy calculation unit (201) and weighted fusion processing unit (202); Wherein, information source entropy calculation unit (201) comprises information Source entropy module (201A), joint entropy module (201B), mutual information module (201C) and storage module (201D); source entropy module (201A), joint entropy module (201B) and mutual information module (201C) They are respectively used to calculate the source entropy, joint entropy and mutual information of the block-collected signals; the storage module (201D) is used to store the source entropy, joint entropy and mutual information of the block-collected signals. The weighted fusion processing unit (202) includes a weight calculation module (202A) and a fusion module (202B); the weight calculation module (202A) calculates the weight coefficient through the information entropy of the block image; the fusion module (202B) uses the block image information according to the weight The calculation module calculates the obtained weight coefficients to perform weighted fusion processing.
图3示出的一种矿井视频图像融合装置,矿井图像接收设备(30)包括图像重构单元(301)和视频合成单元(302);其中,图像重构单元(301),用于对分块压缩融合后的图像进行解码恢复,包括矩阵模块(301A)、存储模块(301B)、乘法模块(301C)、校正模块(301D)和块合成模块(301E);其中,矩阵模块(301A)用于生成稀疏表达矩阵;存储模块(301B)用于存储矩阵模块生成的稀疏表达矩阵;乘法模块(301C)用于计算分块压缩编码后的图像编码与矩阵稀疏表达矩阵的正交基矩阵;校正模块(301D)用于计算正交基矩阵与分块压缩编码后的图像的噪声残差,并迭代计算、校正得到稀疏解码后的恢复图像;块合成模块(301E)用于分块图像信息拼接、重整成原图像。视频合成单元(302)用于稀疏编码后的恢复图像合并为连续视频。A mine video image fusion device shown in Fig. 3, a mine image receiving device (30) includes an image reconstruction unit (301) and a video synthesis unit (302); wherein, the image reconstruction unit (301) is used for dividing The image after the block compression fusion is decoded and restored, including a matrix module (301A), a storage module (301B), a multiplication module (301C), a correction module (301D) and a block synthesis module (301E); wherein, the matrix module (301A) uses To generate a sparse expression matrix; the storage module (301B) is used to store the sparse expression matrix generated by the matrix module; the multiplication module (301C) is used to calculate the orthogonal base matrix of the image coding and matrix sparse expression matrix after block compression coding; correction The module (301D) is used to calculate the noise residual of the image after the orthogonal base matrix and block compression encoding, and iteratively calculates and corrects to obtain the restored image after sparse decoding; the block synthesis module (301E) is used for splicing block image information , Reshape to the original image. The video synthesis unit (302) is used for merging the restored images after sparse coding into continuous video.
本发明将分块压缩感知和信源熵融合算法运用于矿井视频图像的压缩采样和图像融合,采用分块压缩感知的算法,降低了信号的采样速率和随机观测矩阵的复杂性,从而减少视频图像处理的冗余计算,节省存储空间;采用信源熵融合算法,在图像重构之前融合信息,旨在减少传输信道带宽要求。结合本发明方法所提供的矿井视频图像融合装置,能够满足煤矿井下特定的使用环境和安全需求。The present invention applies the algorithm of block compressed sensing and information source entropy fusion to the compressed sampling and image fusion of mine video images, adopts the algorithm of block compressed sensing, reduces the sampling rate of the signal and the complexity of the random observation matrix, thereby reducing the The redundant calculation of image processing saves storage space; the information source entropy fusion algorithm is used to fuse information before image reconstruction, aiming to reduce the transmission channel bandwidth requirements. Combined with the mine video image fusion device provided by the method of the present invention, it can meet the specific use environment and safety requirements of the coal mine underground.
以上内容是结合具体的优选实施例方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明设计思路的前提下,还可进行若干简单的替换和更改,都应当视为属于本发明所提交的权利要求书所涉及的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments. It cannot be determined that the specific embodiments of the present invention are limited thereto. Under the premise of the idea, some simple substitutions and changes can also be made, which should be regarded as belonging to the scope of protection involved in the claims submitted by the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510952077.3A CN106899810A (en) | 2015-12-21 | 2015-12-21 | A kind of mine video image fusion method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510952077.3A CN106899810A (en) | 2015-12-21 | 2015-12-21 | A kind of mine video image fusion method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106899810A true CN106899810A (en) | 2017-06-27 |
Family
ID=59189626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510952077.3A Pending CN106899810A (en) | 2015-12-21 | 2015-12-21 | A kind of mine video image fusion method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106899810A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108782312A (en) * | 2018-03-22 | 2018-11-13 | 杨明 | Sewage disposal system based on image procossing |
CN109102461A (en) * | 2018-06-15 | 2018-12-28 | 深圳大学 | Image reconstructing method, device, equipment and the medium of low sampling splits' positions perception |
CN109167973A (en) * | 2018-10-24 | 2019-01-08 | 国网江苏省电力有限公司盐城供电分公司 | A kind of image transfer method and device of intelligent safety helmet |
CN109447946A (en) * | 2018-09-26 | 2019-03-08 | 中睿通信规划设计有限公司 | A kind of Overhead optical cable method for detecting abnormality |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236598A (en) * | 2007-12-28 | 2008-08-06 | 北京交通大学 | Face Recognition Method Based on Independent Component Analysis of Multi-scale Total Variation Quotient Images |
CN101887581A (en) * | 2010-06-17 | 2010-11-17 | 东软集团股份有限公司 | Image fusion method and device |
CN103559696A (en) * | 2013-09-29 | 2014-02-05 | 南京邮电大学 | Image fusion method based on compressed sensing |
WO2014144246A1 (en) * | 2013-03-15 | 2014-09-18 | Cyberricade, Inc. | Cyber security |
CN104811664A (en) * | 2015-04-27 | 2015-07-29 | 中国矿业大学(北京) | Mine video image compression and transmission method and apparatus |
-
2015
- 2015-12-21 CN CN201510952077.3A patent/CN106899810A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236598A (en) * | 2007-12-28 | 2008-08-06 | 北京交通大学 | Face Recognition Method Based on Independent Component Analysis of Multi-scale Total Variation Quotient Images |
CN101887581A (en) * | 2010-06-17 | 2010-11-17 | 东软集团股份有限公司 | Image fusion method and device |
WO2014144246A1 (en) * | 2013-03-15 | 2014-09-18 | Cyberricade, Inc. | Cyber security |
CN103559696A (en) * | 2013-09-29 | 2014-02-05 | 南京邮电大学 | Image fusion method based on compressed sensing |
CN104811664A (en) * | 2015-04-27 | 2015-07-29 | 中国矿业大学(北京) | Mine video image compression and transmission method and apparatus |
Non-Patent Citations (1)
Title |
---|
LUO,XIAOYAN等: "IMAGE FUSION IN COMPRESSED SENSING" * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108782312A (en) * | 2018-03-22 | 2018-11-13 | 杨明 | Sewage disposal system based on image procossing |
CN108782312B (en) * | 2018-03-22 | 2020-10-16 | 诸暨易阳环保科技有限公司 | Sewage treatment system based on image processing |
CN109102461A (en) * | 2018-06-15 | 2018-12-28 | 深圳大学 | Image reconstructing method, device, equipment and the medium of low sampling splits' positions perception |
CN109447946A (en) * | 2018-09-26 | 2019-03-08 | 中睿通信规划设计有限公司 | A kind of Overhead optical cable method for detecting abnormality |
CN109447946B (en) * | 2018-09-26 | 2021-09-07 | 中睿通信规划设计有限公司 | Overhead communication optical cable abnormality detection method |
CN109167973A (en) * | 2018-10-24 | 2019-01-08 | 国网江苏省电力有限公司盐城供电分公司 | A kind of image transfer method and device of intelligent safety helmet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104811664B (en) | mine video image compression and transmission method | |
WO2021093393A1 (en) | Video compressed sensing and reconstruction method and apparatus based on deep neural network | |
CN102123278B (en) | Signal source encoding and decoding method based on distributed compressive sensing technology | |
CN104159112A (en) | Compressed sensing video transmission method and system based on dual sparse model decoding | |
CN106899810A (en) | A kind of mine video image fusion method and device | |
CN103297782B (en) | Based on the reconstructing method of Region dividing in distributed video compression perceptual system | |
CN103596010B (en) | Video coding and decoding system based on dictionary learning and compressed sensing | |
CN103368578A (en) | Compressed-sensing-based signal sampling method for distributed wireless sensor network nodes | |
CN105791189B (en) | A Sparse Coefficient Decomposition Method to Improve Reconstruction Accuracy | |
CN108989817A (en) | A kind of radar data compression method based on reference frame dislocation prediction | |
CN102223536B (en) | Compressed-sensing-based distributed video coding and decoding system and method thereof | |
CN102176779B (en) | Wireless multimedia sensing network video signal adaptive sampling and spectrum allocation method | |
CN104333757B (en) | Based on the video coding-decoding method described CS measured values more | |
CN102970510B (en) | Method for transmitting human face video | |
CN103618903A (en) | High-speed low-power-consumption wireless sensor network video compression sampling method and high-speed low-power-consumption wireless sensor network video compression sampling device | |
CN109194968A (en) | A kind of compression of images cognitive method of fusion message source and channel decoding | |
CN109584320A (en) | A kind of Low coherence observing matrix building method | |
Nahar et al. | An introduction to compressive sensing and its applications | |
CN105530012B (en) | Sparse one-dimensional oil well data compression and reconstruction method in wavelet domain based on compressed sensing | |
CN105049870B (en) | A kind of distributed video compressed sensing fast reconstructing method based on degree of rarefication estimation | |
CN105578183A (en) | A Compressive Sensing Video Encoding and Decoding Method Based on Gaussian Mixture Model | |
WO2023185305A1 (en) | Encoding method and apparatus, storage medium and computer program product | |
CN104079930A (en) | Achieving method of remote-sensing image compression system | |
Ye et al. | Lightweight Generative Joint Source-Channel Coding for Semantic Image Transmission with Compressed Conditional GANs | |
Rizal et al. | Image transmission in military network using Bezier curve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170627 |