CN106897719B - 基于Kinect的典型零部件识别与定位方法 - Google Patents

基于Kinect的典型零部件识别与定位方法 Download PDF

Info

Publication number
CN106897719B
CN106897719B CN201710009221.9A CN201710009221A CN106897719B CN 106897719 B CN106897719 B CN 106897719B CN 201710009221 A CN201710009221 A CN 201710009221A CN 106897719 B CN106897719 B CN 106897719B
Authority
CN
China
Prior art keywords
image
components
color image
kinect
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710009221.9A
Other languages
English (en)
Other versions
CN106897719A (zh
Inventor
张志佳
魏信
张云飞
贾梦思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201710009221.9A priority Critical patent/CN106897719B/zh
Publication of CN106897719A publication Critical patent/CN106897719A/zh
Application granted granted Critical
Publication of CN106897719B publication Critical patent/CN106897719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/245Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching

Abstract

本发明涉及基于Kinect的典型零部件识别与定位方法,首先利用Kinect传感器获取的彩色与深度图像提取出两者之间的仿射变换矩阵,实现彩色图像的校正;然后利用相关系数匹配法实现校正后的彩色图像零部件识别;最后利用彩色与深度图像的对应关系对零部件进行定位。本发明不仅能对典型零部件进行识别,还能确定零部件所在的空间位置。

Description

基于Kinect的典型零部件识别与定位方法
技术领域:
本发明涉及一种对典型零部件的识别与定位方法,尤其涉及一种基于Kinect的典型零部件识别与定位方法。
背景技术:
近年来,机器视觉以其非接触式、较宽的光谱响应范围、定位、测量和缺陷检测的优势,在军事、农作物质量检测、人脸识别、指纹识别、发票号码识别、医学图像检测得到了广泛的应用。
在自动化拆卸中,机器视觉是自动获取零部件的特征信息和特征参数的一种较为可行的技术方法。对一些高要求、高负荷的重复性和智能性的工作,比如细微缺陷检测、零部件测量,人眼很难持续、稳定的完成,机器视觉可以高效、高质量的完成检测任务。
在机器视觉中,图像采集设备大多制造工艺复杂,精确度高,价格昂贵。以Bumblebee2为例,该相机价格昂贵、体积大。但是,微软Kinect相机的出现,因其简单、价廉、方便,在三维重构、物体跟踪和姿态识别等领域被广泛应用。
目前Kinect在零部件识别方面尚未有公开发表的文献。基于以上背景,本发明深入研究了基于Kinect的零部件识别与定位方法,拓宽了Kinect的应用领域。
发明内容:
发明目的:
为了解决现有零部件识别中多采用图像识别的方法进行识别,很难直接确定零部件所在的空间位置的问题,本发明提供了一种基于Kinect的典型零部件识别与定位方法,使用Kinect设备能够提供目标的深度图像和彩色图像,在对零部件识别的过程中确定零部件所在的空间位置。
技术方案:
本发明是通过以下技术方案来实现的:
基于Kinect的典型零部件识别与定位方法,其特征在于:首先利用Kinect传感器获取的彩色与深度图像提取出两者之间的仿射变换矩阵,实现彩色图像的校正;然后利用相关系数匹配法实现校正后的彩色图像零部件识别;最后利用彩色与深度图像的对应关系对零部件进行定位。
采用Kinect传感器对零部件进行识别与定位,具体步骤为:
(1)对图像进行矫正:Kinect设备所获取的深度图像与彩色图像里物体的大小不一致,彩色图像里的人物偏小,所以利用仿射变换对彩色图像进行矫正,使彩色图像里的目标与深度图像里的目标重合;
(2)零部件的图像识别:利用Kinect提取零部件的彩色图像,对彩色图像利用仿射变换矩阵进行仿射变换,然后将彩色图像转换为灰度图像,利用相关系数法对彩色图像进行模板匹配识别;相关系数匹配方法将模板对其均值的相对值与图像对其均值的相关进行匹配,根据R(x,y)来判断相关性,其中:
式中:Sx,y意思是以(x,y)为坐上角匹配首点;m×n大小的子块;为子块图像Sx,y的灰度均值;为模板图像T的灰度均值;
(3)零部件位姿计算:通过彩色图像提取出典型零部件中心点坐标,图像经过变换,彩色图像与深度图像重合,从深度图像里提取点的深度值,然后利用Kinect SDK工具包将零部件的中心点的二维图像坐标转换为相对于Kinect的三维坐标,从而对零部件定位。
优点及效果:
整个识别过程中的设备,包括Kinect传感器和笔记本电脑,成本低。
整个识别过程都是由设备自动完成,零部件识别与定位快速、精确。
利用Kinect不仅可以对零部件进行识别,还可以确定零部件所在的空间位置。
附图说明:
图1为Kinect图像,其中图1(a)为深度图像,图1(b)为彩色图像。
图2为扫描黑色木板示意图。
图3为Kinect图像示意图,其中图3(a)为深度图像,图3(b)为彩色图像。
图4为仿射变换后对比示意图,其中图4(a)为深度图像,图4(b)为仿射变换后彩色图像。
图5为仿射变换图,其中图5(a)为彩色图像,图5(b)为仿射变换后图像。
图6为灰度图像。
图7为图像匹配示意图,其中图7(a)为搜索图S匹配示意图,图7(b)为模板T匹配示意图。
图8为定位示意图。
具体实施方式:
本发明涉及一种基于Kinect的典型零部件识别与定位方法,是一种方便、有效地零部件识别与定位方法。首先利用Kinect传感器获取的彩色与深度图像提取出两者之间的仿射变换矩阵,实现彩色图像的校正;然后利用相关系数匹配法实现校正后的彩色图像零部件识别;最后利用彩色与深度图像的对应关系对零部件进行定位。
采用Kinect传感器对零部件进行识别与定位,具体步骤为:
(1)对图像进行矫正:Kinect设备所获取的深度图像与彩色图像里物体的大小不一致,彩色图像里的人物偏小,所以利用仿射变换对彩色图像进行矫正,使彩色图像里的目标与深度图像里的目标重合;
(2)零部件的图像识别:利用Kinect提取零部件的彩色图像,对彩色图像利用仿射变换矩阵进行仿射变换,然后将彩色图像转换为灰度图像,利用相关系数法对彩色图像进行模板匹配识别;相关系数匹配方法将模板对其均值的相对值与图像对其均值的相关进行匹配,根据R(x,y)来判断相关性,其中:
式中:Sx,y意思是以(x,y)为坐上角匹配首点;m×n大小的子块;为子块图像Sx,y的灰度均值;为模板图像T的灰度均值;
(3)零部件位姿计算:通过彩色图像提取出典型零部件中心点坐标,图像经过变换,彩色图像与深度图像重合,从深度图像里提取点的深度值,然后利用Kinect SDK工具包将零部件的中心点的二维图像坐标转换为相对于Kinect的三维坐标,从而对零部件定位。
下面结合附图和实施例对本发明做进一步的说明:
零部件识别与定位,如图1所示,彩色图像比深度图像包含更多的图像细节,能满足识别一些结构复杂的零部件需求。但是彩色图像里提取的只是图像中的坐标信息,而利用深度图像能提取零部件的三维空间信息,达到对零部件的识别与定位要求。基于以上特性,可以同时利用深度图像与彩色图像对零部件进行识别,并确定零部件所在的三维空间位置,具体步骤如下:
(1)图像矫正,Kinect设备所获取的深度图像与彩色图像里目标的大小不一致,深度图像里的目标偏大,如图1所示。本文提出了基于仿射变换的图像校正方法。通过图像校正,彩色图像与深度图像重合,对重合后的彩色图像进行识别,并实现对零部件的定位。
以一块规则的正方形黑色木板平面作为目标,利用Kinect对其进行扫描,获取深度图像与彩色图像,图2给出了Kinect扫描黑色木板示意图,图3给出了获取的深度图像与彩色图像。
如图3所示,提取深度图像内黑色部分A,B,C三个角的二维坐标(xa,ya),(xb,yb),(xc,yc)。提取彩色图像内黑色部分A,B,C三个角的坐标(x'a,y'a),(x'b,y'b),(x'c,y'c),将三对点的坐标代入矩阵(1)中。
联立六个方程解六个未知数,得到一个2x3的仿射变换矩阵R。
其中:
利用仿射变换矩阵R对彩色图像进行仿射变换,图4给出了变换后对比示意图。
如图5所示,校正后彩色图像中A,B,C与深度图像中A,B,C位置重合
(2)零部件的图像识别:图像校正后,彩色图像与深度图像重合,对重合后的彩色图像进行识别,方便了后续处理中零部件的定位。以六角螺母为例,利用Kinect提取零部件的彩色图像,根据仿射变换矩阵对彩色图像进行仿射变换,图5给出仿射变换前后对比图。
如图5所示,仿射变换后,彩色图像中的六角螺母图与深度图像一致。图像完成仿射变换后,将彩色图像转换为灰度图像,如图6所示。
对于图6所示的灰度图像,利用相关系数匹配法进行识别。相关系数匹配方法将模板对其均值的相对值与图像对其均值的相关进行匹配,根据R(x,y)来判断相关性。图7给出了图像匹配示意图,其中:
式中:Sx,y意思是以(x,y)为坐上角匹配首点;m×n大小的子块;为子块图像Sx,y的灰度均值;为模板图像T的灰度均值。
如图7所示,搜索图S是480x640的图像,用m×n的模板图像T来匹配。用这种方法是为了找到一种测度,使模板与在搜索图中查找的图像是否为最佳匹配。相关系数法是一种比较好的方法来表示匹配测度,匹配后,根据相似度的大小来识别图像里的零部件。
(3)零部件位姿计算:典型零部件的位姿是在空间坐标系下的坐标,即世界坐标,而上一节由匹配算法得到的只是在图像中的坐标,难以定位。若想得到典型零部件的空间位姿,可以利用彩色图像与深度图像的对应关系求取,图8给出了零部件定位示意图。
如图8所示,通过彩色图像提取出典型零部件中心点P坐标(u,v),图像经过变换,彩色图像与深度图像重合,从深度图像里提取P点的深度值D,然后利用Kinect SDK工具包将零部件的中心点P的二维图像坐标转换为相对于Kinect的三维坐标(xp,yp,zp),从而对零部件起定位的效果。

Claims (1)

1.基于Kinect的典型零部件识别与定位方法,其特征在于:首先利用Kinect传感器获取的彩色与深度图像提取出两者之间的仿射变换矩阵,实现彩色图像的校正;然后利用相关系数匹配法实现校正后的彩色图像零部件识别;最后利用彩色与深度图像的对应关系对零部件进行定位;
采用Kinect传感器对零部件进行识别与定位,具体步骤为:
(1)对图像进行矫正:Kinect设备所获取的深度图像与彩色图像里物体的大小不一致,彩色图像里的人物偏小,所以利用仿射变换对彩色图像进行矫正,使彩色图像里的目标与深度图像里的目标重合;
(2)零部件的图像识别:利用Kinect提取零部件的彩色图像,对彩色图像利用仿射变换矩阵进行仿射变换,然后将彩色图像转换为灰度图像,利用相关系数法对彩色图像进行模板匹配识别;相关系数匹配方法将模板对其均值的相对值与图像对其均值的相关进行匹配,根据R(x,y)来判断相关性,其中:
式中:Sx,y意思是以(x,y)为坐上角匹配首点;m×n大小的子块;为子块图像Sx,y的灰度均值;为模板图像T的灰度均值;
(3)零部件位姿计算:通过彩色图像提取出典型零部件中心点坐标,图像经过变换,彩色图像与深度图像重合,从深度图像里提取点的深度值,然后利用Kinect SDK工具包将零部件的中心点的二维图像坐标转换为相对于Kinect的三维坐标,从而对零部件定位。
CN201710009221.9A 2017-01-06 2017-01-06 基于Kinect的典型零部件识别与定位方法 Active CN106897719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710009221.9A CN106897719B (zh) 2017-01-06 2017-01-06 基于Kinect的典型零部件识别与定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710009221.9A CN106897719B (zh) 2017-01-06 2017-01-06 基于Kinect的典型零部件识别与定位方法

Publications (2)

Publication Number Publication Date
CN106897719A CN106897719A (zh) 2017-06-27
CN106897719B true CN106897719B (zh) 2019-09-06

Family

ID=59198394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710009221.9A Active CN106897719B (zh) 2017-01-06 2017-01-06 基于Kinect的典型零部件识别与定位方法

Country Status (1)

Country Link
CN (1) CN106897719B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法
CN104315998A (zh) * 2014-10-29 2015-01-28 武汉科技大学 一种基于深度图像和方位角的门开度判断方法
CN104794748A (zh) * 2015-03-17 2015-07-22 上海海洋大学 基于Kinect视觉技术的三维空间地图构建方法
CN105139407A (zh) * 2015-09-08 2015-12-09 江苏大学 一种基于Kinect传感器的颜色深度匹配植株识别方法
CN105354578A (zh) * 2015-10-27 2016-02-24 安徽大学 一种多目标物体图像匹配方法
CN105894503A (zh) * 2016-03-30 2016-08-24 江苏大学 一种对Kinect植株彩色和深度检测图像的修复方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法
CN104315998A (zh) * 2014-10-29 2015-01-28 武汉科技大学 一种基于深度图像和方位角的门开度判断方法
CN104794748A (zh) * 2015-03-17 2015-07-22 上海海洋大学 基于Kinect视觉技术的三维空间地图构建方法
CN105139407A (zh) * 2015-09-08 2015-12-09 江苏大学 一种基于Kinect传感器的颜色深度匹配植株识别方法
CN105354578A (zh) * 2015-10-27 2016-02-24 安徽大学 一种多目标物体图像匹配方法
CN105894503A (zh) * 2016-03-30 2016-08-24 江苏大学 一种对Kinect植株彩色和深度检测图像的修复方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于Kinect传感器的骨骼定位研究;罗鸣;《中国优秀硕士论文全文数据库信息科技辑》;20140415(第04期);第4-30页

Also Published As

Publication number Publication date
CN106897719A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN102521560B (zh) 高鲁棒仪表指针图像识别方法
CN106826815A (zh) 基于彩色图像与深度图像的目标物体识别与定位的方法
CN107993258B (zh) 一种图像配准方法及装置
CN106981091B (zh) 人体三维建模数据处理方法及装置
CN102704215B (zh) 基于dst文件解析与机器视觉结合的绣布自动切割方法
CN108470356B (zh) 一种基于双目视觉的目标对象快速测距方法
CN103093191A (zh) 一种三维点云数据结合数字影像数据的物体识别方法
WO2011013079A1 (en) Depth mapping based on pattern matching and stereoscopic information
CN112818988A (zh) 一种指针式仪表自动识别读数方法及系统
CN106971406A (zh) 物体位姿的检测方法和装置
CN110223355B (zh) 一种基于双重极线约束的特征标志点匹配方法
CN112525352A (zh) 一种基于人脸识别的红外测温补偿方法及终端
CN112184811B (zh) 单目空间结构光系统结构校准方法及装置
CN109308462B (zh) 一种指静脉和指节纹感兴趣区域定位方法
CN113393439A (zh) 一种基于深度学习的锻件缺陷检测方法
Han et al. LiDAR point cloud registration by image detection technique
CN109341847A (zh) 一种基于视觉的振动测量系统
CN111582118A (zh) 一种人脸识别方法及装置
CN114580559A (zh) 一种基于单目视觉系统的测速方法
CN109308714A (zh) 基于分类惩罚的摄像头和激光雷达信息配准方法
CN108205210A (zh) 基于傅里叶梅林及特征匹配的lcd缺陷检测系统及方法
CN116563391B (zh) 一种基于机器视觉的激光结构自动标定方法
CN111145254B (zh) 一种基于双目视觉的门阀毛坯定位方法
CN113112543A (zh) 一种基于视觉移动目标的大视场二维实时定位系统及方法
CN109410272B (zh) 一种变压器螺母识别与定位装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant