CN106887967A - 一种多逆变器并联的均流控制方法 - Google Patents

一种多逆变器并联的均流控制方法 Download PDF

Info

Publication number
CN106887967A
CN106887967A CN201510913173.7A CN201510913173A CN106887967A CN 106887967 A CN106887967 A CN 106887967A CN 201510913173 A CN201510913173 A CN 201510913173A CN 106887967 A CN106887967 A CN 106887967A
Authority
CN
China
Prior art keywords
inverter
sharing control
current
parallel
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510913173.7A
Other languages
English (en)
Inventor
范洪国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510913173.7A priority Critical patent/CN106887967A/zh
Publication of CN106887967A publication Critical patent/CN106887967A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种多逆变器并联的均流控制方法,包括多逆变器并联电路、延时脉宽补偿、SPWM调制和均流控制四个部分。解决了并联系统存在的环流问题,并通过脉冲延时补偿解决了逆变器输出电流的不均流问题。脉冲调制方式为闭环补偿法的优点是能够实现自动补偿,可以适应不同并联数量的多逆变器并联系统,因此通过将脉冲调制方式改为SPWM调制方式,有效地抑制了并联系统中存在的环流问题。

Description

一种多逆变器并联的均流控制方法
技术领域
本发明涉及一种电源逆变装置,尤其涉及以中国多逆变器并联的均流控制方法。
背景技术
近年来,随着电力电子技术的迅速发展,逆变器越来越朝着大容量的方向发展。特别是在新能源应用领域,例如风力发电,光伏发电和蓄能电站等,其中逆变器的容量可以高达数MW。然而受制于功率开关器件通流能力,在大功率应用场合特别是在低压大电流领域,单逆变器技术方案难以满足功率输出的要求,只能采用多个逆变器并联的技术方案以提高逆变器的输出功率。
并联技术的采用使得在大容量应用场合采用低功率等级的开关器件成为可能,降低了生产成本;同时,采用并联技术便于进行模块化设计以缩短生产周期,并拓宽了功率模块的使用范围。一般采用的单套逆变器系统为三相三线制结构,所以没有零序环流通道,故不存在环流问题,但在多逆变器并联的系统中,存在环流通道,如果不加以抑制,就会引起严重的环流问题。由于环流只在并联的逆变器之间流动,并不体现在并联逆变器的输出总电流中,因此环流的存在一定程度上降低了系统的有效容量,同时增加了电路的损耗,降低了系统的效率。
直流环流的存在,各模块的热应力和电应力仍不均衡,降低了并联系统的可靠性。环流还会引起不均流问题,从而使功率开关器件承受的电流应力不均衡,影响其使用寿命,并限制了系统容量的增加。因此,环流抑制和均流控制是多并联逆变器控制必须要解决的关键问题。
发明内容
为了克服环流抑制和均流控制的问题,本发明提出一种多逆变器并联的均流控制方法。
本发明解决其技术问题所采用的技术方案是:
通过分析环流和不均流的形成机理,证明了环流产生的根本原因是由于各并联逆变器输出电压不一致造成的,因此,抑制并联逆变器环流的最有效办法就是通过调节各个并联逆变器的输出电压使之基本相等从而抑制环流。
多逆变器并联的均流控制方法包括:多逆变器并联电路、延时脉宽补偿、SPWM调制和均流控制四个部分。
所述多逆变器并联电路是由多个三相逆变器并联组成的,每个逆变器包含六个IGBT开关管组成的桥式电路。
所述延时脉宽补偿即采用闭环PI 调节的方法,通过监测不均流度,自动进行脉冲宽度的调整,直到不均流度接近为零。
所述SPWM调制将延时脉宽补偿得到的电压信号作为给定,进行脉宽调制。
所述均流控制将SPWM模块得到逆变器的占空比信息,再结合不均流计算模块输出的各并联逆变器的不均流信息,执行均流控制,得到各并联逆变器的占空比信息。
本发明的有益效果是:解决了并联系统存在的环流问题,并通过脉冲延时补偿解决了逆变器输出电流的不均流问题。此外通过将脉冲调制方式改为SPWM调制方式,从而有效地抑制了并联系统中存在的环流问题。
附图说明
图1 多逆变器并联电路图。
图2 逆变器的单相输出电路。
图3 逆变器并联系统控制框图。
具体实施方案
系统由N 个结构完全相同的三相IGBT全控桥(BH-1,..., BH-N)组成,所有N 个三相全控桥的直流端均连接在一起,三相全控桥的输出端通过均流电抗器L1,..., LN相连于一起接在异步电机的三相输入定子端。多逆变器并联的控制目标是控制逆变器输出的总电流平衡、抑制各子逆变器之间的环流和抑制各子逆变器输出电流的不均流现象。
图2中,为第n 个并联逆变器的k 相桥臂的输出等效示意图,图中 为上管IGBT 的导通压降;为下管IGBT 的导通压降,设置母线电容的虚拟中点作为逆变器输出电压的参考零电位。为逆变器直流母线电压;为第n 个逆变器的k相桥臂的开关函数,当第n 个逆变器的k相桥臂上管导通时,=1;下管导通时,=0。
延时脉宽补偿采用闭环补偿的方式。即采用闭环PI 调节的方法,通过监测不均流度,自动进行脉冲宽度的调整,直到不均流度接近为零。图3中,首先进行角频率采样后,进行相应的计算,即可得到交轴电流和直轴电流的给定值,再结合采样得到的直轴电流和交轴电流,分别对直轴电流偏差和交轴电流偏差进行PI控制,得到直轴电压和交轴电压的给定量,再经过变换,即可得到经过延时脉宽补偿的SPWM调制给定量。
最后将三相开关信号作为均流控制的输入,进行均流计算,得到并联的各逆变器SPWM调制信号,控制每个IGBT的通断。

Claims (5)

1.一种多逆变器并联的均流控制方法,其特征在于:多逆变器并联电路、延时脉宽补偿、SPWM调制和均流控制四个部分。
2.如权利要求1所述的多逆变器并联的均流控制方法,其特征在于所述多个三相逆变器并联组成的,每个逆变器包含六个IGBT开关管组成的桥式电路。
3.如权利要求1所述的多逆变器并联的均流控制方法,其特征在于所述延时脉宽补偿,采用闭环PI 调节的方法,能够自动进行脉冲宽度的调整。
4.如权利要求1所述的多逆变器并联的均流控制方法,其特征在于所述SPWM的给定将通过延时脉宽补偿,进行实时调整。
5.如权利要求1所述的多逆变器并联的均流控制方法,其特征在于所述均流控制将SPWM模块得到逆变器的占空比信息,结合不均流计算,最终得到各并联逆变器的占空比信息。
CN201510913173.7A 2015-12-11 2015-12-11 一种多逆变器并联的均流控制方法 Pending CN106887967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510913173.7A CN106887967A (zh) 2015-12-11 2015-12-11 一种多逆变器并联的均流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510913173.7A CN106887967A (zh) 2015-12-11 2015-12-11 一种多逆变器并联的均流控制方法

Publications (1)

Publication Number Publication Date
CN106887967A true CN106887967A (zh) 2017-06-23

Family

ID=59173307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510913173.7A Pending CN106887967A (zh) 2015-12-11 2015-12-11 一种多逆变器并联的均流控制方法

Country Status (1)

Country Link
CN (1) CN106887967A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510498A (zh) * 2017-09-14 2019-03-22 株式会社日立制作所 电力变换装置以及电力变换装置的调整方法
CN110048584A (zh) * 2018-01-12 2019-07-23 Abb瑞士股份有限公司 确定及补偿功率晶体管延迟
CN111969665A (zh) * 2020-08-26 2020-11-20 华北电力大学(保定) 一种多台并列运行功率变换器的环流抑制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510498A (zh) * 2017-09-14 2019-03-22 株式会社日立制作所 电力变换装置以及电力变换装置的调整方法
CN109510498B (zh) * 2017-09-14 2021-02-02 株式会社日立制作所 电力变换装置以及电力变换装置的调整方法
CN110048584A (zh) * 2018-01-12 2019-07-23 Abb瑞士股份有限公司 确定及补偿功率晶体管延迟
CN110048584B (zh) * 2018-01-12 2021-04-13 Abb瑞士股份有限公司 确定及补偿功率晶体管延迟
US10985751B2 (en) 2018-01-12 2021-04-20 Abb Schweiz Ag Determining and compensating power transistor delay in parallel half bridge legs
CN111969665A (zh) * 2020-08-26 2020-11-20 华北电力大学(保定) 一种多台并列运行功率变换器的环流抑制方法

Similar Documents

Publication Publication Date Title
WO2019029694A1 (zh) 一种变换电路、控制方法和供电设备
CN203405559U (zh) 电能回馈型电子负载
CN102832642A (zh) 一种微源并网电能质量控制系统控制方法
CN108712102B (zh) 一种低损耗电压源逆变器模型预测电流控制方法
CN103728508A (zh) 一种用于mmc柔性直流子模块稳态运行的测试装置和方法
CN102593859A (zh) 一种基于mmc的三相upqc拓扑电路
CN103259282B (zh) 一种非隔离型及隔离型光伏并网逆变器软并网方法
CN103915856A (zh) 一种基站并网-充电光伏微逆变器系统及其控制方法
CN104901410A (zh) 一种ups电路
CN203720321U (zh) 一种模块化多电平换流器换流阀的功率对冲试验装置
CN105071403A (zh) 基于双h桥模块化多电平拓扑的无功补偿装置及控制方法
CN101950960B (zh) 串联多电平电能质量调节器直流母线电压的控制方法
CN112821842B (zh) 一种开关磁阻电机断路故障容错控制方法
CN105356778A (zh) 一种模块化多电平逆变器及其无差拍控制方法
CN102969920A (zh) 一种双工作模式的双向逆变器
CN106887967A (zh) 一种多逆变器并联的均流控制方法
CN204190636U (zh) Pwm整流器电路拓扑结构
CN104253549A (zh) 一种基于lcl滤波的大功率pwm整流器电路拓扑结构
CN104753375B (zh) 一种三电平逆变器dpwm控制方法
CN102684204B (zh) 一种级联式statcom直流侧电容电压平衡控制方法
CN204886200U (zh) 一种配电变压器三相不平衡电流检测补偿装置
CN103972906A (zh) 一种非隔离单相光伏并网逆变器的无功控制方法
CN109802571A (zh) 一种应用于三相固态变压器的冗余控制系统及方法
CN105006841A (zh) 一种三相并网逆变器的无缝并网控制器及其控制方法
Zhang et al. Design of T-type three-level energy storage inverter and grid-connected control strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170623

WD01 Invention patent application deemed withdrawn after publication