CN106886785A - 一种基于多特征哈希学习的航拍图像快速匹配算法 - Google Patents
一种基于多特征哈希学习的航拍图像快速匹配算法 Download PDFInfo
- Publication number
- CN106886785A CN106886785A CN201710089186.6A CN201710089186A CN106886785A CN 106886785 A CN106886785 A CN 106886785A CN 201710089186 A CN201710089186 A CN 201710089186A CN 106886785 A CN106886785 A CN 106886785A
- Authority
- CN
- China
- Prior art keywords
- feature
- hash
- characteristic point
- matching
- aerial images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006870 function Effects 0.000 claims abstract description 46
- 239000013598 vector Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 18
- 239000000284 extract Substances 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000013507 mapping Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims 10
- 230000000052 comparative effect Effects 0.000 claims 5
- 229910002056 binary alloy Inorganic materials 0.000 claims 4
- 239000013074 reference sample Substances 0.000 claims 3
- 238000004364 calculation method Methods 0.000 abstract description 5
- 230000004927 fusion Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于多特征哈希学习的航拍图像快速匹配算法,根据航拍图像的航向重叠率选取匹配区域,在匹配区域内提取特征点获取特征点集;对获取到的特征点进行多特征描述,得到其特征向量;通过核方法将特征向量映射到统一的核空间;选取训练样本数据,在核空间内学习样本特征点的二进制哈希码和生成哈希函数;根据哈希函数,将匹配区域提取的特征点进行二进制哈希码描述,在汉明空间内依据汉明距离大小进行快速匹配。本发明采用多特征融合与哈希学习方法,将特征点表示为二进制哈希码形式,克服了传统浮点型特征描述子计算复杂、匹配速度慢的问题,简化了特征匹配方法,较单一特征的特征描述子,有更强的区分性,匹配快速且准确度高。
Description
技术领域
本发明涉及一种航拍图像快速匹配算法,特别是涉及一种基于多特征哈希学习的航拍图像快速匹配算法,属于数字图像处理技术领域。
背景技术
航拍图像匹配技术是计算机视觉、图像处理和计算机图形学邻域的研究热点,利用多幅具有重叠区域的图像产生高分辨率全景图像,在场景重建、灾害防治、环境监测、遥感图像等领域有着广泛的应用价值。由于航拍图像数据量大、分辨率高,如何构建高效的特征描述子是实现航拍图像快速匹配的关键。
航拍图像局部特征匹配主要分为两个步骤:特征点检测、特征描述子构建。通过对特征点邻域的像素灰度信息进行描述,即可得到该特征点的描述子,一般表示为向量形式。为了更精确的描述特征点以用于后续匹配,通常一种好的特征描述子需要满足如下性质:高区分性、高鲁棒性。高区分性要求特征点被独一无二地描述;高鲁棒性要求在不同图像上能识别出相同特征点。最近十几年,提出了很多高鲁棒性和高区分性的局部特征描述子,如SIFT、SURF。但这些特征描述子均属于手工设计的特征,且采用浮点型数值描述,运算速度慢、匹配复杂度高,不适用于大尺度、高分辨率的航拍图像匹配。
为了解决高维浮点型描述子的匹配问题,学者们提出采用二进制描述子进行特征点描述。运用二进制特征描述子进行航拍图像特征匹配具有很多优点,如运算速度快、占用内存空间少、匹配方法简单,通过汉明距离大小即可判断特征是否匹配。二进制特征描述子主要分为两类:一类是将高维的浮点型特征描述子进行降维、量化,获取简短的二进制特征描述子,使得高维描述子的相似性在汉明空间内仍能保留;另一类是直接从原始图像块中获取二进制串,通过强度信息差异选取二进制比特位,典型的方法有BRIEF,ORB,BRISK,FREAK等。二进制描述子将特征点表示为二进制串,可以大大提高运算速度,减少内存空间,但是该类描述子大多采用特征点邻域的单一特征,如灰度特征、梯度特征,得到的二进制描述子区分性不如浮点型特征描述子,用于航拍图像匹配时,匹配准确度不高。
发明内容
本发明的主要目的在于,克服现有技术中的不足,提供一种基于多特征哈希学习的航拍图像快速匹配算法,将特征点表示为二进制哈希码形式,解决基于传统浮点型特征描述子时匹配效率低的问题,并大幅提高特征描述子区分性和匹配准确度。
为了达到上述目的,本发明所采用的技术方案是:
一种基于多特征哈希学习的航拍图像快速匹配算法,其包括以下步骤:
1)输入航拍图像f1、f2,根据航拍图像的航向重叠率α选取匹配区域f;
在匹配区域f内采用FAST-9算法提取特征点,获取特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)},i∈[1,n],n为自然数;其中,(xi,yi)为坐标形式的某一特征点;
2)对获取到的特征点(xi,yi)进行多特征描述,得到其特征向量其中,Fi1,Fi2,Fi3为不同维度的特征,为梯度特征,为平均强度特征,为强度比较特征,m=m1+m2+m3;
3)通过核方法将特征向量Fi映射到统一的核空间K;
4)选取训练样本数据,在统一的核空间K内学习样本特征点的二进制哈希码{c1,c2,…,cn}和生成哈希函数集H(·)={h1(·),...,hk(·),...,hr(·)},hk(·)为哈希函数,k∈[1,r],r表示哈希码的位数;
5)根据哈希函数集H(·),将匹配区域f提取的特征点进行二进制哈希码描述,在汉明空间内依据汉明距离大小进行快速匹配。
本发明进一步设置为:所述步骤1)中的航拍图像f1、f2的像幅边长相等,像幅边长都分别为lx、ly,则匹配区域f的像幅边长分别为αlx、ly。
本发明进一步设置为:所述步骤2)中的对获取到的特征点(xi,yi)进行多特征描述,具体为,
2-1)以特征点(xi,yi)为中心选取中心邻域Di,并将中心邻域Di划分为小块形式的小区域块;
2-2)确定主方向,并将中心邻域Di旋转至主方向,以实现特征的旋转不变性;
2-3)在每个小区域块内提取梯度特征、平均强度特征,在特征点整个中心邻域内提取强度比较特征,从而得到特征点的不同维度描述。
本发明进一步设置为:所述步骤2-1)中的中心邻域Di划分为4×4个小区域块,记为di1,di2,…,dit,…,di16,t=1,2,…,16,每个小区域块的大小为5pixel×5pixel。
本发明进一步设置为:所述步骤2-2)中的主方向采用灰度质心法确定。
本发明进一步设置为:所述步骤2-3)的在每个小区域块内提取梯度特征、平均强度特征,在特征点整个中心邻域内提取强度比较特征,从而得到特征点的不同维度描述,具体为,
2-3-1)在每个小区域块dit内提取梯度信息∑dx、∑dy、∑|dx|、∑|dy|,并将所有小区域块的梯度信息进行整合,得到中心邻域Di内的梯度特征记为Fi1,
2-3-2)在每个小区域块dit内提取平均强度信息Iavg(i),则整个中心邻域Di内的平均强度特征记为Fi2,
其中,I(x,y)为小区域块dit内像素点(x,y)的灰度值;
2-3-3)在整个中心邻域Di内随机选取64个像素点对{(xi,yi),(xj,yj)},i,j=1,2,…,20,对像素点对根据以下公式进行强度比较得到强度比较特征,将强度比较特征记为Fi3,
从而得到特征点(xi,yi)的特征向量表示为
本发明进一步设置为:所述步骤3)的通过核方法将特征向量Fi映射到统一的核空间K,具体为,
3-1)设给定n个特征点的特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)}对应的特征向量集,矩阵表示为
3-2)采用高斯核函数建立不同特征的核空间
其中,Fp、Fq分别表示两个特征点的特征向量,αj为高斯核函数的参变量
3-3)选取权值βj,将不同特征的核空间组合得到统一的核空间K;
其中,m为特征向量的维度,βj≥0,
本发明进一步设置为:所述步骤4)的选取训练样本数据,在统一的核空间K内学习样本特征点的二进制哈希码{c1,c2,…,cn}和生成哈希函数集H(·)={h1(·),...,hk(·),...,hr(·)},hk(·)为哈希函数,k∈[1,r],r表示哈希码的位数,具体为,
4-1)选取航拍图像的特征向量集F=[F1,F2,…,Fi,…,Fn]作为训练样本数据,根据训练样本数据中特征点的相似性,定义相似性矩阵
相似性矩阵S中的每个元素Sij表示对于位置的特征点是否匹配,
其中,Fi和Fj分别为第i个和第j个特征点的特征向量;
4-2)定义代价函数L,表示哈希码汉明距离与语义相似度的距离,
其中,ci为特征向量Fi对应的哈希码,为哈希码ci的转置,cj为特征向量Fj对应的哈希码;
通过最小化训练样本数据的经验误差求得样本特征点的二进制哈希码{c1,c2,…,cn};
4-3)设Φ(Fi)为特征向量Fi在统一的核空间K的映射,定义哈希函数hk(·),
其中,Vk为统一的核空间K中超平面的法向量,Vk T为法向量Vk的转置,bk为偏差调整向量;
Vk由一组地标样本向量的线性加权表示为则哈希函数表示为,
其中,Akr为加权系数,{zk|k=1,...,l}为从训练样本数据中选取的地标样本,κ为地标样本的个数,Φ(zk)为zk在统一的核空间K的映射;
4-4)定义目标函数O(A,b,μ),
其中,cik是样本的第k位哈希码,是用来控制核函数平滑度的正则化项,λ为控制系数;
通过最小化哈希函数的输出与对应学习得到的哈希码的经验损失,确定哈希函数的各参数后生成哈希函数。
与现有技术相比,本发明具有的有益效果是:
本发明采用多特征融合与哈希学习方法,将特征点表示为二进制哈希码形式,克服了传统浮点型特征描述子计算复杂、匹配速度慢的问题;将哈希学习运用到航拍图像特征提取与匹配中,将特征点描述为简短的二进制哈希码,简化了特征匹配方法;同时对提取到的特征点采用多特征描述,较单一特征的特征描述子,有更强的区分性,用于航拍图像特征匹配时,准确度高。
上述内容仅是本发明技术方案的概述,为了更清楚的了解本发明的技术手段,下面结合附图对本发明作进一步的描述。
附图说明
图1为本发明一种基于多特征哈希学习的航拍图像快速匹配算法的流程图。
具体实施方式
下面结合说明书附图,对本发明作进一步的说明。
本发明提供一种基于多特征哈希学习的航拍图像快速匹配算法,如图1所示,包括以下步骤:
1)输入像幅边长相等的航拍图像f1、f2,两者的像幅边长都分别为lx、ly,航向重叠率为α;根据航拍图像的航向重叠率α选取匹配区域f,则匹配区域f的像幅边长分别为αlx、ly;在匹配区域f内采用FAST-9算法提取特征点,获取特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)},i∈[1,n],n为自然数;其中,(xi,yi)为坐标形式的某一特征点。
2)对获取到的特征点(xi,yi)进行多特征描述,得到其特征向量其中,Fi1,Fi2,Fi3为不同维度的特征,特征为梯度特征,为平均强度特征,为强度比较特征,m=m1+m2+m3。
所述步骤2)中的对获取到的特征点(xi,yi)进行多特征描述,具体为,
2-1)以特征点(xi,yi)为中心选取中心邻域Di,并将中心邻域Di划分为小块形式的4×4个小区域块,记为di1,di2,…,dit,…,di16,t=1,2,…,16,每个小区域块的大小为5pixel×5pixel;
2-2)采用灰度质心法确定主方向,并将中心邻域Di旋转至主方向,以实现特征的旋转不变性;
2-3)在每个小区域块内提取梯度特征、平均强度特征,在特征点整个中心邻域内提取强度比较特征,从而得到特征点的不同维度描述。
所述步骤2-3)具体为,
2-3-1)在每个小区域块dit内提取梯度信息∑dx、∑dy、∑|dx|、∑|dy|,并将所有小区域块的梯度信息进行整合,得到中心邻域Di内的梯度特征记为Fi1,
2-3-2)在每个小区域块dit内提取平均强度信息Iavg(i),则整个中心邻域Di内的平均强度特征记为Fi2,
其中,I(x,y)为小区域块dit内像素点(x,y)的灰度值;
2-3-3)在整个中心邻域Di内随机选取64个像素点对{(xi,yi),(xj,yj)},i,j=1,2,…,20,对像素点对根据以下公式进行强度比较得到强度比较特征,将强度比较特征记为Fi3,
从而得到特征点(xi,yi)的特征向量表示为
3)通过核方法将特征向量Fi映射到统一的核空间K,具体为,
3-1)设给定n个特征点的特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)}对应的特征向量集,矩阵表示为
3-2)采用高斯核函数建立不同特征的核空间
其中,Fp、Fq分别表示两个特征点的特征向量,αj为高斯核函数的参变量;
3-3)选取权值βj,将不同特征的核空间组合得到统一的核空间K;
其中,m为特征向量的维度,βj≥0,
4)选取训练样本数据,在统一的核空间K内学习样本特征点的二进制哈希码{c1,c2,…,cn}和生成哈希函数集H(·)={h1(·),...,hk(·),...,hr(·)},hk(·)为哈希函数,k∈[1,r],r表示哈希码的位数。
具体为,
4-1)选取航拍图像的特征向量集F=[F1,F2,…,Fi,…,Fn]作为训练样本数据,根据训练样本数据中特征点的相似性,定义相似性矩阵
相似性矩阵S中的每个元素Sij表示对于位置的特征点是否匹配,
其中,Fi和Fj分别为第i个和第j个特征点的特征向量;
4-2)定义代价函数L,表示哈希码汉明距离与语义相似度的距离,
其中,ci为特征向量Fi对应的哈希码,为哈希码ci的转置,cj为特征向量Fj对应的哈希码;
通过最小化训练样本数据的经验误差求得样本特征点的二进制哈希码{c1,c2,…,cn};
4-3)设Φ(Fi)为特征向量Fi在统一的核空间K的映射,定义哈希函数hk(·),
其中,Vk为统一的核空间K中超平面的法向量,Vk T为法向量Vk的转置,bk为偏差调整向量;
Vk由一组地标样本向量的线性加权表示为则哈希函数表示为,
其中,Akr为加权系数,{zk|k=1,...,l}为从训练样本数据中选取的地标样本,κ为地标样本的个数,Φ(zk)为zk在统一的核空间K的映射;
4-4)定义目标函数O(A,b,μ),
其中,cik是样本的第k位哈希码,是用来控制核函数平滑度的正则化项,λ为控制系数;
通过最小化哈希函数的输出与对应学习得到的哈希码的经验损失,确定哈希函数的各参数后生成哈希函数。
5)根据哈希函数H(·),将匹配区域f提取的特征点进行二进制哈希码描述,在汉明空间内依据汉明距离大小进行快速匹配。
本发明的创新点在于,采用多特征融合与哈希学习方法,将特征点表示为二进制哈希码形式,克服了传统浮点型特征描述子计算复杂、匹配速度慢的问题,简化了特征匹配方法,较单一特征的特征描述子,有更强的区分性,匹配快速且准确度高。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (8)
1.一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于,包括以下步骤:
1)输入航拍图像f1、f2,根据航拍图像的航向重叠率α选取匹配区域f;
在匹配区域f内采用FAST-9算法提取特征点,获取特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)},i∈[1,n],n为自然数;其中,(xi,yi)为坐标形式的某一特征点;
2)对获取到的特征点(xi,yi)进行多特征描述,得到其特征向量其中,Fi1,Fi2,Fi3为不同维度的特征,为梯度特征,为平均强度特征,为强度比较特征,m=m1+m2+m3;
3)通过核方法将特征向量Fi映射到统一的核空间K;
4)选取训练样本数据,在统一的核空间K内学习样本特征点的二进制哈希码{c1,c2,…,cn}和生成哈希函数集H(·)={h1(·),...,hk(·),...,hr(·)},hk(·)为哈希函数,k∈[1,r],r表示哈希码的位数;
5)根据哈希函数集H(·),将匹配区域f提取的特征点进行二进制哈希码描述,在汉明空间内依据汉明距离大小进行快速匹配。
2.根据权利要求1所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤1)中的航拍图像f1、f2的像幅边长相等,像幅边长都分别为lx、ly,则匹配区域f的像幅边长分别为αlx、ly。
3.根据权利要求1所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤2)中的对获取到的特征点(xi,yi)进行多特征描述,具体为,
2-1)以特征点(xi,yi)为中心选取中心邻域Di,并将中心邻域Di划分为小块形式的小区域块;
2-2)确定主方向,并将中心邻域Di旋转至主方向,以实现特征的旋转不变性;
2-3)在每个小区域块内提取梯度特征、平均强度特征,在特征点整个中心邻域内提取强度比较特征,从而得到特征点的不同维度描述。
4.根据权利要求3所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤2-1)中的中心邻域Di划分为4×4个小区域块,记为di1,di2,…,dit,…,di16,t=1,2,…,16,每个小区域块的大小为5pixel×5pixel。
5.根据权利要求4所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤2-2)中的主方向采用灰度质心法确定。
6.根据权利要求5所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤2-3)的在每个小区域块内提取梯度特征、平均强度特征,在特征点整个中心邻域内提取强度比较特征,从而得到特征点的不同维度描述,具体为,
2-3-1)在每个小区域块dit内提取梯度信息Σdx、∑dy、∑|dx|、∑|dy|,并将所有小区域块的梯度信息进行整合,得到中心邻域Di内的梯度特征记为Fi1,
2-3-2)在每个小区域块dit内提取平均强度信息Iavg(i),则整个中心邻域Di内的平均强度特征记为Fi2,
其中,I(x,y)为小区域块dit内像素点(x,y)的灰度值;
2-3-3)在整个中心邻域Di内随机选取64个像素点对{(xi,yi),(xj,yj)},i,j=1,2,…,20,对像素点对根据以下公式进行强度比较得到强度比较特征,将强度比较特征记为Fi3,
从而得到特征点(xi,yi)的特征向量表示为
7.根据权利要求1所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤3)的通过核方法将特征向量Fi映射到统一的核空间K,具体为,
3-1)设给定n个特征点的特征点集{(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)}对应的特征向量集,矩阵表示为
3-2)采用高斯核函数建立不同特征的核空间
其中,Fp、Fq分别表示两个特征点的特征向量,αj为高斯核函数的参变量
3-3)选取权值βj,将不同特征的核空间组合得到统一的核空间K;
其中,m为特征向量的维度,βj≥0,
8.根据权利要求7所述的一种基于多特征哈希学习的航拍图像快速匹配算法,其特征在于:所述步骤4)的选取训练样本数据,在统一的核空间K内学习样本特征点的二进制哈希码{c1,c2,…,cn}和生成哈希函数集H(·)={h1(·),...,hk(·),...,hr(·)},hk(·)为哈希函数,k∈[1,r],r表示哈希码的位数,具体为,
4-1)选取航拍图像的特征向量集F=[F1,F2,…,Fi,…,Fn]作为训练样本数据,根据训练样本数据中特征点的相似性,定义相似性矩阵
相似性矩阵S中的每个元素Sij表示对于位置的特征点是否匹配,
其中,Fi和Fj分别为第i个和第j个特征点的特征向量;
4-2)定义代价函数L,表示哈希码汉明距离与语义相似度的距离,
其中,ci为特征向量Fi对应的哈希码,为哈希码ci的转置,cj为特征向量Fj对应的哈希码;
通过最小化训练样本数据的经验误差求得样本特征点的二进制哈希码{c1,c2,…,cn};
4-3)设Φ(Fi)为特征向量Fi在统一的核空间K的映射,定义哈希函数hk(·),
其中,Vk为统一的核空间K中超平面的法向量,为法向量Vk的转置,bk为偏差调整向量;
Vk由一组地标样本向量的线性加权表示为则哈希函数表示为,
其中,Akr为加权系数,{zk|k=1,...,l}为从训练样本数据中选取的地标样本,κ为地标样本的个数,Φ(zk)为zk在统一的核空间K的映射;
4-4)定义目标函数O(A,b,μ),
其中,cik是样本的第k位哈希码,是用来控制核函数平滑度的正则化项,λ为控制系数;
通过最小化哈希函数的输出与对应学习得到的哈希码的经验损失,确定哈希函数的各参数后生成哈希函数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710089186.6A CN106886785A (zh) | 2017-02-20 | 2017-02-20 | 一种基于多特征哈希学习的航拍图像快速匹配算法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710089186.6A CN106886785A (zh) | 2017-02-20 | 2017-02-20 | 一种基于多特征哈希学习的航拍图像快速匹配算法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106886785A true CN106886785A (zh) | 2017-06-23 |
Family
ID=59179309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710089186.6A Pending CN106886785A (zh) | 2017-02-20 | 2017-02-20 | 一种基于多特征哈希学习的航拍图像快速匹配算法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106886785A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108446627A (zh) * | 2018-03-19 | 2018-08-24 | 南京信息工程大学 | 一种基于局部深度哈希的航拍图像匹配方法 |
CN109271996A (zh) * | 2018-08-21 | 2019-01-25 | 南京理工大学 | 基于surf特征和哈希感知算法的fpc图像自动配准方法 |
CN109427190A (zh) * | 2017-08-22 | 2019-03-05 | 普天信息技术有限公司 | 车辆追踪方法及装置 |
CN110321858A (zh) * | 2019-07-08 | 2019-10-11 | 北京字节跳动网络技术有限公司 | 视频相似度确定方法、装置、电子设备及存储介质 |
CN110969128A (zh) * | 2019-12-03 | 2020-04-07 | 哈尔滨理工大学 | 一种基于多特征融合的海面背景下红外船舰的检测方法 |
CN111666957A (zh) * | 2020-07-17 | 2020-09-15 | 湖南华威金安企业管理有限公司 | 图像真实性的识别方法及装置 |
US20210357515A1 (en) * | 2020-05-18 | 2021-11-18 | Gsi Technology Inc. | Secure similarity search for sensitive data |
CN114926753A (zh) * | 2022-06-16 | 2022-08-19 | 无锡慧眼人工智能科技有限公司 | 一种海量图像条件下的快速目标场景信息提取方法 |
CN116563583A (zh) * | 2023-07-07 | 2023-08-08 | 腾讯科技(深圳)有限公司 | 一种图像匹配的方法、地图信息的更新方法以及相关装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104081435A (zh) * | 2014-04-29 | 2014-10-01 | 中国科学院自动化研究所 | 一种基于级联二值编码的图像匹配方法 |
CN104765872A (zh) * | 2014-11-19 | 2015-07-08 | 中国石油大学(华东) | 一种基于集成哈希编码的快速图像检索方法 |
CN105894024A (zh) * | 2016-03-29 | 2016-08-24 | 合肥工业大学 | 多重核的可能性模糊聚类算法 |
CN106126590A (zh) * | 2016-06-20 | 2016-11-16 | 北京航空航天大学 | 一种基于关键信息的无人机侦察视频检索方法 |
CN106126668A (zh) * | 2016-06-28 | 2016-11-16 | 北京小白世纪网络科技有限公司 | 一种基于哈希重建的图像特征点匹配方法 |
-
2017
- 2017-02-20 CN CN201710089186.6A patent/CN106886785A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104081435A (zh) * | 2014-04-29 | 2014-10-01 | 中国科学院自动化研究所 | 一种基于级联二值编码的图像匹配方法 |
CN104765872A (zh) * | 2014-11-19 | 2015-07-08 | 中国石油大学(华东) | 一种基于集成哈希编码的快速图像检索方法 |
CN105894024A (zh) * | 2016-03-29 | 2016-08-24 | 合肥工业大学 | 多重核的可能性模糊聚类算法 |
CN106126590A (zh) * | 2016-06-20 | 2016-11-16 | 北京航空航天大学 | 一种基于关键信息的无人机侦察视频检索方法 |
CN106126668A (zh) * | 2016-06-28 | 2016-11-16 | 北京小白世纪网络科技有限公司 | 一种基于哈希重建的图像特征点匹配方法 |
Non-Patent Citations (4)
Title |
---|
EDWARD ROSTEN等: "Machine Learning for High-Speed Corner Detection", 《SPRINGER-VERLAG》 * |
余淮等: "一种无人机航拍影像快速特征提取与匹配算法", 《电子与信息学报》 * |
冯伟国: "视频监控中运动对象提取与海量对象快速检索", 《中国博士学位论文全文数据库(电子期刊)》 * |
高春晓等: "基于预测区域匹配的无人机航拍图像快速拼接", 《北京理工大学学报》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109427190A (zh) * | 2017-08-22 | 2019-03-05 | 普天信息技术有限公司 | 车辆追踪方法及装置 |
CN108446627A (zh) * | 2018-03-19 | 2018-08-24 | 南京信息工程大学 | 一种基于局部深度哈希的航拍图像匹配方法 |
CN109271996A (zh) * | 2018-08-21 | 2019-01-25 | 南京理工大学 | 基于surf特征和哈希感知算法的fpc图像自动配准方法 |
CN110321858A (zh) * | 2019-07-08 | 2019-10-11 | 北京字节跳动网络技术有限公司 | 视频相似度确定方法、装置、电子设备及存储介质 |
CN110321858B (zh) * | 2019-07-08 | 2022-06-14 | 北京字节跳动网络技术有限公司 | 视频相似度确定方法、装置、电子设备及存储介质 |
CN110969128A (zh) * | 2019-12-03 | 2020-04-07 | 哈尔滨理工大学 | 一种基于多特征融合的海面背景下红外船舰的检测方法 |
US20210357515A1 (en) * | 2020-05-18 | 2021-11-18 | Gsi Technology Inc. | Secure similarity search for sensitive data |
CN111666957A (zh) * | 2020-07-17 | 2020-09-15 | 湖南华威金安企业管理有限公司 | 图像真实性的识别方法及装置 |
CN111666957B (zh) * | 2020-07-17 | 2023-04-25 | 湖南华威金安企业管理有限公司 | 图像真实性的识别方法及装置 |
CN114926753A (zh) * | 2022-06-16 | 2022-08-19 | 无锡慧眼人工智能科技有限公司 | 一种海量图像条件下的快速目标场景信息提取方法 |
CN114926753B (zh) * | 2022-06-16 | 2023-10-13 | 无锡慧眼人工智能科技有限公司 | 一种海量图像条件下的快速目标场景信息提取方法 |
CN116563583A (zh) * | 2023-07-07 | 2023-08-08 | 腾讯科技(深圳)有限公司 | 一种图像匹配的方法、地图信息的更新方法以及相关装置 |
CN116563583B (zh) * | 2023-07-07 | 2023-10-10 | 腾讯科技(深圳)有限公司 | 一种图像匹配的方法、地图信息的更新方法以及相关装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106886785A (zh) | 一种基于多特征哈希学习的航拍图像快速匹配算法 | |
CN107368831B (zh) | 一种自然场景图像中的英文文字和数字识别方法 | |
CN106909924B (zh) | 一种基于深度显著性的遥感影像快速检索方法 | |
CN102096825B (zh) | 基于图的半监督高光谱遥感图像分类方法 | |
CN103942564B (zh) | 基于非监督特征学习的高分辨率遥感影像场景分类方法 | |
CN110443143A (zh) | 多分支卷积神经网络融合的遥感图像场景分类方法 | |
CN108830296A (zh) | 一种改进的基于深度学习的高分遥感影像分类方法 | |
Xie et al. | Improved spatial pyramid matching for scene recognition | |
CN107766890A (zh) | 一种细粒度识别中判别性图块学习的改进方法 | |
CN107315765A (zh) | 一种大规模图片集分布式近似搜索的方法 | |
CN105160351B (zh) | 基于锚点稀疏图的半监督高光谱分类方法 | |
CN106408030A (zh) | 基于中层语义属性和卷积神经网络的sar图像分类方法 | |
Lin et al. | Building damage assessment from post-hurricane imageries using unsupervised domain adaptation with enhanced feature discrimination | |
CN106326938B (zh) | 基于弱监督学习的sar图像目标鉴别方法 | |
CN112215267B (zh) | 一种面向高光谱图像的深度空谱子空间聚类方法 | |
CN107832335A (zh) | 一种基于上下文深度语义信息的图像检索方法 | |
CN103678483A (zh) | 基于自适应概率超图和半监督学习的视频语义分析方法 | |
WO2023273337A1 (zh) | 一种基于代表特征的遥感图像中的密集目标检测方法 | |
CN114926742B (zh) | 一种基于二阶注意力机制的回环检测及优化方法 | |
CN115496950A (zh) | 邻域信息嵌入的半监督判别字典对学习的图像分类方法 | |
CN116363526A (zh) | MROCNet模型构建与多源遥感影像变化检测方法及系统 | |
CN113239895A (zh) | 基于注意力机制的胶囊网络的sar图像变化检测方法 | |
CN111191700B (zh) | 基于自适应协同图判别分析的高光谱图像降维方法及装置 | |
CN116543192A (zh) | 一种基于多视角特征融合的遥感图像小样本分类方法 | |
Dai et al. | Research on hyper-spectral remote sensing image classification by applying stacked de-noising auto-encoders neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170623 |