CN106886050B - 一种巷道超前探测装置及方法 - Google Patents

一种巷道超前探测装置及方法 Download PDF

Info

Publication number
CN106886050B
CN106886050B CN201710139383.4A CN201710139383A CN106886050B CN 106886050 B CN106886050 B CN 106886050B CN 201710139383 A CN201710139383 A CN 201710139383A CN 106886050 B CN106886050 B CN 106886050B
Authority
CN
China
Prior art keywords
electrode group
roadway
additional
power supply
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710139383.4A
Other languages
English (en)
Other versions
CN106886050A (zh
Inventor
吕玉增
赵荣春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710139383.4A priority Critical patent/CN106886050B/zh
Publication of CN106886050A publication Critical patent/CN106886050A/zh
Application granted granted Critical
Publication of CN106886050B publication Critical patent/CN106886050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种巷道超前探测装置及方法,该装置包括设于巷道内的多个附加电极;布设于巷道内距掌子面预设距离处的无穷远电极,无穷远电极与附加电极组形成附加电场;供电电极组布设于巷道内,供电电极组与附加电极组的电性相同,附加电场使供电电极组的电场方向向巷道的掘进方向聚焦;观测电极组布设于掌子面上,观测电极组在附加电场和供电电极组产生的电场的作用下产生电位和电位差。该方法是利用上述装置的附加电极组使巷道内形成附加电场,在巷道内的附加电极包围区域布设与附加电场同极性的供电电极组,附加电场使供电电极组产生的电场的电场方向与巷道的掘进方向相同,达到探测掌子面前方不良地质体的目的。

Description

一种巷道超前探测装置及方法
技术领域
本发明涉及巷道超前探测技术领域,特别是涉及一种巷道超前探测装置及方法。
背景技术
在煤田巷道等生产施工中,含水断层、含水充泥溶洞、陷落柱、破碎带、软弱地层等与水体相关的不良地质体,这些不良地质体是超前探测的主要内容。由于不良地质体与围岩具有较明显的电性差异,因此,利用电法进行巷道超前探测有较好的理论前提。在巷道超前探测任务中,巷道迎头的超前探测是主要勘探任务之一。
目前,固定点源测深法或称单极梯度法是煤田巷道迎头超前探测常用的电阻率法,经过十多年的发展,单极-偶极(三极)法巷道超前探测技术也进行了改革,逐步形成三点或多点供电的联合三极超前探测系统。实践证明,联合三极超前探测技术尽管能解决超前探测的某些问题,也能取得不错的效果,但也存在一些问题。比如,三极法迎头超前探测获得的异常到底来自于巷道前方,还是巷道底板,不易区分;其超前探测的有效距离不易判断。因此常规的直流电阻率三极法超前探测在巷道超前探测中的前景并不乐观。
综上,现有的巷道电法存在的问题是难以判断异常体的位置方向,且异常解释困难。
发明内容
本发明的目的是提供一种巷道超前探测装置及方法,以解决现有的巷道电法存在难以判断异常体的位置方向,且异常解释困难的问题。
为实现上述目的,本发明提供了一种巷道超前探测装置,包括:
附加电极组,包括多个附加电极,多个所述附加电极设于巷道内;
无穷远电极,布设于所述巷道内距掌子面预设距离处,所述无穷远电极与所述附加电极组形成附加电场;
供电电极组,布设于巷道内,所述供电电极组与所述附加电极组的电性相同,所述附加电场使所述供电电极组的电场方向向巷道的掘进方向聚焦;
观测电极组,布设于所述掌子面上,所述观测电极组在所述附加电场和所述供电电极组产生的电场的作用下产生电位和电位差。
可选的,所述附加电极组布设在巷道内的掌子面上;所述供电电极组布设在所述巷道内的掌子面上,且所述供电电极组位于所述附加电极组构成的形状内部,所述供电电极组包括一个供电电极或多个供电电极。
可选的,所述附加电极组布设在所述巷道内的掌子面与所述巷道内壁的连接处;所述供电电极组布设在所述巷道内的掌子面上,所述供电电极组包括一个供电电极或多个供电电极。
可选的,所述附加电极组布设在所述巷道的内壁上;所述供电电极组布设在位于所述附加电极组与所述掌子面之间的所述巷道的内壁上,所述供电电极组包括多个供电电极。
可选的,所述供电电极组为所述附加电极组,所述附加电极组布设在巷道内的掌子面上或布设在所述巷道内的掌子面与所述巷道内壁的连接处或布设在所述巷道的内壁上。
本发明还提供了一种巷道超前探测方法,利用上述的巷道超前探测装置进行超前探测,所述巷道超前探测装置包括:
附加电极组,包括多个附加电极,多个所述附加电极设于巷道内;
无穷远电极,布设于所述巷道内距掌子面预设距离处,所述无穷远电极与所述附加电极组形成附加电场;
供电电极组,布设于巷道内,所述供电电极组与所述附加电极组的电性相同,所述附加电场使所述供电电极组的电场方向向巷道的掘进方向聚焦;
观测电极组,布设于所述掌子面上,所述观测电极组在所述附加电场和所述供电电极组产生的电场的作用下产生电位和电位差;
所述方法包括:
获取巷道的掘进深度;
获取与所述掘进深度对应的所述观测电极组的电位和电位差;
根据所述掘进深度和与所述掘进深度对应的所述电位,确定电位-掘进深度曲线;
根据所述掘进深度和与所述掘进深度对应的所述电位差,确定电位差-掘进深度曲线;
根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测。
可选的,在所述获取巷道的掘进深度之前,还包括:
采用三维有限元数值模拟法构造巷道。
可选的,当所述巷道超前探测装置中的所述供电电极组为所述附加电极电极组时,所述根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测,具体包括:
当所述电位-掘进深度曲线表示所述电位随所述掘进深度逐渐减小,所述电位差-掘进深度曲线表示所述电位差随所述掘进深度逐渐增加时,确定所述掌子面的前方存在低阻不良地质体。
可选的,当所述巷道超前探测装置中的所述供电电极组与所述附加电极电极组分别布设时,所述根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测,具体包括:
当所述电位-掘进深度曲线表示所述电位随所述掘进深度逐渐减小,所述电位差-掘进深度曲线表示所述电位差随所述掘进深度也逐渐减小时,确定所述掌子面的前方存在低阻不良地质体。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的巷道超前探测装置及方法通过在巷道中布设附加电极组使巷道内形成附加电场,再以附加电场为背景,在巷道内的附加电极包围区域布设与附加电场同极性的供电电极组,附加电场使供电电极组产生的电场的电场方向与巷道的掘进方向相同,达到探测掌子面前方不良地质体的目的。当掌子面前方有含水断层、含水充泥溶洞、陷落柱、破碎带、软弱地层等与水体相关的不良地质体存在时,由于这些不良地质体与围岩电性存在差异,会不同程度吸引或排斥电场,因此可以通过布设观测电极,根据观测电极的电位或电位差随掘进的变化曲线,实现掌子面前方不良地质体的具体位置的探测。解决了现有的巷道电法存在难以判断异常体的位置方向,且异常解释困难的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的巷道超前探测装置的结构示意图;
图2为本发明实施例2提供的巷道超前探测装置的结构示意图;
图3为本发明实施例3提供的巷道超前探测装置的结构示意图;
图4为本发明实施例4提供的巷道超前探测装置的结构示意图;
图5为本发明提供的巷道超前探测方法的流程图;
图6中(a)为三维有限元网格剖分整体效果示意图、(b)为中心截面图、(c)为四面体剖分示意图;
图7为聚焦电流法工作原理示意图;
图8中(a)为附加电极完全布设在掌子面上时附加电场随z坐标变化情况示意图,(b)为附加电极布设在掌子面与巷道壁连接处时附加电场随z坐标变化情况示意图,(c)为附加电极布设在靠近掌子面的巷道壁上时附加电场随z坐标变化情况示意图;
图9为附加电极组作为供电电极组进行超前探测的示意图;
图10中(a)为附加电极组作为供电电极组时观测电极M点归一化电位-掘进深度曲线图,(b)为附加电极组作为供电电极组时观测电极MN的电位差-掘进深度曲线图;
图11为附加电极组和供电电极组分开布设进行超前探测的示意图;
图12中(a)为附加电极组和供电电极组分开布设时观测电极M点归一化电位-掘进深度曲线图,(b)为附加电极组和供电电极组分开布设时观测电极MN的电位差-掘进深度曲线图。
其中,附加电极组-1、供电电极组-2、观测电极组-3、掌子面-4、巷道-5。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种巷道超前探测装置及方法,以解决现有的巷道电法存在难以判断异常体的位置方向,且异常解释困难的问题。
常规的电阻率法巷道超前探测技术,不易判断异常信息来源的方向性,因而巷道迎头超前预报的准确度就会存在很大的问题。本发明提出用聚焦电流的方法进行超前探测。聚焦电流法能较好的控制电场的方向性,类似于探照灯原理,适合巷道的特殊环境,其工作原理是同极性电极相互排斥,通过一个附加电场,来迫使工作电场具有一定的方向性,达到“聚焦电流”的目的,进而突出探测方向上目标体的影响。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1:
如图1所示,本发明提供了一种巷道超前探测装置,包括:
附加电极组1,包括多个附加电极,多个附加电极设于巷道5内;
无穷远电极,布设于巷道5内距掌子面4预设距离处,无穷远电极与附加电极组1形成附加电场;该无穷远电极布设在离掌子面4距离大于5-15倍掌子面4边长处;
供电电极组2,布设于巷道5内,供电电极组2与附加电极组1的电性相同,附加电场使供电电极组2的电场方向向巷道5的掘进方向聚焦;
观测电极组3,布设于掌子面4上,观测电极组3在附加电场和供电电极组2产生的电场的作用下产生电位和电位差。
其中,附加电极组1布设在巷道5内的掌子面4上;供电电极组2布设在巷道5内的掌子面4上,且供电电极组2位于附加电极组1构成的形状内部,供电电极组2包括一个供电电极或多个供电电极。
附加电场的作用是产生一个背景场,并且使电场具有方向性,使得电场方向上的地质构造产生更显著的电场扰动。在巷道超前探测中,探测深度、探测位置决定了附加电场电极的布设。通常情况下,巷道超前探测主要了解掌子面4前方及其附近的破碎带、水体、地质构造等信息,因此,附加电极组1的布设围绕掌子面4进行。由于附加电场起到了聚焦电流作用,因此,可以在附加电场的作用下,在巷道5内附加电极组1包围区域内布设与附加电场同极性的供电电极组2,在附加电场的作用下,供电电极组2产生的电场方向只能趋向掌子面4的前方,达到探测掌子面4前方异常体的目的。由于异常体与围岩电性有较大差异,因此会不同程度吸引或排斥电场,当在掌子面4上布设环状附加电极组1和供电电极组2,再在环状电极包围的范围布设观测电极组3,可以通过观测电极组3的电位或电位差随掘进深度的变化曲线,实现超前探测。该装置不仅能够判断异常体的方向,还能根据电位、电位差、掘进深度和变化曲线来判断异常体的距离以及异常体存在的区域范围。
其中,环状附加电极组1是指多个附加电极排列成的形状为圆环形、拱形、方形、多边形等任意的闭环形状。
实施例2:
如图2所示,与其他实施例不同的是,附加电极组1布设在巷道5内的掌子面4与巷道5内壁的连接处;供电电极组2布设在巷道5内的掌子面4上,供电电极组2包括一个供电电极或多个供电电极。
本实施例的工作原理及效果与其他实施例的原理和效果均相同,再此不再赘述。
实施例3:
如图3所示,与其他实施例不同的是,附加电极组1布设在巷道5的内壁上;供电电极组2布设在位于附加电极组1与掌子面4之间的巷道5的内壁上,供电电极组2包括多个供电电极。
本实施例的工作原理及效果与其他实施例的原理和效果均相同,再此不再赘述。
实施例4:
如图4所示,与其他实施例不同的是,供电电极组2为附加电极组1,附加电极组1布设在巷道5内的掌子面4上或布设在巷道5内的掌子面4与巷道5内壁的连接处或布设在巷道5的内壁上。
该实施例中,是直接利用附加电极组1作为供电电极组2,这种情况下,也可以根据异常体与围岩电性吸引或排斥电场的程度的不同,通过观测电极组3的电位或电位差随掘进深度的变化曲线,实现超前探测。
与上述实施例提供的巷道超前探测装置对应的,本发明还提供了一种巷道超前探测方法,该方法是利用上述的巷道超前探测装置进行超前探测,该超前探测方法包括:
步骤501:获取巷道5的掘进深度;
步骤502:获取与掘进深度对应的观测电极组3的电位和电位差;
步骤503:根据掘进深度和与掘进深度对应的电位,确定电位-掘进深度曲线;
步骤504:根据掘进深度和与掘进深度对应的电位差,确定电位差-掘进深度曲线;
步骤505:根据电位-掘进深度曲线和电位差-掘进深度曲线进行巷道超前探测。
其中,在步骤501:在巷道5内布设附加电极组1之前,还包括:
采用三维有限元数值模拟法构造巷道5。
用三维有限元数值模拟的方法,构造出复杂的巷道环境,推导出多点源情况下源异常电位的微分方程。
三维有限元正演算法的基本原理如下:
基于巷道为中心进行三维放射状全空间四面体网格剖分,如附图6(a)、6(b)、6(c)所示。在巷道聚焦电法探测中,首先要建立一个附加电场(由附加电极组1A0产生),然后布设供电电极组2A1和/或观测电极组3MN,如附图7所示。若有h个附加电场电极A0i(i=1,2,…,h)和m个供电电极A1j(j=1,2,…,m),则整个空间满足的方程归结如下:
对(1)式用有限单元法求解,求出等价的变分问题为:
其中,Γs为区域Ω的地面边界,Γ为区域Ω的地下边界,n为边界的外法向方向,σ为介质的电导率;A0i为第i个附加电极,A1j为第j个供电电极;ωA是A点对地下区域Ω张的立体角,因此对应为附加电极A0i对地下区域Ω张的立体角,对应为供电电极A1j对地下区域Ω张的立体角;u为异常电位,表示第i个附加电极至点电源的距离,是第j个供电电极至点电源的距离,I表示点电源的电流强度,δ(A0i)以附加电极A0i为中心的狄拉克函数,δ(A1j)表示以供电电极A1j为中心的狄拉克函数。
对(2)式的变分问题在三维点源电场计算的基础上,运用叠加原理容易实现。
由于巷道环境复杂,电极位置布设往往对电场的影响很大,为了研究附加聚焦电场的分布规律,以算例模型进行分析研究。设定掌子面4的大小为4m×4m,掌子面4的顶边中点为坐标0点,掌子面4巷道掘进方向为z方向正反向,水平方向为x方向,垂直方向为y方向。以附加电场电极作为供电电极,观测电极MN布设在巷道掘进前方的掌子面4上,分别计算以下三种附加电场电极布设供电的情况:1、附加电极完全布设在掌子面4上;2、附加电极布设在掌子面4与巷道壁连接处;3、附加电极布设在靠近掌子面4的巷道壁上。
附图8(a)、8(b)、8(c)分别为上述1、2、3布设情况下附加电场随z坐标的变化,通过以上的3个附加电场情况的计算,可以看出附加电场具有以下几个特征:1、附加电场有聚焦作用,使得电极包围的区域电场聚焦;2、附加电场具有对称相似性,即以附加电极面为中心,距离附加电极面相同的前后面上观测的电场具有相似性。以电极布设在掌子面4上为例,也就是说掌子面4前方d远处的电场与掌子面4后方d远处的电场形态相似;3、附加电场具有衰减特性,即远离附加电极,电场逐渐衰减。
基于上述的探测方法,当巷道超前探测装置中的供电电极组2为附加电极电极组时,根据电位-掘进深度曲线和电位差-掘进深度曲线进行巷道超前探测,具体包括:
当电位-掘进深度曲线表示电位随掘进深度逐渐减小,电位差-掘进深度曲线表示电位差随掘进深度逐渐增加时,确定掌子面4的前方存在低阻不良地质体。
基于上述的探测方法,当巷道超前探测装置中的供电电极组2与附加电极电极组分别布设时,根据电位-掘进深度曲线和电位差-掘进深度曲线进行巷道超前探测,具体包括:
当电位-掘进深度曲线表示电位随掘进深度逐渐减小,电位差-掘进深度曲线表示电位差随掘进深度也逐渐减小时,确定掌子面4的前方存在低阻不良地质体。
下面结合具体的例子详细介绍本发明:
1利用附加电极组1作为供电电极组2进行超前探测
本例直接采用附加电极组1作为供电电极组2,设计巷道掘进前方掌子面4为正方形,其截面大小为8m×8m,距离掌子面4前方距离为H米处存在一低阻异常体,异常体大小为3m×4m×4m,电阻率为1Ω·m,围岩电阻率为100Ω·m。电极具体的布设方式为:1、在掌子面4上布设观测电极MN,M电极布设于掌子面4中心,N电极布设于M电极上方2m处;2、以掌子面4为中心,呈正方形布设8个正电极作为供电电极组2,其距离边界的距离为1米;3、在离掌子面4距离大于10倍掌子面4边长的地方布设无穷远电极B;具体布设方式如附图9所示。观测电极组3的电位-掘进深度曲线图和观测电极组3的电位差-掘进深度曲线图分别如附图10(a)和10(b)所示。
如附图10(a)和10(b)所示,随着巷道掘进,当掌子面4逐渐靠近低阻体时,M点电位迅速下降,而MN电位差正好相反,迅速增大。因此,利用M点电位、MN电位差随异常体距离H变化的特性规律可进行超前探测。
2利用附加电场聚焦电流布设供电观测装置进行超前探测
本例利用附加电场作为背景场聚焦电流,同时在掌子面4上布设供电以及观测电极进行超前探测。设计巷道掘进前方掌子面4为正方形,其截面大小为8m×8m,距离掌子面4前方距离为H米处存在一低阻异常体,异常体大小为3m×4m×4m,电阻率为1Ω·m,围岩电阻率为100Ω·m。电极具体的布设方式为:1、在掌子面4中心布设一正电极A为供电电极;2、以掌子面4为中心,呈正方形布设8个电极作为观测电极组3MN,其与边界的距离为2米;3、以掌子面4为中心,呈正方形布设8个正电极作为附加电场的供电电极组2,其与边界的距离为1米;4、在离掌子面4距离大于10倍掌子面4边长的地方布设无穷远电极B;具体布设方式如附图11所示。计算8个观测电极的平均电位V的到的电位-掘进深度曲线图和观测电极组3MN的电位差-掘进深度曲线图分别如附图12(a)和12(b)所示。
如附图12(a)和12(b)所示,随着巷道5开挖,当掌子面4逐渐靠近低阻体时,掌子面4上各观测点电位迅速下降,平均电位也具有相同的规律。与仅用附加电场超前探测不同的是,观测电极MN电位差也与电位曲线有相同的规律,即掌子面4逐渐靠近低阻体时,电位差亦迅速减小。
通过以上两个示例的分析,聚焦电流法巷道超前探测得到的异常曲线简单,易于理解和解释。异常曲线的主要特征为:1、当仅使用环状的附加电场工作时,随着掌子面4靠近低阻不良地质体,在掌子面4上观测到的电位逐渐减小,而电位差逐渐增大。2、当用附加电场作为背景场,在掌子面4上环状附加电极内供电进行观测时,随着掌子面4靠近低阻不良地质体,在掌子面4上观测到的电位和电位差都逐渐变小。
因此,利用电位和电位差曲线的上述特征可判断掌子面4前方是否存在和接近不良地质体。利用环状的聚焦附加电场可屏蔽掌子面4旁侧的干扰,达到巷道迎头更佳的超前探测效果。但是,由于巷道迎头的聚焦探测供电观测极距小,超前的探测距离有限,因此,这种聚焦探测可作为一种即时巷道迎头探测技术,适合在施工中边探边掘进。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种巷道超前探测装置,其特征在于,包括:
附加电极组,包括多个附加电极,多个所述附加电极设于巷道内;
无穷远电极,布设于所述巷道内距掌子面预设距离处,所述无穷远电极与所述附加电极组形成附加电场;
供电电极组,布设于巷道内,所述供电电极组与所述附加电极组的电性相同,所述附加电场使所述供电电极组的电场方向向巷道的掘进方向聚焦;
观测电极组,布设于所述掌子面上,所述观测电极组在所述附加电场和所述供电电极组产生的电场的作用下产生电位和电位差;
所述附加电极组布设在所述巷道的内壁上;所述供电电极组布设在位于所述附加电极组与所述掌子面之间的所述巷道的内壁上,所述供电电极组包括多个供电电极。
2.一种巷道超前探测方法,其特征在于,利用如权利要求1所述的巷道超前探测装置进行超前探测,所述巷道超前探测装置包括:
附加电极组,包括多个附加电极,多个所述附加电极设于巷道内;
无穷远电极,布设于所述巷道内距掌子面预设距离处,所述无穷远电极与所述附加电极组形成附加电场;
供电电极组,布设于巷道内,所述供电电极组与所述附加电极组的电性相同,所述附加电场使所述供电电极组的电场方向向巷道的掘进方向聚焦;
观测电极组,布设于所述掌子面上,所述观测电极组在所述附加电场和所述供电电极组产生的电场的作用下产生电位和电位差;
所述方法包括:
获取巷道的掘进深度;
获取与所述掘进深度对应的所述观测电极组的电位和电位差;
根据所述掘进深度和与所述掘进深度对应的所述电位,确定电位-掘进深度曲线;
根据所述掘进深度和与所述掘进深度对应的所述电位差,确定电位差-掘进深度曲线;
根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测。
3.根据权利要求2所述的巷道超前探测方法,其特征在于,在所述获取巷道的掘进深度之前,还包括:
采用三维有限元数值模拟法构造巷道。
4.根据权利要求2所述的巷道超前探测方法,其特征在于,当所述巷道超前探测装置中的所述供电电极组为所述附加电极电极组时,根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测,具体包括:
当所述电位-掘进深度曲线表示所述电位随所述掘进深度逐渐减小,所述电位差-掘进深度曲线表示所述电位差随所述掘进深度逐渐增加时,确定所述掌子面的前方存在低阻不良地质体。
5.根据权利要求2所述的巷道超前探测方法,其特征在于,当所述巷道超前探测装置中的所述供电电极组与所述附加电极电极组分别布设时,所述根据所述电位-掘进深度曲线和所述电位差-掘进深度曲线进行巷道超前探测,具体包括:
当所述电位-掘进深度曲线表示所述电位随所述掘进深度逐渐减小,所述电位差-掘进深度曲线表示所述电位差随所述掘进深度也逐渐减小时,确定所述掌子面的前方存在低阻不良地质体。
CN201710139383.4A 2017-03-10 2017-03-10 一种巷道超前探测装置及方法 Active CN106886050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710139383.4A CN106886050B (zh) 2017-03-10 2017-03-10 一种巷道超前探测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710139383.4A CN106886050B (zh) 2017-03-10 2017-03-10 一种巷道超前探测装置及方法

Publications (2)

Publication Number Publication Date
CN106886050A CN106886050A (zh) 2017-06-23
CN106886050B true CN106886050B (zh) 2019-12-27

Family

ID=59180412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710139383.4A Active CN106886050B (zh) 2017-03-10 2017-03-10 一种巷道超前探测装置及方法

Country Status (1)

Country Link
CN (1) CN106886050B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885083B (zh) * 2021-08-05 2024-04-09 中煤科工集团西安研究院有限公司 一种井下直流轴向偶极动源异常自显式超前探测方法
CN113900151B (zh) * 2021-08-05 2024-04-09 中煤科工集团西安研究院有限公司 一种井下直流单极动源异常自显式超前探测方法
CN113669070B (zh) * 2021-08-23 2022-05-06 北京科技大学 一种采矿运输巷道施工方法
CN113703063B (zh) * 2021-09-07 2023-08-11 中煤科工集团西安研究院有限公司 一种矿井方位聚焦直流电法超前探测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706585A (zh) * 2009-10-28 2010-05-12 中南大学 一种用于地下掘进工程中的隐患电法超前预报方法
CN104007472A (zh) * 2014-06-11 2014-08-27 中煤科工集团西安研究院有限公司 孔中直流电法超前探测方法
CN205643736U (zh) * 2016-04-12 2016-10-12 中南大学 一种用于坑道超前探测的勘探试验设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093335B (zh) * 2014-05-21 2017-05-17 华中科技大学 基于聚焦电流法的减小视电阻率测量误差的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706585A (zh) * 2009-10-28 2010-05-12 中南大学 一种用于地下掘进工程中的隐患电法超前预报方法
CN104007472A (zh) * 2014-06-11 2014-08-27 中煤科工集团西安研究院有限公司 孔中直流电法超前探测方法
CN205643736U (zh) * 2016-04-12 2016-10-12 中南大学 一种用于坑道超前探测的勘探试验设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3D finite element numerical simulation of advanced detection in roadway for DC focus method;Xiao-kang Deng .et al;《Transactions of Nonferrous Metals Society of China》;20131231;第2187-2193页 *
聚焦电流法隧道超前探测模型实验;周丽 等;《桂林工学院学报》;20090228;第29卷(第1期);第40-42页 *
隧道直流电阻率法超前聚焦探测研究;邓小康;《中国博士学位论文全文数据库 基础科学辑》;20150215(第02期);第A011-120页 *

Also Published As

Publication number Publication date
CN106886050A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106886050B (zh) 一种巷道超前探测装置及方法
Li et al. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: a review
Sharapov et al. Monitoring of karst-suffusion formation in area of nuclear power plant
US20230184983A1 (en) Vector-resistivity-based real-time advanced detection method for water-bearing hazard body
CN104216023A (zh) 矿井掘进巷道高密度三维直流勘探方法
CN108760825A (zh) 适应于城市环境的任意布孔的三维跨孔电阻率ct成像方法
CN108873073B (zh) 一种基于网络并行电法的三维跨孔电阻率层析成像方法
Gao et al. Water detection within the working face of an underground coal mine using 3D electric resistivity tomography (ERT)
CN112630842B (zh) 一种应用于直流电阻率法勘探的偶极差分装置及方法
CN104007476B (zh) 一种井地电磁勘探装置
Guo et al. Water-bearing body prospecting ahead of tunnel face using moving electrical-source method
Ingerov et al. Mapping of thin conductive dikes and veins overlaid by sediments using methods of Audio Magnetotellurics (AMT) and Magnetovariational Profiling (MVP)
Zuo et al. Investigation on failure behavior of collapse column in China’s coal mine based on discontinuous deformation numerical method
Nie et al. Comprehensive ahead prospecting of tunnels in severely weathered rock mass environments with high water inrush risk: a case study in Shaanxi Province
Orfanos et al. Multiparameter analysis of geophysical methods for target detection: The unified geophysical model approach
Wang et al. Three-dimensional tomography using high-power induced polarization with the similar central gradient array
Kim et al. 3D inversion of irregular gridded 2D electrical resistivity tomography lines: Application to sinkhole mapping at the Island of Corfu (West Greece)
Gao et al. Roof and floor anomalous response of mine resistivity method
Mishra et al. Sensitivity plots using comsol 5.1 multiphysics; a tool for optimizing geophysical field survey
Vargemezis et al. A focusing approach to ground water detection by means of electrical and EM methods: the case of Paliouri, Northern Greece
Syukri et al. Seulimeum segment characteristic indicated by 2-D resistivity imaging method
CN112649881A (zh) 一种各向异性介质瞬变电磁场的数值模拟方法及系统
Zhang et al. IP response modeling for surface to borehole focusing measurement using finite element method
Li et al. An advanced detection method for unfavorable geological boulder based on electrical source in drill holes under shield machine
KR20150021623A (ko) 전기비저항을 이용한 지중 자원 모니터링 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170623

Assignee: Guilin Guoda Mineral Exploration Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2022450000296

Denomination of invention: An advanced detection device and method for roadway

Granted publication date: 20191227

License type: Common License

Record date: 20221214

EE01 Entry into force of recordation of patent licensing contract