CN106882185B - 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法 - Google Patents

一种含驾驶员焦点预瞄模型的车辆自主转向控制方法 Download PDF

Info

Publication number
CN106882185B
CN106882185B CN201710151704.2A CN201710151704A CN106882185B CN 106882185 B CN106882185 B CN 106882185B CN 201710151704 A CN201710151704 A CN 201710151704A CN 106882185 B CN106882185 B CN 106882185B
Authority
CN
China
Prior art keywords
preview
focus
vehicle
driver
visual field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710151704.2A
Other languages
English (en)
Other versions
CN106882185A (zh
Inventor
王芃
王青云
陈宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201710151704.2A priority Critical patent/CN106882185B/zh
Publication of CN106882185A publication Critical patent/CN106882185A/zh
Application granted granted Critical
Publication of CN106882185B publication Critical patent/CN106882185B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters

Abstract

本发明公开一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,该方法主要包括:(1)由GPS导航及车辆传感器获得前方的道路信息;(2)在驾驶员的视野区,获取最优的预瞄路径;(3)获取预瞄中心,即焦点;(4)融合焦点前后的道路信息计算预瞄偏差量;(5)按得到的预瞄偏差量操作方向盘的转动。本发明综合考虑了视野范围内的道路信息和驾驶员的视野特性,因此能提前“感知”前方道路信息,避免急转弯带来的负面影响。同时,该方法也为自动规避障碍物和换道行驶的研究提供了一个可行的研究途径,具有较大的实用价值。

Description

一种含驾驶员焦点预瞄模型的车辆自主转向控制方法
技术领域
本发明涉及一种车辆自主转向控制方法,尤其涉及一种含驾驶员焦点预瞄模型的车辆自主转向控制方法。
背景技术
汽车数量的不断增加带来了道路拥挤、交通事故、能源浪费和环境污染等问题。人们希望汽车能自动识别道路、根据规划好的路径自动安全行驶,使驾驶员能够从枯燥繁琐的驾驶行为中解脱出来。
车辆的路径跟踪控制是无人驾驶车辆的核心控制问题之一,基于偏差调节的路径跟踪控制系统相当于一个驾驶员模型,驾驶员模型是汽车自主转向技术的重要组成部分。就驾驶员而言,他的操作技术是在反复实践和经验积累的基础上形成的。一个驾驶员,如果不能保证汽车运动的轨迹与预期轨道的误差小于安全行车所允许的数值,那么,他就不是一个合格的驾驶员。越是熟练的驾驶员,驾驶的误差也就越小。
现有的几种驾驶员模型,如Macadam的最优预瞄控制模型(MACAMAM CC.Application of an optiaml preview control for simulation of closed-loopautomobile driving.IEEE Transactions on Systems,Man and Cybernetics,1981,11(6):393-399)被认为是驾驶员转向模型的里程碑,其缺点在于并没有考虑航向偏差对最优预瞄模型的贡献;郭孔辉的对上述模型进行跟踪研究,提出预瞄最优曲率模型(郭孔辉.驾驶员-汽车闭环系统操纵运动的预瞄最优曲率模型.汽车工程,1984,6(3):1-16),其模型参数的物理含义清晰,在一定程度上能模拟人的驾驶习惯,且应用方便。但在高速转向时,跟踪精度不高以及出现转向波动现象,使其在高速下的应用具有一定的局限性;Ungoren等建立了自适应最优预瞄控制驾驶员模型(UNGOREN A Y,PENG H.An adaptiVe lateralpreview driver model.Vehicle System Dynamics,2005,43(4):245-259),通过自适应算法对远近不同位置的位置偏差选取不同权重,实现比固定权重更好的控制效果。Sharp提出多点预瞄路径转向控制方法(Sharp R S.Driver steering control and a newperspective on car handling qualities.Journal of Mechanical EngineeringScience,2005,219(10):1041-1051),与单点及两点预瞄相比,采取更多的预瞄点能获得更理想的控制效果。
针对现有车辆自主转向控制方法无法真实模拟驾驶员的视野特性,未融合视线范围内的道路信息的缺点,本发明提供了一种含驾驶员焦点预瞄模型的车辆自主转向控制方法。使用该方法能获得很好的路径跟踪效果。
发明内容
1、发明目的:本发明的目的在于提供一种含驾驶员焦点预瞄模型的车辆自主转向控制方法。
2、技术方案:为实现上述发明目的,本发明所述的一种含驾驶员焦点预瞄模型的车辆自主转向控制方法的流程如图1所示,具体步骤如下:
(1)由全球定位系统GPS和视频摄像头等车载传感器获得前方的道路轨迹;
(2)在视野范围内由车辆自主决策系统根据当前车辆状态及观测到的外部环境,规划最优的路径,即确定预瞄路径;
(3)将车辆行驶正前方(即视线正前方)距离视屏摄像头l的点作为预瞄中心,即焦点。
(4)在车辆坐标系下,引进分数阶微积分融合焦点前后的路径信息,计算预瞄焦点处车辆行驶正前方与预瞄路径间的横向误差yd。所述横向误差yd的公式如下:
Figure GSB0000182958810000021
式中,
Figure GSB0000182958810000031
Figure GSB0000182958810000032
为分数阶微积分算子,a是焦点至视线前点的纵向距离,b是焦点至视线后点的纵向距离,α和α′是分数阶阶数,f(t)是预瞄路径,t是时间变量。
(5)分数阶阶数取值范围为(-1,1),视线范围(a+b)即为积分区间,取值在(0,100)米范围内。式(1)在计算分数阶微积分时,自带权重
Figure GSB0000182958810000033
其中
Figure GSB0000182958810000034
式中,i对应离散积分点从1到n。如图3所示,分数阶最大权重处对应着驾驶员的视线焦点,驾驶员开车时的视野习惯是远离焦点处逐渐模糊,预瞄路径上每个点对应的分数阶权重也是远离焦点处逐渐变小;
(6)考虑车辆自身状态量,计算车辆行驶过程中实际的预瞄偏差量yε,得到预瞄偏差量yε的计算公式如下:
Figure GSB0000182958810000035
式中β为质心侧偏角,由车辆内部传感器/观测器获得。
(7)通过实时计算预瞄偏差量,按以下公式不断的调整方向盘转角,从而实现对车辆的自主转向控制:
Figure GSB0000182958810000036
式中,θ为方向盘转角,T为机械机构的延迟时间,K为操纵增益,方向盘向减小横向误差的方向转动。
附图说明
图1为本发明一种含驾驶员焦点预瞄模型的车辆自主转向控制方法流程示意图
图2为实施例中通过S型道路的示意图
图3为本发明的驾驶员焦点预瞄原理图
图4为实施例中的车辆路径跟踪效果图
具体实施方式
以车辆在车速设为15m/s的工况下通过前方S型弯道,预瞄路径设为S型道路的中心线,视线正前方距离摄像头l=25m的点作为焦点,扇形视线区的扇形角为60度,沿视线正前方的视线前点与焦点距离a=22.5m,视线后点与焦点距离b=22.5m为例,具体说明本发明的实施方式。
如图2所示,当车辆(长方形表示)行驶时,由全球定位系统GPS和视频摄像头等车载传感器获得前方的道路轨迹,检测到前方通过S型弯道;
图2中的扇形用来模拟驾驶员的扇形视野区域,相关标注及参数如上所述。扇形视线区固结在车辆的正前方,扇形角平分线始终在车辆前进方向(即视线正前方)的直线上。在视野范围内由车辆自主决策系统根据当前车辆状态及观测到的外部环境,规划最优的路径,即确定预瞄路径。在图2所示的冻结时刻下,本实施例假定规划的预瞄路径为S型道路的中心线落在扇形视线区的线段;
将视线正前方距离视屏摄像头l的点作为预瞄中心,即视线焦点。开车时,驾驶员的视线特性为靠近焦点的道路信息清楚,远离焦点的道路信息逐渐模糊;
在车辆坐标系下(以车辆前进方向,即视线正前方为x轴),引进分数阶微积分融合焦点前后的路径信息,计算预瞄焦点与预瞄路径间的横向误差yd。所述横向误差yd的公式如下:
Figure GSB0000182958810000041
式中,
Figure GSB0000182958810000042
Figure GSB0000182958810000043
为分数阶微积分算子,a是焦点至视线前点的纵向距离,b是焦点至视线后点的纵向距离,α和α′是分数阶阶数,f(t)是预瞄路径,t是时间变量。
分数阶的阶数取值范围为(-1,1),视线范围(a+b)对应积分区间,其取值在(0,100)范围内。本实施例中,视线范围为50m,α=-0.8,α′=-0.5。式(1)在计算分数阶微积分时,自带权重其中
Figure GSB0000182958810000051
式中,i对应离散积分点从1到n。如图3所示,分数阶积分时,预瞄路径f(t)上的每一点对应的权重(每条虚线表示每个点对应的权重)是不一样的。分数阶最大权重处对应着驾驶员的视线焦点,驾驶员开车时的视野习惯是远离焦点处逐渐模糊,所选分数阶的权重也是远离焦点处逐渐变小。因此,式(1)算出的横向误差yd以不同权重融合了预瞄路径上所有点的信息;
考虑车辆自身状态量,计算车辆行驶过程中实际的预瞄偏差量yε,得到预瞄偏差量yε的计算公式如下:
Figure GSB0000182958810000052
式中β为质心侧偏角,由车辆内部传感器/观测器获得;
通过实时计算预瞄偏差量,按以下公式不断的调整方向盘转角,从而实现对车辆的自主转向控制:
Figure GSB0000182958810000053
式中,θ为方向盘转角,T为机械机构的延迟时间,K为操纵增益。本实施例中T=0.05s,K=0.2。方向盘始终以减小横向误差量的方向转动。
图4为本发明的车辆跟踪S型道路轨迹的效果,图中显示,通过驾驶员模型等相关参数的合理选取,车辆的行使轨迹与预瞄路径基本重合,说明路径跟踪效果很好,且在转弯时的路径跟踪误差仅在0.1m左右。本发明能很好的模拟驾驶员的视野特性,综合考虑视野范围内的道路信息,因此能提前“感知”前方道路信息,可以避免急转弯带来的负面影响。同时,该方法也为无人驾驶技术中自动规避障碍物和换道行驶的研究提供了一个可行的研究途径。本发明具有较大的实用价值。

Claims (5)

1.一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,其特征在于它包括以下步骤:(1)由GPS导航及车辆传感器获得前方的道路信息;(2)在驾驶员的视野区,获取最优的预瞄路径;(3)获取预瞄中心,即焦点;(4)计算预瞄焦点与预瞄路径间的横向误差yd的公式如下:
Figure FSB0000184402010000011
式中,
Figure FSB0000184402010000012
Figure FSB0000184402010000013
为分数阶微积分算子,G表示分数阶的类型为G-L定义的类型;a是焦点至视线前点的纵向距离,b是焦点至视线后点的纵向距离,α和α′是分数阶阶数,f(t)是预瞄路径,t是时间变量;通过横向误差yd融合焦点前后的道路信息计算预瞄偏差量yε;计算车辆行驶过程中实际的预瞄偏差量yε的公式如下:
Figure FSB0000184402010000014
式中β为质心侧偏角,l表示焦距;由车辆内部传感器/观测器获得;
(5)按得到的预瞄偏差量yε操作方向盘的转动。
2.如权利要求1所述的一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,其特征在于以视线正前方一定距离的点作为焦点,模拟人的视野特性,综合考虑视野范围内焦点前后的预瞄路径信息。
3.如权利要求1所述的一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,其特征在于分数阶阶数取值范围为(-1,1),视线范围(a+b)对应积分区间,其取值在(0,100)米范围内。
4.如权利要求1所述的一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,其特征在于计算分数阶微积分时,权重
Figure FSB0000184402010000015
Figure FSB0000184402010000016
式中,i对应离散积分点从1到n。
5.如权利要求1所述的一种含驾驶员焦点预瞄模型的车辆自主转向控制方法,其特征在于通过实时计算预瞄偏差量yε,按以下公式不断的调整方向盘转角,从而实现对车辆的自主转向控制:
Figure FSB0000184402010000021
式中,θ为方向盘转角,T为机械机构的延迟时间,K为操纵增益,方向盘向减小横向误差的方向转动。
CN201710151704.2A 2017-03-10 2017-03-10 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法 Expired - Fee Related CN106882185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710151704.2A CN106882185B (zh) 2017-03-10 2017-03-10 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710151704.2A CN106882185B (zh) 2017-03-10 2017-03-10 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法

Publications (2)

Publication Number Publication Date
CN106882185A CN106882185A (zh) 2017-06-23
CN106882185B true CN106882185B (zh) 2020-04-17

Family

ID=59180962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710151704.2A Expired - Fee Related CN106882185B (zh) 2017-03-10 2017-03-10 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法

Country Status (1)

Country Link
CN (1) CN106882185B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109421702A (zh) * 2017-08-25 2019-03-05 上海汽车集团股份有限公司 一种汽车控制方法及装置
CN107804315B (zh) * 2017-11-07 2019-07-16 吉林大学 一种考虑驾驶权实时分配的人车协同转向控制方法
JP6870607B2 (ja) * 2017-12-28 2021-05-12 トヨタ自動車株式会社 自動運転システム
CN108388241B (zh) * 2018-01-05 2021-02-12 广州科语机器人有限公司 移动机器人的路径跟踪方法
CN108944899A (zh) * 2018-07-26 2018-12-07 南京威尔瑞智能科技有限公司 一种基于模糊控制的无人驾驶车辆转向盘控制系统及方法
CN109515440A (zh) * 2018-11-15 2019-03-26 长安大学 一种基于车速的变权重多点预瞄轨迹跟踪方法
CN110329347B (zh) * 2019-07-03 2021-05-11 南京航空航天大学 一种基于驾驶员特性的转向控制系统及其控制方法
CN110703783B (zh) * 2019-11-11 2021-07-27 上海交通大学 一种无人驾驶轨迹跟踪中实时判别当前参考轨迹点的算法
CN111391916B (zh) * 2020-03-27 2021-05-28 南京航空航天大学 考虑驾驶员转向特性的线控转向系统辅助控制策略
CN111703417B (zh) * 2020-06-24 2023-09-05 湖北汽车工业学院 一种高低速统一预瞄滑膜驾驶控制方法及控制系统
CN114537381A (zh) * 2020-11-24 2022-05-27 郑州宇通客车股份有限公司 一种自动驾驶车辆的车道避障方法及装置
CN114275039B (zh) * 2021-12-27 2022-11-04 联创汽车电子有限公司 智能驾驶车辆横向控制方法和模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
KR102137933B1 (ko) * 2013-11-28 2020-07-27 현대모비스 주식회사 차량 코너링 제어 방법 및 그 장치
US9409570B2 (en) * 2014-05-09 2016-08-09 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for predicting most probable path of vehicle travel and vehicle control loss preview
CN104960520B (zh) * 2015-07-16 2017-07-28 北京工业大学 基于Pure Pursuit算法的预瞄点确定方法
CN106275066B (zh) * 2016-08-30 2019-06-07 北京智行者科技有限公司 一种智能车转向控制方法及装置

Also Published As

Publication number Publication date
CN106882185A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106882185B (zh) 一种含驾驶员焦点预瞄模型的车辆自主转向控制方法
US10976741B2 (en) Safety and comfort constraints for navigation
US10928820B1 (en) Confidence levels along the same predicted trajectory of an obstacle
JP6637400B2 (ja) 車両制御装置
US10579062B2 (en) Scalable smooth reference path generator for autonomous driving vehicles
EP3819182B1 (en) Delay decision making for autonomous driving vehicles in response to obstacles based on confidence level and distance
JP7155204B2 (ja) ハンドルのニュートラル位置を較正するためのシステムおよび方法
US20200089246A1 (en) Systems and methods for controlling the operation of a vehicle
US11499834B2 (en) Aligning road information for navigation
CN103204162B (zh) 具有有效后转向的车道跟踪系统
US9618938B2 (en) Field-based torque steering control
US10534364B2 (en) Method and system for autonomous vehicle speed following
US10037037B1 (en) Systems and methods for trajectory planning in an autonomous vehicle using different fixed durations for steering and speed parameters
US11815891B2 (en) End dynamics and constraints relaxation algorithm on optimizing an open space trajectory
US20200363816A1 (en) System and method for controlling autonomous vehicles
US11377112B2 (en) Low-speed, backward driving vehicle controller design
US11814073B2 (en) Learning based controller for autonomous driving
US20210294340A1 (en) Open space path planning using inverse reinforcement learning
US20220315037A1 (en) Lane changing based only on local information
Probst et al. Automated driving in complex real-world scenarios using a scalable risk-based behavior generation framework
CN116300970B (zh) 车辆自主编队方法及装置
US20220063599A1 (en) Method for training a trajectory for a vehicle, and electronic vehicle guidance system
CN116080754A (zh) 一种车辆自主驾驶横向控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417