CN106874588B - A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design - Google Patents
A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design Download PDFInfo
- Publication number
- CN106874588B CN106874588B CN201710068810.4A CN201710068810A CN106874588B CN 106874588 B CN106874588 B CN 106874588B CN 201710068810 A CN201710068810 A CN 201710068810A CN 106874588 B CN106874588 B CN 106874588B
- Authority
- CN
- China
- Prior art keywords
- thermal protection
- parameter
- analysis
- protection system
- max
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000013461 design Methods 0.000 title claims abstract description 54
- 238000004458 analytical method Methods 0.000 title claims abstract description 19
- 238000013401 experimental design Methods 0.000 title claims abstract description 9
- 238000005070 sampling Methods 0.000 claims abstract description 28
- 230000004044 response Effects 0.000 claims abstract description 25
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 8
- 239000000284 extract Substances 0.000 claims abstract description 6
- 238000013507 mapping Methods 0.000 claims abstract 3
- 239000000463 material Substances 0.000 claims description 29
- 238000012546 transfer Methods 0.000 claims description 15
- 230000000704 physical effect Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 238000011161 development Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 5
- 238000013178 mathematical model Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 230000001052 transient effect Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000010206 sensitivity analysis Methods 0.000 claims description 3
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 230000001154 acute effect Effects 0.000 claims 1
- 238000010835 comparative analysis Methods 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 208000015181 infectious disease Diseases 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000013076 uncertainty analysis Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 87
- 230000006870 function Effects 0.000 description 12
- 238000009413 insulation Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/08—Probabilistic or stochastic CAD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及多层热防护系统优化设计领域,特别涉及一种基于试验设计的多层热防护系统非概率不确定性分析和优化设计方法。The invention relates to the field of optimal design of a multi-layer thermal protection system, in particular to a method for non-probability uncertainty analysis and optimal design of a multi-layer thermal protection system based on test design.
背景技术Background technique
高超声速飞行器因其飞行速度快、反应时间短、作战半径大、隐蔽性好、突防能力强等优点在未来战争空、天主战场中地位卓然,已成为当今世界大国军备竞赛中争相抢占的制高点。高超声速飞行器长期服役于以气动热、力为主导的多场耦合极端环境下,热防护技术已成为直接制约其发展的瓶颈。为保证飞行员安全和机载设备正常运转,需在飞行器表面大面积铺设热防护结构,加之飞行器对结构重量的敏感性,热防护系统从诞生之日就面临急迫的安全性问题和结构减重问题。因此,基于热防护结构开展低成本、高可靠性、高防隔热性能的优化设计技术研究对于高性能高超声速飞行器研制意义重大。Due to the advantages of fast flight speed, short reaction time, large combat radius, good concealment, and strong defense penetration capabilities, hypersonic vehicles have a prominent position in the future war space and God's battlefield, and have become the world's major powers in the arms race. commanding heights. Hypersonic vehicles have been in service for a long time in the extreme environment of multi-field coupling dominated by aerodynamic heat and force, and thermal protection technology has become a bottleneck that directly restricts its development. In order to ensure the safety of pilots and the normal operation of airborne equipment, it is necessary to lay a large area of thermal protection structure on the surface of the aircraft, coupled with the sensitivity of the aircraft to the weight of the structure, the thermal protection system has faced urgent safety issues and structural weight reduction issues since its birth. . Therefore, it is of great significance for the development of high-performance hypersonic vehicles to conduct research on optimal design technology based on thermal protection structures with low cost, high reliability, and high thermal insulation performance.
高超声速飞行器热防护系统多呈现典型的多层结构,即多层热防护系统。多层热防护系统的热分析涉及严酷气动热载、多层结构与多传热方式耦合下的复杂传热机理。飞行器服役过程中,首选是结构受到的气动热载荷表现为随时间高度非线性变化;其次,在结构内部热传导、热辐射和热对流三种传热机制同时存在,三者相互影响、相互耦合在一起,呈现复合传热特点;最后,就热防护结构自身而言,材料性能与结构功能在层与层之间相互影响,加之各层材料的热物性,包括导热系数、密度、比热容等,随着压力和温度的变化呈非线性变化,上述种种均导致温度场响应机理复杂难辨。因此为实现热防护系统高防隔热性能,必须深入研究多层热防护系统的传热机理。The thermal protection system of a hypersonic vehicle mostly presents a typical multi-layer structure, that is, a multi-layer thermal protection system. The thermal analysis of the multi-layer thermal protection system involves the complex heat transfer mechanism under the coupling of severe aerodynamic heat load, multi-layer structure and multiple heat transfer modes. During the service process of the aircraft, the first choice is that the aerodynamic thermal load on the structure shows a highly nonlinear change with time; secondly, the three heat transfer mechanisms of heat conduction, heat radiation and heat convection exist simultaneously in the structure, and the three interact and couple each other in the Together, it presents the characteristics of composite heat transfer; finally, as far as the thermal protection structure itself is concerned, the material properties and structural functions affect each other between layers, and the thermal physical properties of each layer of materials, including thermal conductivity, density, specific heat capacity, etc. The changes of pressure and temperature are non-linear, and all of the above lead to complex and difficult to distinguish the response mechanism of the temperature field. Therefore, in order to achieve high thermal insulation performance of the thermal protection system, the heat transfer mechanism of the multilayer thermal protection system must be thoroughly studied.
传统多层热防护系统设计优化将不确定性的影响统一纳入经验性的安全系数而不进行深入考究,往往造成某些层冗余某些层失效、有悖于低成本与高安全可靠性要求的设计;特别是在严酷气动热强作用下忽略材料热物性参数的不确定性将直接影响结构防隔热性能,进而对飞行器的安全服役产生颠覆性影响。因此,为提高飞行器服役安全可靠性并降低成本,需要对多层热防护系统进行考虑不确定性的结构设计。但是,各层结构传热与储热效率不同且各层之间相互耦合,各材料热物性参数对温度场响应的影响难以辨明,使得多层热防护结构不确定性分析更加困难。因此,深入研究各类不确定性因素的影响,发展高精度不确定性分析与优化设计方法,健全综合考虑各类不确定性的精细化结构设计体系成为未来低成本、高可靠性热防护系统设计的必然趋势。Traditional multi-layer thermal protection system design optimization incorporates the influence of uncertainty into the empirical safety factor without further investigation, often resulting in some layer redundancy and some layer failure, which is contrary to the requirements of low cost and high safety and reliability In particular, ignoring the uncertainty of material thermophysical parameters under the severe aerodynamic and thermal intensity will directly affect the structural anti-insulation performance, and then have a subversive impact on the safe service of the aircraft. Therefore, in order to improve the safety and reliability of the aircraft in service and reduce the cost, it is necessary to design the structure of the multi-layer thermal protection system considering the uncertainty. However, the heat transfer and heat storage efficiencies of each layer structure are different and the layers are coupled with each other. It is difficult to distinguish the influence of the thermophysical parameters of each material on the temperature field response, which makes the uncertainty analysis of the multilayer thermal protection structure more difficult. Therefore, in-depth research on the influence of various uncertain factors, the development of high-precision uncertainty analysis and optimal design methods, and the improvement of a refined structural design system that comprehensively considers various uncertainties will become a low-cost, high-reliability thermal protection system in the future. The inevitable trend of design.
发明内容Contents of the invention
本发明要解决的技术问题为:克服现有技术的不足,提供一种基于试验设计的多层热防护系统非概率不确定性分析和优化设计方法,可以在保证多层热防护系统在防隔热性能安全可靠的前提下,有效降低结构质量,提升了热防护系统的使用性能。The technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, and to provide a non-probabilistic uncertainty analysis and optimal design method for multi-layer thermal protection systems based on experimental design, which can ensure that the multi-layer thermal protection On the premise of safe and reliable thermal performance, the structure quality is effectively reduced and the performance of the thermal protection system is improved.
本发明采用的技术方案为:一种基于试验设计的多层热防护系统非概率不确定性分析和优化设计方法,该方法包括如下步骤:The technical solution adopted by the present invention is: a method for non-probabilistic uncertainty analysis and optimal design of a multi-layer thermal protection system based on experimental design, the method includes the following steps:
步骤(1)、根据热防护系统真实服役环境决定的性能与构型需求,多层热防护系统由n层不同功能的不同材料结构组成;考虑到材料导热系数、密度和比热容等热物性参数均会随温度变化,各热物性参数随温度变化的材料属性曲线需通过一系列特定温度对应的热物性参数值插值拟合得到,记各层导热系数、密度和比热容分别为kij,ρij和cij,i=1,2,…,n,j=1,2,…,m,其中,i和j为变量编号,n为多层热防护结构总层数,m为选取特定温度的数量,导热系数、密度、比热容对应的特定温度分别记为和 Step (1), according to the performance and configuration requirements determined by the actual service environment of the thermal protection system, the multi-layer thermal protection system is composed of n layers of different material structures with different functions; It will change with temperature, and the material property curve of each thermal physical property parameter changing with temperature needs to be obtained by interpolation fitting of a series of thermal physical property parameter values corresponding to a specific temperature. Record the thermal conductivity, density and specific heat capacity of each layer as k ij , ρ ij and c ij , i=1,2,…,n, j=1,2,…,m, where i and j are variable numbers, n is the total number of layers of the multi-layer thermal protection structure, and m is the number of selected specific temperatures , the specific temperature corresponding to the thermal conductivity, density, and specific heat capacity are recorded as and
步骤(2)、考虑各层材料热物性参数由于材料分散性、测量误差等导致的各种不确定性,选取步骤(1)中kij、ρij和cij作为不确定参数;根据工程试验获得各不确定参数分布规律,得到各不确定参数的分布范围,并用区间形式量化为kij∈[kij_min,kij_max],ρij∈[ρij_min,ρij_max]和cij∈[cij_min,cij_max],其中kij_min,ρij_min和cij_min分别为各参数分布范围最小值,kij_max,ρij_max和cij_max分别为各参数分布范围最大值;Step (2), considering the various uncertainties of the thermophysical parameters of the materials in each layer due to material dispersion, measurement errors, etc., select k ij , ρ ij and c ij in step (1) as uncertain parameters; according to the engineering test Obtain the distribution law of each uncertain parameter, obtain the distribution range of each uncertain parameter, and quantify it into k ij ∈[ kij_min , kij_max ], ρ ij ∈[ρ ij_min ,ρ ij_max ] and c ij ∈[ cij_min , c ij_max ], where k ij_min , ρ ij_min and c ij_min are the minimum value of each parameter distribution range, k ij_max , ρ ij_max and c ij_max are respectively the maximum value of each parameter distribution range;
步骤(3)、选取步骤(1)中的各层厚度作为设计变量,记为X,X=(x1,x2,…,xn),n为步骤(1)中所涉及的多层热防护结构层数;各厚度被限定在给定范围内,即xi∈[xi_min,xi_max],i=1,2,…,n,其中xi_min为给定xi范围的最小值,xi_max为给定xi范围的最大值,一般依靠工程经验以及工程造价条件给定;Step (3), select the thickness of each layer in step (1) as a design variable, denoted as X, X=(x 1 ,x 2 ,...,x n ), n is the multi-layer involved in step (1) The number of thermal protection structure layers; each thickness is limited within a given range, that is, x i ∈ [ xi_min , x i_max ], i=1,2,...,n, where x i_min is the minimum value of the given range of x i , xi_max is the maximum value of a given range of xi , which is generally determined by engineering experience and project cost conditions;
步骤(4)、在几何建模过程中,提取各设计变量作为控制三维几何模型的设计特征参数,当各设计变量在各自给定范围内任意改变时,能够实现几何自动建模,从而完成基于所选设计变量的几何参数化建模;Step (4), in the process of geometric modeling, each design variable is extracted as the design characteristic parameter of the control 3D geometric model, when each design variable is arbitrarily changed within their respective given ranges, the geometric automatic modeling can be realized, thereby completing the process based on Geometric parametric modeling of selected design variables;
步骤(5)、在几何模型的基础上,通过有限元软件的二次开发功能,提取各不确定参数作为控制有限元模型材料热物性属性的不确定性特征参数,当各不确定参数在各自分布范围内任意改变时,能够实现有限元模型材料热物性属性的自动赋值,从而建立基于设计特征参数和不确定性特征参数的多层热防护结构参数化有限元模型;Step (5), on the basis of the geometric model, through the secondary development function of the finite element software, extract each uncertain parameter as an uncertain characteristic parameter for controlling the thermophysical properties of the material in the finite element model, when each uncertain parameter is in the respective When the distribution range is changed arbitrarily, the automatic assignment of the thermophysical properties of the finite element model material can be realized, so as to establish a parameterized finite element model of the multi-layer thermal protection structure based on the design characteristic parameters and uncertain characteristic parameters;
步骤(6)、基于再入过程弹道数据,采用辐射、对流及传导多种传热方式复合的传热分析方法,考虑气动热与结构传热之间的相互影响,实现全弹道过程的多层热防护系统瞬态温度场分析求解,得到多层热防护结构各层界面随时间变化的温度历程Ts(t),提取各层界面处的最高温度作为响应输出,记为s=0,1,…,n,其中s从0增至n指多层热防护结构从外表面至内表面所有层的界面;Step (6), based on the ballistic data of the reentry process, adopt the heat transfer analysis method combined with multiple heat transfer modes of radiation, convection and conduction, and consider the interaction between aerodynamic heat and structural heat transfer to realize the multi-layer The transient temperature field of the thermal protection system is analyzed and solved, and the temperature history T s (t) of the interface of each layer of the multilayer thermal protection structure is obtained over time, and the highest temperature at the interface of each layer is extracted as the response output, which is denoted as s=0,1,...,n, where s increases from 0 to n refers to the interface of all layers of the multi-layer thermal protection structure from the outer surface to the inner surface;
步骤(7)、考虑确定性条件下各热物性参数所呈现的随温度变化的规律作为抽样约束,通过数据分析处理软件编制抽样算法,相较于传统完全随机抽样方法,实现考虑约束条件的随机抽样过程,是为相关性因子随机抽样方法;基于此方法,从步骤(2)各不确定参数kij,ρij和cij的分布区间中,选取出一组考虑因子相关性的随机组合的样本点,记为P,P=(p1,p2,…,pu,…pr),pu=(k11,k12,…,kij,…,knm,ρ11,ρ12,…,ρij,…,ρnm,c11,c12,…,cij,…,cnm)u,其中r为样本点总数,pu代指某一个样本点,kij,ρij和cij组成样本点中的因子,(·)u为某样本点因子的具体水平;Step (7), considering the law of temperature variation of each thermal physical property parameter under deterministic conditions as a sampling constraint, and compiling a sampling algorithm through data analysis and processing software, compared with the traditional completely random sampling method, realizing random sampling considering constraints The sampling process is a random sampling method for correlation factors; based on this method, a group of random combinations considering factor correlations are selected from the distribution intervals of the uncertain parameters k ij , ρ ij and c ij in step (2). Sample point, denoted as P, P=(p 1 ,p 2 ,…, pu u ,…p r ), p u =(k 11 ,k 12 ,…,k ij ,…,k nm ,ρ 11 ,ρ 12 ,…,ρ ij ,…,ρ nm ,c 11 ,c 12 ,…,c ij ,…,c nm ) u , where r is the total number of sample points, p u refers to a certain sample point, k ij , ρ ij and c ij constitute the factors in the sample point, ( ) u is the specific level of a factor in a sample point;
步骤(8)、提取步骤(7)中P的样本点pu,u=1,…,r作为步骤(5)中的不确定性特征参数,重复执行步骤(4)至(6)r次,得到热防护系统各层界面的一组离散的最高温度响应,记为根据响应面方法,拟合样本集合P与响应集合继而构建了描述P中各因子kij,ρij和cij与关系的近似函数模型 Step (8), extract the sample point p u of P in step (7), u=1,...,r as the uncertainty characteristic parameter in step (5), repeat steps (4) to (6) r times , to obtain a set of discrete maximum temperature responses at the interface of each layer of the thermal protection system, denoted as According to the response surface method, fitting the sample set P and the response set Then construct the description of each factor k ij in P, ρ ij and c ij and Approximate Functional Model of Relation
步骤(9)、通过步骤(8)中近似模型分析出各因子kij、ρij和cij与多层热防护结构各层界面最高温度响应输出之间的关系和趋势;考虑计算成本与精度,将步骤(2)中的分布区间[kij_min,kij_max],[ρij_min,ρij_max]和[cij_min,cij_max]均归一化到相同范围,比较分析kij,ρij和cij对各响应的贡献程度,辨识优先出关键参数;结合分析得的kij,ρij和cij与之间的关系,得到灵敏度分析后的不确定性响应分布区间,即其中和分别为不确定性分布范围的下界和上界;Step (9), through the approximate model in step (8) Analyze the output of each factor k ij , ρ ij and c ij and the maximum temperature response of each layer interface of the multilayer thermal protection structure The relationship and trend between; considering the calculation cost and accuracy, the distribution intervals [k ij_min , kij_max ], [ρ ij_min , ρ ij_max ] and [ cij_min , c ij_max ] in step (2) are normalized to In the same range, compare and analyze k ij , ρ ij and c ij for each response The degree of contribution, identify the key parameters first; combined with the analysis of k ij , ρ ij and c ij and The relationship between the uncertainty response distribution interval after the sensitivity analysis is obtained, that is in and respectively The lower and upper bounds of the uncertainty distribution range;
步骤(10)、综合以上分析,以步骤(3)中各层厚度X为设计变量,以步骤(10)中多层热防护结构各层界面最高温度不确定性分布上界小于各层界面许用极限温度为约束,即以最小化结构质量名义值mass为优化目标函数,建立多层热防护系统非概率优化设计数学模型,最终实现考虑不确定性的多层热防护系统非概率优化设计。Step (10), based on the above analysis, take the thickness X of each layer in step (3) as the design variable, and use the upper bound of the uncertainty distribution of the maximum temperature of each layer interface of the multilayer thermal protection structure in step (10) Less than the allowable limit temperature of the interface of each layer as constraints, that is Taking the minimization of the nominal value of structural mass as the optimization objective function, a non-probabilistic optimal design mathematical model of the multi-layer thermal protection system is established, and finally the non-probabilistic optimal design of the multi-layer thermal protection system considering the uncertainty is realized.
其中,所述步骤(7)中,相关性因子随机抽样方法适用于各不确定性热物性参数kij,ρij和cij相邻特定温度对应的相邻因子具有相关性且不确定性分布区间干涉的情况,以比热容cij为例进行说明,其中特定温度对应的相邻因子为cij和cij+1,假定在确定性条件下具备cij≤cij+1的随温度变化规律,即相邻因子具有相关性,且考虑不确定性的条件下,相邻因子cij和cij+1的不确定性分布区间[cij_min,cij_max]和[cij+1_min,cij+1_max]存在干涉,即cij_max>cij+1_min,在上述情况下,相关性因子随机抽样方法相比传统的随机抽样方法,考虑了需满足cij≤cij+1的规律作为抽样约束,从而达到避免生成cij>cij+1这种有悖于热物性随温度变化规律结果的效果。Wherein, in the step (7), the correlation factor random sampling method is applicable to each uncertain thermophysical parameter k ij , and the adjacent factors corresponding to the adjacent specific temperature of ρ ij and c ij have correlation and uncertainty distribution In the case of interval interference, take the specific heat capacity c ij as an example, where the adjacent factors corresponding to a specific temperature are c ij and c ij+1 , assuming that under deterministic conditions, there is a law of c ij ≤ c ij+1 changing with temperature , that is, adjacent factors are correlated, and under the condition of considering uncertainty, the uncertainty distribution intervals of adjacent factors c ij and c ij +1 [ cij_min , cij_max ] and [ cij+1_min ,cij +1_max ] there is interference, that is, c ij_max >cij +1_min , in the above case, the correlation factor random sampling method, compared with the traditional random sampling method, considers the rule that c ij ≤ c ij+1 needs to be satisfied as a sampling constraint , so as to avoid the effect of c ij > cij+1 which is contrary to the law of thermophysical properties changing with temperature.
其中,所述步骤(10)中,多层热防护系统非概率优化设计数学模型如下式所示:Wherein, in the step (10), the non-probabilistic optimal design mathematical model of the multi-layer thermal protection system is shown in the following formula:
本发明与现有技术相比的优点在于:本发明提供了多层热防护系统优化设计的新思路,充分考虑实际工程加工误差、试验测量误差、材料分散性等对热防护系统材料热物性性能参数的影响,探究了多层耦合复杂结构各不确定热物性参数对温度场响应的影响规律及影响程度,实现了多层热防护系统温度场高效不确定性分析。在此基础上,引入非概率优化思想,实现了多层热防护系统保证防隔热性能前提下的精细化设计,大大提高热防护系统的安全可靠性,并有效降低了热防护系统的质量。Compared with the prior art, the present invention has the advantages that: the present invention provides a new idea for the optimal design of the multi-layer thermal protection system, and fully considers the effects of actual engineering processing errors, test measurement errors, and material dispersion on the thermal physical properties of the thermal protection system materials. The influence of parameters, the influence law and degree of influence of various uncertain thermophysical parameters of multi-layer coupled complex structures on the temperature field response are explored, and the efficient uncertainty analysis of the temperature field of the multi-layer thermal protection system is realized. On this basis, the idea of non-probability optimization is introduced to realize the refined design of the multi-layer thermal protection system under the premise of ensuring the anti-heat insulation performance, which greatly improves the safety and reliability of the thermal protection system and effectively reduces the quality of the thermal protection system.
附图说明Description of drawings
图1为本发明的方法实现流程图;Fig. 1 is the flow chart of method implementation of the present invention;
图2为本发明所针对的多层热防护系统布局示意图;Fig. 2 is the schematic layout diagram of the multi-layer thermal protection system aimed at by the present invention;
图3为本发明所针对的多层热防护系统有限元模型示意图;Fig. 3 is the schematic diagram of the finite element model of the multi-layer thermal protection system aimed at by the present invention;
图4为本发明所针对的多层热防护系统各层界面瞬态温度历程曲线;Fig. 4 is the transient temperature history curve of each layer interface of the multilayer thermal protection system aimed at by the present invention;
图5为本发明所提出的相关性因子随机抽样方法优越性示意图;Fig. 5 is a schematic diagram of the superiority of the correlation factor random sampling method proposed by the present invention;
图6为本发明所针对的多层热防护系统不确定参数重要性排序示意图;Fig. 6 is a schematic diagram of the importance ranking of uncertain parameters of the multi-layer thermal protection system aimed at by the present invention;
图7为本发明所针对的多层热防护系统不确定性优化设计迭代历程曲线。Fig. 7 is the iterative course curve of the multi-layer thermal protection system uncertainty optimization design aimed at by the present invention.
具体实施方式Detailed ways
本发明提出了一种基于试验设计的多层热防护系统非概率不确定性分析和优化设计方法,为了更充分地了解该发明的特点及其对工程实际的适用性,依据如图1所示方案流程,实现了对多层热防护系统的优化设计,包括以下步骤:The present invention proposes a non-probabilistic uncertainty analysis and optimal design method for multi-layer thermal protection systems based on experimental design. In order to fully understand the characteristics of the invention and its applicability to engineering practice, the basis is shown in Figure 1 The program flow realizes the optimal design of the multi-layer thermal protection system, including the following steps:
步骤(1)、根据热防护系统真实服役环境决定的性能与构型需求,多层热防护系统由6层不同功能的不同材料结构组成,如图2所示,从外表面到内表面依次包括增强C/C层、室温固化胶层、高温隔热层、低温隔热层、应变隔离垫层和蒙皮冷结构层;考虑到材料导热系数、密度和比热容等热物性参数均会随温度变化,各热物性参数随温度变化的材料属性曲线需通过一系列特定温度对应的热物性参数值插值拟合得到,记各层导热系数、密度和比热容分别为kij,ρij和cij,i=1,2,…,n,j=1,2,…,m,其中,i和j为变量编号,n为多层热防护结构总层数,m为选取特定温度的数量,导热系数、密度、比热容对应的特定温度分别记为和针对于图2所示结构,所有层热物性参数的特定温度总数为 Step (1), according to the performance and configuration requirements determined by the actual service environment of the thermal protection system, the multi-layer thermal protection system is composed of 6 layers of different material structures with different functions, as shown in Figure 2, including from the outer surface to the inner surface Reinforced C/C layer, room temperature curing adhesive layer, high temperature insulation layer, low temperature insulation layer, strain isolation cushion layer and skin cold structure layer; considering that thermal physical parameters such as material thermal conductivity, density and specific heat capacity will change with temperature , the material property curve of each thermophysical parameter changing with temperature needs to be obtained by interpolation fitting of a series of thermophysical parameter values corresponding to a specific temperature, record the thermal conductivity, density and specific heat capacity of each layer as k ij , ρ ij and c ij , i =1,2,...,n, j=1,2,...,m, where i and j are variable numbers, n is the total number of layers of the multi-layer thermal protection structure, m is the number of selected specific temperatures, thermal conductivity, The specific temperature corresponding to the density and specific heat capacity is recorded as and For the structure shown in Fig. 2, the sum of specific temperatures of all layer thermophysical parameters is
步骤(2)、考虑各层材料各热物性参数的由于材料分散性、测量误差等导致的各种不确定性,选取步骤(1)中kij,ρij和cij作为不确定参数;根据工程试验获得各不确定参数分布规律,得到各不确定参数的分布范围,并用区间形式量化为kij∈[kij_min,kij_max],ρij∈[ρij_min,ρij_max]和cij∈[cij_min,cij_max],其中kij_min,ρij_min和cij_min分别为各参数分布范围最小值,kij_max,ρij_max和cij_max分别为各参数分布范围最大值;Step (2), considering the various uncertainties caused by material dispersion and measurement error of each thermal physical parameter of each layer of material, selecting k ij in step (1), ρ ij and c ij as uncertain parameters; according to The engineering test obtains the distribution law of each uncertain parameter, obtains the distribution range of each uncertain parameter, and uses the interval form to quantify k ij ∈ [k ij_min , k ij_max ], ρ ij ∈ [ρ ij_min , ρ ij_max ] and c ij ∈ [ c ij_min , c ij_max ], where k ij_min , ρ ij_min and c ij_min are the minimum value of the distribution range of each parameter, k ij_max , ρ ij_max and c ij_max are the maximum value of the distribution range of each parameter;
步骤(3)、选取步骤(1)中的各层厚度作为设计变量,记为X,X=(x1,x2,…,x6);各厚度被限定在给定范围内,即xi∈[xi_min,xi_max],i=1,2,…,6,其中xi_min为给定xi范围的最小值,xi_max为给定xi范围的最大值,一般依靠工程经验以及工程造价条件给定;Step (3), select the thickness of each layer in step (1) as a design variable, denoted as X, X=(x 1 ,x 2 ,...,x 6 ); each thickness is limited within a given range, namely x i ∈ [ xi_min , i_max ], i=1,2,…,6, where xi_min is the minimum value of the given range of xi , and xi_max is the maximum value of the given range of xi , generally relying on engineering experience and The project cost conditions are given;
步骤(4)、在几何建模过程中,通过几何建模软件的二次开发功能,建立多层热防护结构的三维几何模型,并提取各设计变量作为控制三维几何模型的设计特征参数,当各设计变量在各自给定范围内任意改变时,能够实现几何自动建模,从而完成基于所选设计变量的几何参数化建模;Step (4), in the geometric modeling process, through the secondary development function of the geometric modeling software, the three-dimensional geometric model of the multi-layer thermal protection structure is established, and each design variable is extracted as the design characteristic parameter of the control three-dimensional geometric model, when When each design variable changes arbitrarily within its respective given range, automatic geometric modeling can be realized, thereby completing geometric parametric modeling based on the selected design variables;
步骤(5)、在几何模型的基础上,通过有限元软件的二次开发功能,依次设置辐射、对流和传导的热分析单元类型、定义为温度函数的非线性材料属性和与温度无关的线性材料属性、划分有限元网格等,将步骤(4)得到的几何模型转化为有限元模型;提取各不确定参数作为控制有限元模型材料热物性属性的不确定性特征参数,当各不确定参数在各自分布范围内任意改变时,能够实现有限元模型材料热物性属性的自动赋值,从而建立基于设计特征参数和不确定性特征参数的多层热防护结构参数化有限元模型;Step (5), on the basis of the geometric model, through the secondary development function of the finite element software, sequentially set the thermal analysis unit types of radiation, convection and conduction, the nonlinear material properties defined as a function of temperature and the temperature-independent linear Material properties, finite element grid division, etc., the geometric model obtained in step (4) is transformed into a finite element model; each uncertain parameter is extracted as an uncertain characteristic parameter controlling the thermophysical properties of the material in the finite element model, when each uncertain When the parameters are changed arbitrarily within their respective distribution ranges, the automatic assignment of the thermophysical properties of the finite element model material can be realized, so as to establish a parametric finite element model of the multi-layer thermal protection structure based on the design characteristic parameters and uncertain characteristic parameters;
步骤(6)、基于再入过程弹道数据,采用辐射、对流及传导多种传热方式复合的传热分析方法,考虑气动热与结构传热之间的相互影响,通过依次设置外表面和内表面施加随着时间变化的热载、完全绝热处理其余表面、施加多步载荷与求解多载荷步等操作,实现全弹道过程的多层热防护系统瞬态温度场分析求解,得到多层热防护结构各层界面随时间变化的温度历程Ts(t),如图4所示,提取各层界面处的最高温度作为响应输出,记为s=0,1,…,6,其中s从0增至6指多层热防护结构从外表面至内表面所有层的界面;Step (6), based on the ballistic data of the re-entry process, adopt the heat transfer analysis method of radiation, convection and conduction combined with multiple heat transfer methods, consider the interaction between aerodynamic heat and structural heat transfer, and set the outer surface and inner surface in sequence Apply heat loads that change with time on the surface, completely insulate the rest of the surface, apply multi-step loads and solve multi-load steps, etc., to realize the analysis and solution of the transient temperature field of the multi-layer thermal protection system in the whole ballistic process, and obtain the multi-layer thermal protection The temperature history T s (t) of the interface of each layer of the structure changes with time, as shown in Figure 4, the highest temperature at the interface of each layer is extracted as the response output, which is recorded as s=0,1,...,6, where s increases from 0 to 6 refers to the interface of all layers of the multi-layer thermal protection structure from the outer surface to the inner surface;
步骤(7)、考虑确定性条件下各热物性参数所呈现的随温度变化的规律作为抽样约束,通过数据分析处理软件编制抽样算法,相较于传统完全随机抽样方法,实现考虑约束条件的随机抽样过程,是为相关性因子随机抽样方法;基于此方法,从步骤(2)各不确定参数kij,ρij和cij的分布区间中,选取出一组考虑因子相关性的随机组合的样本点,记为P,P=(p1,p2,…,pu,…p2500),pu=(k11,k12,…,kij,…,knm,ρ11,ρ12,…,ρij,…,ρnm,c11,c12,…,cij,…,cnm)u,其中2500为样本点总数,pu代指某一个样本点,kij,ρij和cij组成样本点中的因子,(·)u为某样本点因子的具体水平;Step (7), considering the law of temperature variation of each thermal physical property parameter under deterministic conditions as a sampling constraint, and compiling a sampling algorithm through data analysis and processing software, compared with the traditional completely random sampling method, realizing random sampling considering constraints The sampling process is a random sampling method for correlation factors; based on this method, a group of random combinations considering factor correlations are selected from the distribution intervals of the uncertain parameters k ij , ρ ij and c ij in step (2). Sample point, denoted as P, P=(p 1 ,p 2 ,…,p u ,…p 2500 ), p u =(k 11 ,k 12 ,…,k ij ,…,k nm ,ρ 11 ,ρ 12 ,…,ρ ij ,…,ρ nm ,c 11 ,c 12 ,…,c ij ,…,c nm ) u , where 2500 is the total number of sample points, p u refers to a certain sample point, k ij , ρ ij and c ij constitute the factors in the sample point, ( ) u is the specific level of a factor in a sample point;
步骤(8)、提取步骤(7)中P的样本点pu,u=1,2,…,2500作为步骤(5)中的不确定性特征参数,重复执行步骤(4)至(6)2500次,得到热防护系统各层界面的一组离散的最高温度响应,记为根据响应面方法,拟合样本集合P与响应集合继而构建了描述P中各因子kij,ρij和cij与关系的多元二次回归近似函数模型表现为:Step (8), extract the sample point p u of P in step (7), u=1,2,...,2500 as the uncertainty characteristic parameter in step (5), repeat steps (4) to (6) 2500 times, a set of discrete maximum temperature responses of the interface of each layer of the thermal protection system is obtained, denoted as According to the response surface method, fitting the sample set P and the response set Then construct the description of each factor k ij in P, ρ ij and c ij and Multivariate Quadratic Regression Approximate Functional Model of Relationship Expressed as:
步骤(9)、通过步骤(8)中近似模型分析出各因子kij、ρij和cij与多层热防护结构各层界面最高温度响应输出之间的关系和趋势;考虑计算成本与精度,将步骤(2)中的分布区间[kij_min,kij_max],[ρij_min,ρij_max]和[cij_min,cij_max]均归一化到相同范围[-1,+1],通过归一化的近似函数模型系数φv比较分析kij,ρij和cij对各响应的贡献程度,通过v=1,2,…,903,将φv转化为贡献率百分比,并通过Pareto图将贡献率按绝对值大小排序,如图6所示,辨识优先出关键参数;结合分析得的kij,ρij和cij与之间的关系,得到灵敏度分析后的不确定性响应分布区间,即其中和分别为不确定性分布范围的下界和上界;Step (9), through the approximate model in step (8) Analyze the output of each factor k ij , ρ ij and c ij and the maximum temperature response of each layer interface of the multilayer thermal protection structure The relationship and trend between; considering the calculation cost and accuracy, the distribution intervals [k ij_min , kij_max ], [ρ ij_min , ρ ij_max ] and [ cij_min , c ij_max ] in step (2) are normalized to In the same range [-1,+1], compare and analyze k ij , ρ ij and c ij for each response through the normalized approximation function model coefficient φ v degree of contribution, through v=1,2,...,903, convert φ v into the percentage of contribution rate, and sort the contribution rate according to the absolute value through the Pareto diagram, as shown in Figure 6, identify the key parameters first; combine the k ij obtained by analysis , ρ ij and c ij and The relationship between, and the uncertainty response distribution interval after the sensitivity analysis is obtained, that is in and respectively The lower and upper bounds of the uncertainty distribution range;
步骤(10)、综合以上分析,以步骤(3)中各层厚度X为设计变量,以步骤(10)中多层热防护结构各层界面最高温度不确定性分布上界小于各层界面许用极限温度为约束,即以最小化结构质量名义值mass为优化目标函数,建立如下式所示的多层热防护系统非概率优化设计数学模型:Step (10), based on the above analysis, take the thickness X of each layer in step (3) as the design variable, and use the upper bound of the uncertainty distribution of the maximum temperature of each layer interface of the multilayer thermal protection structure in step (10) Less than the allowable limit temperature of the interface of each layer as constraints, that is Taking the minimization of the nominal value of the structural mass as the optimization objective function, a non-probabilistic optimal design mathematical model of the multi-layer thermal protection system is established as shown in the following formula:
其中,f(ρij,xi)为结构质量名义值函数;优化迭代历程曲线如图7所示,最终实现考虑不确定性的多层热防护系统非概率优化设计。Among them, f(ρ ij , x i ) is the nominal value function of the structural mass; the optimization iteration process curve is shown in Fig. 7, and the non-probabilistic optimal design of the multi-layer thermal protection system considering the uncertainty is finally realized.
综上所述,本发明提出了一种基于试验设计的多层热防护系统非概率不确定性分析和优化设计方法,该方法以热防护系统的各层厚度尺寸为优化设计变量,以考虑不确定性时各层服役最大温度分布上界小于各层许用极限温度为约束条件,热防护系统质量名义值为优化目标函数,在保证防隔热性能基础上实现了结构质量的最小化。考虑到作为约束条件的各层服役最大温度分布上界须安全可靠,因此本发明引入考虑不确定界限的非概率区间理论,量化各层材料热物性参数的不确定性,基于相关性因子随机试验设计方法,实现了多层热防护系统各层界面服役最大温度的区间不确定性分析和基于不确定性分析的结构优化设计。其中,本发明中的相关性因子随机试验设计方法是指在所提相关性因子随机抽样方法实现试验样本选取的基础上,继续完成近似模型构建、分析因子与响应的关系、辨识优先关键参数的一套完整不确定性分析方法;相较于其它不确定性分析方法,该方法既适用于不确定参数之间相关性的情况,又与其它方法具有相容性,物理意义更加明确,后续基于该所提方法得到的分析和优化结果更加具有可信度。In summary, the present invention proposes a method for non-probabilistic uncertainty analysis and optimal design of a multi-layer thermal protection system based on experimental design. When deterministic, the upper limit of the maximum service temperature distribution of each layer is less than the allowable limit temperature of each layer as the constraint condition, and the nominal value of the thermal protection system quality is the optimization objective function, and the structural mass is minimized on the basis of ensuring the thermal insulation performance. Considering that the upper limit of the maximum service temperature distribution of each layer as a constraint condition must be safe and reliable, the present invention introduces the non-probability interval theory considering the uncertainty limit to quantify the uncertainty of the thermophysical parameters of each layer of materials, and based on the correlation factor random test The design method realizes the interval uncertainty analysis of the service maximum temperature of each layer interface of the multi-layer thermal protection system and the structural optimization design based on the uncertainty analysis. Among them, the correlation factor random experiment design method in the present invention refers to the process of continuing to complete the approximate model construction, analyzing the relationship between factors and responses, and identifying the priority key parameters on the basis of the selection of test samples by the proposed correlation factor random sampling method. A complete set of uncertainty analysis methods; compared with other uncertainty analysis methods, this method is not only suitable for the correlation between uncertain parameters, but also has compatibility with other methods, and its physical meaning is clearer. The analysis and optimization results obtained by the proposed method are more reliable.
以上仅是本发明的具体步骤,对本发明的保护范围不构成任何限制;其可扩展应用于多层结构传热优化设计领域,凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。The above are only the specific steps of the present invention, and do not constitute any limitation to the scope of protection of the present invention; it can be extended and applied to the field of heat transfer optimization design of multi-layer structures, and all technical solutions formed by equivalent transformation or equivalent replacement fall within the scope of the present invention. Within the protection scope of the present invention.
本发明未详细阐述部分属于本领域技术人员的公知技术。Parts not described in detail in the present invention belong to the known techniques of those skilled in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710068810.4A CN106874588B (en) | 2017-02-08 | 2017-02-08 | A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710068810.4A CN106874588B (en) | 2017-02-08 | 2017-02-08 | A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106874588A CN106874588A (en) | 2017-06-20 |
CN106874588B true CN106874588B (en) | 2018-10-02 |
Family
ID=59166980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710068810.4A Active CN106874588B (en) | 2017-02-08 | 2017-02-08 | A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106874588B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108334655B (en) * | 2017-11-06 | 2019-02-15 | 北京空天技术研究所 | A kind of thermal protection structure partitioning placement method and system of complex appearance aircraft |
CN109781314A (en) * | 2018-12-24 | 2019-05-21 | 清华大学 | Composite functional materials, pressure sensing devices and intelligent temperature control systems |
CN112580236B (en) * | 2020-11-30 | 2023-08-01 | 中国运载火箭技术研究院 | A Fast Analytical Method for Nonlinear Dynamic Response of Thermal Protection Connecting Structure |
CN112507469B (en) * | 2021-02-04 | 2021-04-23 | 中国人民解放军国防科技大学 | Design method of thermal insulation layer of solid rocket motor combustion chamber |
CN113300026B (en) * | 2021-04-26 | 2022-07-01 | 东风汽车集团股份有限公司 | Design method and device of battery pack heat insulation layer and electronic equipment |
CN115809515B (en) * | 2023-02-09 | 2023-05-02 | 中国空气动力研究与发展中心空天技术研究所 | Multi-layer heat insulation structure optimization design method for high-speed aircraft |
CN118468713B (en) * | 2024-05-20 | 2025-02-14 | 广东联华环保科技有限公司 | A method for automatically generating design schemes based on handbags |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205271A (en) * | 2015-09-29 | 2015-12-30 | 中国运载火箭技术研究院 | Aircraft task reliability modeling method based on dynamic characteristics |
-
2017
- 2017-02-08 CN CN201710068810.4A patent/CN106874588B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205271A (en) * | 2015-09-29 | 2015-12-30 | 中国运载火箭技术研究院 | Aircraft task reliability modeling method based on dynamic characteristics |
Non-Patent Citations (2)
Title |
---|
高超声速飞行器热防护系统方案快速设计方法;胥磊等;《科学技术与工程》;20140531;第14卷(第14期);全文 * |
高超声速飞行器热防护结构参数优化及对比分析;叶红等;《航天器环境工程》;20131031;第30卷(第5期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106874588A (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106874588B (en) | A kind of analysis of multilayer thermal protection system non-probabilistic uncertainty and optimum design method based on experimental design | |
Park et al. | Reduced-order model with an artificial neural network for aerostructural design optimization | |
Hao et al. | Hierarchical nondeterministic optimization of curvilinearly stiffened panel with multicutouts | |
Ji et al. | Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition | |
CN107092724B (en) | It is a kind of to consider probabilistic thermal protection system model modification method | |
CN106570252B (en) | A kind of thermal protection system design method based on probabilistic technique | |
Jingjing et al. | Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method | |
CN106021734A (en) | Multi-objective reliability optimum design method for forehold thermal protection system of reusable launch vehicle | |
Docimo et al. | Plant and controller optimization for power and energy systems with model predictive control | |
Li et al. | Improved collaboration pursuing method for multidisciplinary robust design optimization | |
Nwogu et al. | Towards a requirement-driven digital twin architecture | |
Palmer et al. | Modelling of cryogenic cooling system design concepts for superconducting aircraft propulsion | |
CN105205281A (en) | Heatproof integrated design method for reentry trajectory | |
Long et al. | Gradient-free trust-region-based adaptive response surface method for expensive aircraft optimization | |
Nash et al. | Hierarchical control co-design using a model fidelity-based decomposition framework | |
CN112668113B (en) | Multi-scale heat-proof optimization method for composite material | |
Meng et al. | Comparative study of structural efficiencies of typical thermal protection concepts | |
Zhao et al. | Inverse design of the thermal environment in an airplane cockpit using the adjoint method with the momentum method | |
Yu et al. | CFD simulation strategy for hypersonic aerodynamic heating around a blunt biconic | |
Jiang et al. | Nonprobabilistic uncertain model updating and optimization design of thermal protection system | |
Fan et al. | Improved FORM and SORM based on improved modified symmetric rank 1 algorithm and adaptive Kriging model | |
Yang | Optimized curing of thick section composite laminates | |
Zhang et al. | Temperature stability of the Taiji-1 satellite in operational orbit | |
Huang et al. | Multi-Objective Optimization Framework for Hypersonic Aerothermoelastic Scaling Laws and Its Application | |
Zhao et al. | Computational approach for aeroheating with thermally coupled fields |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |