CN106872777B - Harmonic and inter-harmonic separation analysis method - Google Patents

Harmonic and inter-harmonic separation analysis method Download PDF

Info

Publication number
CN106872777B
CN106872777B CN201710080072.5A CN201710080072A CN106872777B CN 106872777 B CN106872777 B CN 106872777B CN 201710080072 A CN201710080072 A CN 201710080072A CN 106872777 B CN106872777 B CN 106872777B
Authority
CN
China
Prior art keywords
harmonic
signal
inter
quasi
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710080072.5A
Other languages
Chinese (zh)
Other versions
CN106872777A (en
Inventor
惠锦
董晓峰
李冬
乔杰
褚文杰
张逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Suzhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd filed Critical Suzhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority to CN201710080072.5A priority Critical patent/CN106872777B/en
Publication of CN106872777A publication Critical patent/CN106872777A/en
Application granted granted Critical
Publication of CN106872777B publication Critical patent/CN106872777B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents

Abstract

The invention relates to a method for separating and analyzing harmonic waves and inter-harmonic waves, which comprises the following steps: sampling an original electric energy signal, dividing different analysis windows, performing windowing calculation on the original electric energy signal in each analysis window to obtain a windowed signal, performing time domain averaging on the windowed signal to obtain a quasi-harmonic signal, and performing discrete Fourier transform on the quasi-harmonic signal to obtain a harmonic parameter; and subtracting the quasi-harmonic signal from the original electric energy signal in the analysis window to obtain a quasi-inter-harmonic signal, sequentially carrying out windowing calculation again on the quasi-inter-harmonic signal, carrying out zero filling and discrete Fourier transform at the end of the sequence of the quasi-inter-harmonic signal to obtain an encrypted spectrum signal, and analyzing the encrypted spectrum signal to obtain an inter-harmonic parameter. The invention can accurately separate the harmonic and inter-harmonic components in a certain power quality signal in the time domain, thereby inhibiting the frequency spectrum interference between the harmonic and inter-harmonic components when analyzing the signal in the frequency domain and improving the detection and analysis precision of the harmonic and inter-harmonic components.

Description

Harmonic and inter-harmonic separation analysis method
Technical Field
The invention belongs to the power industry, and particularly relates to a method for analyzing harmonic and inter-harmonic components in a power signal to obtain parameters such as frequency, amplitude, phase and the like of each harmonic and inter-harmonic component.
Background
Discrete Fourier Transform (DFT) is currently the most common method for analyzing harmonics and inter-harmonics for power quality monitoring devices. However, when the analyzed power quality signal contains inter-harmonic components in addition to harmonics, even if the sampling is synchronous with the fundamental frequency (i.e. the sampling frequency is an integral multiple of the fundamental frequency), the harmonic and inter-harmonic parameters obtained by the analysis still have large errors. The reason is that mutual interference between frequency spectrums exists between harmonics and inter-harmonics, when the content of a certain inter-harmonic component is small, the inter-harmonic component is easily submerged by a leakage component (false component) of the harmonics, so that the inter-harmonic component cannot be detected, and even if the inter-harmonic component can be detected, the calculation error of the parameter is influenced by the leakage of the harmonics and becomes large; similarly, the inter-harmonics may generate leakage at the harmonic frequency points, which affects the analysis accuracy of the harmonics.
Disclosure of Invention
The invention aims to provide a harmonic and inter-harmonic separation analysis method which can accurately separate harmonic and inter-harmonic components in an electric energy signal, thereby inhibiting interference between the harmonic and inter-harmonic components during frequency spectrum analysis and further improving analysis precision.
In order to achieve the purpose, the invention adopts the technical scheme that:
a harmonic and inter-harmonic separation analysis method is used for analyzing an original electric energy signal to obtain harmonic and inter-harmonic parameters, and comprises the following steps: sampling the original electric energy signal to obtain a sampling signal, dividing different analysis windows, performing windowing calculation on the sampling signal in each analysis window to obtain a windowed signal, performing time domain averaging on the windowed signal to obtain a quasi-harmonic signal, and performing discrete Fourier transform on the quasi-harmonic signal to obtain a harmonic parameter of the sampling signal in the analysis window; and subtracting the quasi-harmonic signal from the sampling signal in the analysis window to obtain a quasi-inter-harmonic signal, sequentially carrying out windowing calculation again on the quasi-inter-harmonic signal, carrying out zero filling and discrete Fourier transform at the end of the sequence of the quasi-inter-harmonic signal to obtain an encrypted spectrum signal, and analyzing the encrypted spectrum signal to obtain the inter-harmonic parameter of the sampling signal in the analysis window.
Preferably, ten cycles are taken as one analysis window for the sampling signal.
Preferably, the type of windowing used in the windowing calculation is a hanning window, a Blackman window, or a Blackman-Harris window.
Preferably, the windowing calculation method includes: multiplying the sampled signal within the analysis window by a window signal to obtain the windowed signal.
Preferably, the quasi-harmonic signal is obtained by performing time-domain averaging on the windowed signal according to a cycle scale.
Preferably, the sampling frequency of sampling the original power signal is greater than or equal to 12.8 kHz.
Due to the application of the technical scheme, compared with the prior art, the invention has the following advantages: the method can accurately separate the harmonic wave and the inter-harmonic wave in a certain power quality (power) signal in the time domain, thereby inhibiting the frequency spectrum interference between the harmonic wave and the inter-harmonic wave when analyzing the signal in the frequency domain, improving the detection and analysis precision of the harmonic wave and the inter-harmonic wave, and providing more accurate signal component parameters for problem diagnosis, power quality measurement and evaluation and the like of a power system.
Drawings
FIG. 1 is a schematic flow diagram of a harmonic and inter-harmonic separation analysis method of the present invention.
Detailed Description
The invention will be further described with reference to examples of embodiments shown in the drawings to which the invention is attached.
The first embodiment is as follows: as shown in fig. 1, a method for analyzing the original electrical energy signal to obtain the harmonic and inter-harmonic parameters by separating the harmonic and inter-harmonic parameters is as follows:
1. synchronously sampling an original electric energy signal, wherein the sampling frequency is required to be greater than or equal to 12.8kHz, so as to obtain a sampling signal;
2. the sampled signal is divided into different analysis windows. According to the national standard, ten cycles are taken as an analysis window (for example, the fundamental frequency of the original electric energy signal is 50Hz, the analysis window is 200 ms);
3. and carrying out windowing calculation on the sampling signals in each analysis window to obtain a windowed signal. The type of windowing used in the windowing calculation may be selected as desired, for example a hanning window, a Blackman window or a Blackman-Harris window may be used. The windowing calculation method comprises the following steps: multiplying the sampling signal in the analysis window by the window signal to obtain a windowed signal;
4. carrying out time domain averaging on the windowed signal according to the scale of one cycle to obtain a quasi-harmonic signal;
5. carrying out discrete Fourier transform on the quasi-harmonic signal to obtain harmonic parameters of the sampling signal in an analysis window;
6. subtracting the quasi-harmonic signal from the sampling signal in the analysis window to obtain a differential signal, namely a quasi-inter-harmonic signal;
7. sequentially carrying out windowing calculation again on the quasi-inter-harmonic signals, carrying out zero filling at the tail of the quasi-inter-harmonic signals and carrying out discrete Fourier transform to obtain encrypted spectrum signals;
8. the encrypted spectral signal is analyzed to obtain inter-harmonic parameters of the sampled signal within the analysis window.
Compared with the existing DFT method, the method of the invention can accurately separate harmonic and inter-harmonic signals in the time domain by windowing the signal time domain and averaging the time domain, effectively inhibits the frequency spectrum interference between the harmonic and the inter-harmonic in the frequency domain, thereby obtaining more accurate harmonic and inter-harmonic analysis parameters, providing more accurate parameters for the problem diagnosis of the power system and the analysis of the power quality signal, and being applied to a power quality measuring device to obtain a high-precision analysis result.
The above embodiments are merely illustrative of the technical ideas and features of the present invention, and the purpose thereof is to enable those skilled in the art to understand the contents of the present invention and implement the present invention, and not to limit the protection scope of the present invention. All equivalent changes and modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.

Claims (4)

1. A harmonic and inter-harmonic separation analysis method for analyzing an original electric energy signal to obtain harmonic and inter-harmonic parameters, characterized by: the harmonic and inter-harmonic separation analysis method comprises the following steps: sampling the original electric energy signal to obtain a sampling signal, dividing different analysis windows, performing windowing calculation on the sampling signal in each analysis window to obtain a windowed signal, performing time domain averaging on the windowed signal to obtain a quasi-harmonic signal, and performing discrete Fourier transform on the quasi-harmonic signal to obtain a harmonic parameter of the sampling signal in the analysis window; subtracting the quasi-harmonic signal from the sampling signal in the analysis window to obtain a quasi-inter-harmonic signal, sequentially performing windowing calculation again on the quasi-inter-harmonic signal, zero padding at the end of the sequence of the quasi-inter-harmonic signal and discrete Fourier transform to obtain an encrypted spectrum signal, and analyzing the encrypted spectrum signal to obtain inter-harmonic parameters of the sampling signal in the analysis window;
the windowing calculation method comprises the following steps: and multiplying the sampling signal in the analysis window by a window signal to obtain the windowed signal, wherein the windowing type adopted by the windowing calculation is a hanning window, a Blackman window or a Blackman-Harris window.
2. A method of harmonic and inter-harmonic separation analysis in accordance with claim 1, wherein: taking ten cycles of the sampling signal as one analysis window.
3. A method of harmonic and inter-harmonic separation analysis in accordance with claim 1, wherein: and carrying out time domain averaging on the windowed signal according to the scale of one cycle to obtain the quasi-harmonic signal.
4. A method of harmonic and inter-harmonic separation analysis in accordance with claim 1, wherein: and the sampling frequency for sampling the original electric energy signal is greater than or equal to 12.8 kHz.
CN201710080072.5A 2017-02-15 2017-02-15 Harmonic and inter-harmonic separation analysis method Active CN106872777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710080072.5A CN106872777B (en) 2017-02-15 2017-02-15 Harmonic and inter-harmonic separation analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710080072.5A CN106872777B (en) 2017-02-15 2017-02-15 Harmonic and inter-harmonic separation analysis method

Publications (2)

Publication Number Publication Date
CN106872777A CN106872777A (en) 2017-06-20
CN106872777B true CN106872777B (en) 2020-05-19

Family

ID=59167458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710080072.5A Active CN106872777B (en) 2017-02-15 2017-02-15 Harmonic and inter-harmonic separation analysis method

Country Status (1)

Country Link
CN (1) CN106872777B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561359A (en) * 2017-08-31 2018-01-09 国网新疆电力公司 A kind of m-Acetyl chlorophosphonazo extracting method based on Blackman window

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788212B2 (en) * 2000-07-27 2006-06-21 日新電機株式会社 Harmonic detection method between orders
CN104155520B (en) * 2014-07-30 2017-05-03 中国船舶重工集团公司第七一九研究所 Harmonic and inter-harmonic separation detecting method and device suitable for vessel electric power system
CN104122443B (en) * 2014-08-04 2017-02-15 国家电网公司 Adjacent harmonic and inter-harmonic separation and measurement method under IEC (international electrotechnical commission) framework

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"一种新的电力;惠锦等;《电力系统保护与控制》;20091201;第37卷(第23期);第31-32页 *

Also Published As

Publication number Publication date
CN106872777A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN110794271A (en) Power cable intermediate joint damp positioning diagnosis method based on input impedance spectrum
CN103941090B (en) Harmonic measuring method based on line energy interpolation
CN104090214A (en) Cable fault detection and aging analysis method
US9989581B2 (en) Method and device for locating partial discharges in electric cables
CN106018956B (en) A kind of power system frequency computational methods of adding window spectral line interpolation
CN108535613B (en) Voltage flicker parameter detection method based on combined window function
Chen et al. An efficient Prony-based solution procedure for tracking of power system voltage variations
CN110542831A (en) Fault traveling wave detection method based on variational modal decomposition and S transformation
CN107543962A (en) The computational methods of leading m-Acetyl chlorophosphonazo spectrum distribution
CN103257273A (en) Method for measuring common-frequency periodic signal phase differences
CN103983849A (en) Real-time high-accuracy power harmonic analysis method
Zygarlicki et al. Short time algorithm of power waveforms fundamental harmonic estimation with use of Prony's methods
CN109581045B (en) Inter-harmonic power metering method meeting IEC standard framework
CN105486921A (en) Kaiser third-order mutual convolution window triple-spectrum-line interpolation harmonic wave and inter-harmonic wave detection method
CN106872777B (en) Harmonic and inter-harmonic separation analysis method
CN105372492B (en) Signal frequency measuring method based on three DFT plural number spectral lines
CN101718816A (en) Fundamental wave and harmonic wave detection method based on four-item coefficient Nuttall window interpolation FFT
CN106772193B (en) Measuring method using current transformer frequency characteristic measuring device
CN107294533A (en) Analog-digital converter dynamic parameter testing system and method
Chen et al. A high-resolution technique for flicker measurement in power quality monitoring
CN112180161A (en) Harmonic inter-harmonic wave group measuring method under asynchronous high sampling rate sampling condition
CN105467209B (en) A kind of new metal oxide arrester leakage current analysis method
CN114487589A (en) Power grid broadband signal self-adaptive measurement method, device and system
CN115421004A (en) Handheld portable partial discharge inspection positioning device and partial discharge inspection method
Liu et al. An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant