CN106872083A - 一种聚苯胺/弹性体拉伸型电容传感器的制备方法 - Google Patents

一种聚苯胺/弹性体拉伸型电容传感器的制备方法 Download PDF

Info

Publication number
CN106872083A
CN106872083A CN201710130407.XA CN201710130407A CN106872083A CN 106872083 A CN106872083 A CN 106872083A CN 201710130407 A CN201710130407 A CN 201710130407A CN 106872083 A CN106872083 A CN 106872083A
Authority
CN
China
Prior art keywords
polyaniline
preparation
oil
capacitance
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710130407.XA
Other languages
English (en)
Other versions
CN106872083B (zh
Inventor
张明
王根林
王志峰
段磊
张�杰
张亦旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710130407.XA priority Critical patent/CN106872083B/zh
Publication of CN106872083A publication Critical patent/CN106872083A/zh
Application granted granted Critical
Publication of CN106872083B publication Critical patent/CN106872083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

一种聚苯胺/弹性体拉伸型电容传感器的制备方法,属于电容型传感器制备的技术领域。将油溶性聚苯胺和弹性体溶于溶剂中,经模具定型,得到介电薄膜;将弹性体与油溶性聚苯胺溶液混合,经模具定型,得到导电薄膜;再取两块导电薄膜分别粘贴在一块介电薄膜的两个外表面,即得聚苯胺/弹性体拉伸型电容传感器。该传感器具有结构简单,易于加工,灵敏度高,伸长率高,具有导电弹性体与介电弹性体材料成分相似,电容与拉伸位移的线性关系好等优点。

Description

一种聚苯胺/弹性体拉伸型电容传感器的制备方法
技术领域
本发明属于电容型传感器制备的技术领域。
背景技术
近年来,导电聚合物在传感器方面的应用越来越受到关注,其中聚苯胺具有合成简单、原料易得、电性能优异等优点,是目前公认的最具有应用开发潜力的导电聚合物材料之一。但是,由于聚苯胺分子链具有较强的刚性和链间相互作用,使其溶解性和成膜性能较差,极大地限制了其在传感器上的广泛应用。
采用乳液聚合法制备聚苯胺,其在有机溶剂中的溶解度高,并且与大多数弹性体具有较好的相容性,将其和弹性体按照一定的比例复合可以得到力学性能和电性能优良的复合材料薄膜。电容型传感器具有结构简单、适用范围广、功率低等优点,得到更加广泛的研究和关注,主要工作方式为压力型和拉伸型。目前,压力型电容传感器由于不能够拉伸形变,只能测试到挤压的压力变化,这限制了其应用领域。
拉伸型电容传感器可以将形变转换为稳定的电容信号,是最有潜力的电活性聚合物材料,不仅具有超大变形量、超快响应速度、高机电转化效率、良好的负载匹配性、超强的环境适用性、高疲劳寿命以及优异的仿生性能等特点,同时,还可以作为力学传感器应用于包括机器人触觉皮肤在内的众多新兴研究领域,已成为国内外学者关注的热点之一。但是,介电弹性体的设计与合成、导电电极的制备、应力或应变与电容变化关系等关键问题,限制了拉伸型电容传感器的研究发展和实际应用。
发明内容
针对以上现有技术存在的问题,本发明目的是提出一种聚苯胺/弹性体拉伸型电容传感器的制备方法。
本发明包括以下步骤:
1)将油溶性聚苯胺和弹性体溶于溶剂中,然后置于定型模具中,经蒸发溶剂后,得到介电薄膜;
2)将弹性体与油溶性聚苯胺溶液混合,再置于定型模具中,蒸发溶剂后,得到导电薄膜;
3)取两块导电薄膜分别粘贴在一块介电薄膜的两个外表面,即得聚苯胺/弹性体拉伸型电容传感器。
聚苯胺含量较低的弹性体复合材料,具有较高的介电常数,是一种优良的介电弹性体。高含量的聚苯胺弹性体复合材料,具有较高的导电率和较好的柔韧性,可以用作柔性电极。
本发明将导电薄膜粘贴在介电薄膜的上下两面,即可制备成拉伸型弹性体电容传感器。当该传感器受到拉伸产生形变时,电容值发生规律性变化,输出信号。该传感器具有结构简单,易于加工,灵敏度高,伸长率高,具有导电弹性体与介电弹性体材料成分相似,电容与拉伸位移的线性关系好等优点,在机械、电子、智能设备、医疗器械等各种先进科技产业领域具有广阔的市场应用价值。
本发明在制备介电薄膜时也可加入少量油溶性聚苯胺,即,所述步骤1)中,加入油溶性聚苯胺溶液,所述油溶性聚苯胺中折百聚苯胺为弹性体质量的0~0.1倍。采用该比例制成的介电薄膜,可以增强传感器的输出信号及灵敏度。
进一步地,本发明步骤2)中油溶性聚苯胺中折百聚苯胺为弹性体质量的0.11~2倍。采用以上混合比,使导电薄膜中的聚苯胺达到一个较高含量,其目的是提高其导电率,提高传感器的灵敏度。
所述油溶性聚苯胺为以苯磺酸、异丙苯磺酸、甲基苯磺酸、十二烷基苯磺酸、二甲苯磺酸、樟脑磺酸、二丁基萘磺酸、硬脂酸或软脂酸的一种为掺杂材料改性的聚苯胺。经这些有机质子酸改性后的聚苯胺采用这些有机质子酸对聚苯胺进行改性,可以提高聚苯胺在有机溶剂中的溶解度,有利于聚苯胺在弹性体中均匀分布,制备的传感器电容输出信号稳定。
所述弹性体为苯乙烯类(SBS、SIS、SEBS、SEPS)、烯烃类(TPO、TPV)、双烯类(TPB、TPI)、氯乙烯类(TPVC、TCPE)、氨酯类(TPU)、酯类(TPEE)、酰胺类(TPAE)、有机氟类(TPF)、有机硅橡胶类或乙烯类的至少一种。采用以上各类弹性体制备的电容型传感器的输出信号均较强,电容变化值与拉伸率之间的线性关系较好,可以作为拉伸型电容传感器使用。
所述油溶性聚苯胺溶液中溶剂为和聚苯胺和弹性体材料相容性较好的有机溶剂,如:戊烷、己烷、环己烷、苯、甲苯、二甲苯、氯苯、二氯苯、甲基异丁酮、二氯甲烷、四氢呋喃、二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜或二氯乙烷。制备的电容型传感器的输出信号均较强,电容变化值与拉伸率之间的线性关系较好,可以作为拉伸型电容传感器使用。
附图说明
图1为拉伸型弹性体电容传感器的结构示意图。
图2为例1制成的聚苯胺拉伸型电容传感器第一次往复的拉伸率与电容值变化关系图。
图3为例1制成的聚苯胺拉伸型电容传感器第二次往复的拉伸率与电容值变化关系图。
图4为例1制成的聚苯胺拉伸型电容传感器第三次往复的拉伸率与电容值变化关系图。
图5为例1制成的聚苯胺拉伸型电容传感器第四次往复的拉伸率与电容值变化关系图。
图6为例1制成的聚苯胺拉伸型电容传感器第五次往复的拉伸率与电容值变化关系图。
图7为例1制成的聚苯胺拉伸型电容传感器第六次往复的拉伸率与电容值变化关系图。
图8为例2制成的聚苯胺拉伸型电容传感器第一次往复的拉伸率与电容值变化关系图。
图9为例2制成的聚苯胺拉伸型电容传感器第二次往复的拉伸率与电容值变化关系图。
图10为例2制成的聚苯胺拉伸型电容传感器第三次往复的拉伸率与电容值变化关系图。
图11为例2制成的聚苯胺拉伸型电容传感器第四次往复的拉伸率与电容值变化关系图。
图12为例2制成的聚苯胺拉伸型电容传感器第五次往复的拉伸率与电容值变化关系图。
图13为例2制成的聚苯胺拉伸型电容传感器第六次往复的拉伸率与电容值变化关系图。
具体实施方式
一、传感器的制备工艺:
下面的实施例对本发明进行更详细的阐述,而不是对本发明的进一步限定。除非另有说明,其中的各百分比均为质量百分比。
实施例1:
1、氢化苯乙烯-丁二烯嵌段共聚物(SEBS)甲苯液的制备:
在500mL四口瓶中加入SEBS弹性体粉末60.0g和303.63g甲苯,加热到90℃,使SEBS完全溶解在甲苯中时,搅拌降温,得到SEBS质量百分数为16.5%的SEBS甲苯液。
2、十二烷基苯磺酸改性聚苯胺甲苯溶液的制备:
在1L四口瓶中加入十二烷基苯磺酸36.28g、去离子水200mL和甲苯50mL,搅拌降温至2℃时,加入苯胺5.59g,并保温1h。保温毕,向反应体系中缓慢滴加9.13g过硫酸铵和50mL水的混合溶液,滴加时间为1h,然后0-5℃保温反应17h。保温毕,将200mL甲苯和200g丙酮加入到反应釜料中,并搅拌1h后,静置分层,得油层198.36g,水层501.68。油层进行负压快速抽滤,除去少量不溶物,最终得澄清绿色油层196.25g,测试固含量为4.38%。
3、介电层材料的制备:
在100mL烧杯中加入步骤1制成的SEBS甲苯液13.0g,超声20~30min后倒入玻璃模具中,蒸发溶剂成型,得到纯SEBS薄膜。
将纯SEBS薄膜裁剪为长9.5cm,宽2cm,作为拉伸型电容传感器的介电层材料。
4、导电层材料的制备:
在100mL烧杯中加入步骤1制成的SEBS甲苯液2.0g(SEBS折百质量为0.33g)和步骤2制备的十二烷基苯磺酸改性聚苯胺甲苯溶液2.26g(聚苯胺折百质量为0.10g,聚苯胺与SEBS的折百质量比为0.3∶1),室温搅拌1h后,转移至玻璃模具中,置于30℃恒温干燥箱中,加热6h后,即得PANI/SEBS复合导电薄膜,测其电阻率为0.011 mΩ·cm。将该复合导电薄膜裁剪成长7cm,宽1cm,作为拉伸型电容传感器的导电层材料。
5、将步骤4制得的两片导电层材料分别粘贴到到步骤3制得的介电层材料的正反两面上,然后放置在80℃的恒温干燥箱中,加热2h后,即得聚苯胺拉伸型电容传感器。
6、测试电容传感器的拉伸率与电容值变化关系:
将聚苯胺拉伸型电容传感器的上下导电层分别与引线连接,并用固定板固定,然后热成型数小时,形成的产品如图1所示:在介电层材料1的两侧分别设置有导电层材料2,导线4分别通过固定板3夹持在固定板3和相应的导电层材料2之间。
采用LCR测试仪,分析材料的电容值,取得如图2至7所示的该电容传感器的拉伸率与电容值变化之间的关系。
其中,图2为第一次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图3为第二次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图4为第三次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图5为第四次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图6为第五次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图7为第六次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
由以上各图说明:该电容传感器的拉伸率与电容值变化之间呈现优良的线性关系。该电容传感器可以往复多次使用,虽然其输出信号弱(起始电容值为45~47pF),但是稳定,可以作为拉伸型电容传感器使用。
实施例2:
在实施例1的基础上,对步骤3的介电层进行调整,固定其他步骤不变,在100mL烧杯中加入步骤1制得的SEBS甲苯液2.0g(SEBS折百质量为0.33g)和步骤2制备的十二烷基苯磺酸改性聚苯胺甲苯溶液0.15g(改性PANI与SEBS折百质量比为0.02∶1),室温搅拌1h后,转移至玻璃模具中,置于30℃恒温干燥箱中,加热6h后,即得高介电常数的聚苯胺/SEBS复合材料薄膜,测其介电常数为267.62(100赫兹频率条件下)。采用LCR测试仪,分析材料的电容值,取得如图8至13所示的该电容传感器的拉伸率与电容值变化之间的关系。
其中,图8为第一次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图9为第二次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图10为第三次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图11为第四次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图12为第五次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
图13为第六次往复所呈现的电容型传感器的拉伸率与电容值变化关系图。
由以上各图说明:该电容传感器的拉伸率与电容值变化之间呈现优良的线性关系。该电容传感器可以往复多次使用,输出信号强(起始电容值为1500~1600pF),且稳定,可以作为拉伸型电容传感器使用。
实施例3~8:
在实例2的基础上,改变介电层和导电层中的PANI与SEBS折百质量比,其他条件不变,分别制备了6种电容型传感器,其性能见下表。
由上表可见:改变介电层和导电层中的PANI与SEBS折百质量比,制备出的6种电容型传感器的拉伸率与电容值变化之间均呈现优良的线性关系,输出信号强且稳定,可以作为拉伸型电容传感器使用。
实施例9~14:
在实施例2的基础上,分别采用不同有机溶剂代替甲苯,其他条件不变,制备了6种电容型传感器,其性能见下表。
通过以上各例可见:采用戊烷、己烷、环己烷、苯、甲苯、二甲苯、氯苯、二氯苯、甲基异丁酮、二氯甲烷、四氢呋喃、二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜或二氯乙烷中的至少一种作为油溶性聚苯胺溶液中溶剂所制备出来的电容传感器,其拉伸率与电容值的变化之间呈现较好的线性关系,可以作为拉伸型电容传感器使用。
实施例15~22:
在实施例2的基础上,固定甲苯作为油溶性聚苯胺的有机溶剂,介电层和导电层中改性聚苯胺中的PANI与弹性体折百质量比不变,采用不同的掺杂材料对聚苯胺进行改性,然后分别制备了8种电容型传感器,具体见下表。
由以上各实施例可见:采用以苯磺酸、异丙苯磺酸、甲基苯磺酸、十二烷基苯磺酸、二甲苯磺酸、樟脑磺酸、二丁基萘磺酸、硬脂酸或软脂酸中的一种为掺杂材料改性的聚苯胺,制备的电容型传感器的输出信号均较强,电容变化值与拉伸率之间的线性关系较好,可以作为拉伸型电容传感器使用。
实施例23~30:
在实施例2的基础上,采用其他种类的弹性体代替SEBS,其他条件不变,制备了9种电容型传感器,其性能如下表所示。
由以上各例可见:采用苯乙烯类、烯烃类、双烯类、氯乙烯类、氨酯类、酯类、酰胺类、有机氟类、有机硅橡胶类或乙烯类热塑性弹性体制备的电容型传感器的输出信号均较强,电容变化值与拉伸率之间的线性关系较好,可以作为拉伸型电容传感器使用。
以上实例说明了:本发明制备的聚苯胺/弹性体拉伸型电容传感器具有结构简单,易于加工,灵敏度高,伸长率高,电容与拉伸位移的线性关系好等优点。

Claims (6)

1.一种聚苯胺/弹性体拉伸型电容传感器的制备方法,其特征在于包括如下步骤:
1)将油溶性聚苯胺和弹性体溶于溶剂中,然后置于定型模具中,经蒸发溶剂后,得到介电薄膜;
2)将弹性体与油溶性聚苯胺溶液混合,再置于定型模具中,蒸发溶剂后,得到导电薄膜;
3)取两块导电薄膜分别粘贴在一块介电薄膜的两个外表面,即得聚苯胺/弹性体拉伸型电容传感器。
2.根据权利要求1所述的制备方法,其特征在于所述步骤2)中油溶性聚苯胺中聚苯胺质量为弹性体质量的0.11~2倍。
3.根据权利要求2所述的制备方法,其特征在于在所述步骤1)中,还加入油溶性聚苯胺溶液,所述油溶性聚苯胺中聚苯胺为弹性体质量的0~0.1倍。
4.根据权利要求1所述的制备方法,其特征在于所述油溶性聚苯胺为以苯磺酸、异丙苯磺酸、甲基苯磺酸、十二烷基苯磺酸、二甲苯磺酸、樟脑磺酸、二丁基萘磺酸、硬脂酸或软脂酸的一种为掺杂材料改性的聚苯胺。
5.根据权利要求1所述的制备方法,其特征在于所述弹性体为苯乙烯类、烯烃类、双烯类、氯乙烯类、氨酯类、酯类、酰胺类、有机氟类、有机硅橡胶类或乙烯类的至少一种。
6.根据权利要求1所述的制备方法,其特征在于所述油溶性聚苯胺溶液中溶剂为戊烷、己烷、环己烷、苯、甲苯、二甲苯、氯苯、二氯苯、甲基异丁酮、二氯甲烷、四氢呋喃、二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜或二氯乙烷。
CN201710130407.XA 2017-03-07 2017-03-07 一种聚苯胺/弹性体拉伸型电容传感器的制备方法 Active CN106872083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710130407.XA CN106872083B (zh) 2017-03-07 2017-03-07 一种聚苯胺/弹性体拉伸型电容传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710130407.XA CN106872083B (zh) 2017-03-07 2017-03-07 一种聚苯胺/弹性体拉伸型电容传感器的制备方法

Publications (2)

Publication Number Publication Date
CN106872083A true CN106872083A (zh) 2017-06-20
CN106872083B CN106872083B (zh) 2020-12-29

Family

ID=59169714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710130407.XA Active CN106872083B (zh) 2017-03-07 2017-03-07 一种聚苯胺/弹性体拉伸型电容传感器的制备方法

Country Status (1)

Country Link
CN (1) CN106872083B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313663A (zh) * 2019-07-31 2019-10-11 宁波韧和科技有限公司 一种智能手套
WO2020133228A1 (zh) * 2018-12-28 2020-07-02 深圳市柔宇科技有限公司 可拉伸基材及其制造方法
CN113188711A (zh) * 2021-04-29 2021-07-30 苏州凝智新材料发展有限公司 一种压力传感器及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008732A (ja) * 2003-06-18 2005-01-13 Shin Etsu Polymer Co Ltd 導電性組成物、導電性塗料および導電性樹脂
CN101492569A (zh) * 2008-07-01 2009-07-29 南京理工大学 氧化石墨片层/聚苯胺复合材料及其制备方法
CN102568865A (zh) * 2012-02-22 2012-07-11 华中科技大学 一种基于纸张的柔性超级电容器的制备方法及其应用
CN102786705A (zh) * 2012-09-04 2012-11-21 江南大学 一种基于层层自组装技术制备石墨烯/聚苯胺复合薄膜的方法
CN103424214A (zh) * 2013-08-26 2013-12-04 中国科学院合肥物质科学研究院 柔性电容式触觉传感器及其柔性电容单元的制备方法
CN105646921A (zh) * 2016-03-18 2016-06-08 华东师范大学 一种独立的聚苯胺导电膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008732A (ja) * 2003-06-18 2005-01-13 Shin Etsu Polymer Co Ltd 導電性組成物、導電性塗料および導電性樹脂
CN101492569A (zh) * 2008-07-01 2009-07-29 南京理工大学 氧化石墨片层/聚苯胺复合材料及其制备方法
CN102568865A (zh) * 2012-02-22 2012-07-11 华中科技大学 一种基于纸张的柔性超级电容器的制备方法及其应用
CN102786705A (zh) * 2012-09-04 2012-11-21 江南大学 一种基于层层自组装技术制备石墨烯/聚苯胺复合薄膜的方法
CN103424214A (zh) * 2013-08-26 2013-12-04 中国科学院合肥物质科学研究院 柔性电容式触觉传感器及其柔性电容单元的制备方法
CN105646921A (zh) * 2016-03-18 2016-06-08 华东师范大学 一种独立的聚苯胺导电膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张玉龙: "《功能塑料制品配方设计与加工实例》", 31 January 2006 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133228A1 (zh) * 2018-12-28 2020-07-02 深圳市柔宇科技有限公司 可拉伸基材及其制造方法
CN112740400A (zh) * 2018-12-28 2021-04-30 深圳市柔宇科技股份有限公司 可拉伸基材及其制造方法
CN110313663A (zh) * 2019-07-31 2019-10-11 宁波韧和科技有限公司 一种智能手套
CN113188711A (zh) * 2021-04-29 2021-07-30 苏州凝智新材料发展有限公司 一种压力传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN106872083B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced energy conversion efficiency in the surface modified BaTiO3 nanoparticles/polyurethane nanocomposites for potential dielectric elastomer generators
Tang et al. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte
Sun et al. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics
Chen et al. Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure
Zhang et al. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics
Lei et al. Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems
Li et al. Mechanically and environmentally stable triboelectric nanogenerator based on high-strength and anti-compression self-healing ionogel
Lee et al. Regular H-bonding-containing polymers with stretchability up to 100% external strain for self-healable plastic transistors
Gao et al. A self-healable bifunctional electronic skin
Zhang et al. Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics
Zhang et al. 3D Printable, ultra-stretchable, Self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface
Huang et al. Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures
CN106872083A (zh) 一种聚苯胺/弹性体拉伸型电容传感器的制备方法
CN110146198A (zh) 一种柔性自供能压力传感器
Zhao et al. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor
Cho et al. Self-healable, stretchable, and nonvolatile solid polymer electrolytes for sustainable energy storage and sensing applications
Wu et al. High stretchable, pH-sensitive and self-adhesive rGO/CMCNa/PAA composite conductive hydrogel with good strain-sensing performance
Mohanta et al. Stretchable electrolytes for stretchable/flexible energy storage systems–Recent developments
Li et al. Self-healing fluorinated poly (urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators
Shan et al. Self-healing strain sensor based on silicone elastomer for human motion detection
CN110358002A (zh) 一种离子凝胶及离子凝胶基摩擦纳米发电机
Ma et al. Strong bacterial cellulose-based films with natural laminar alignment for highly sensitive humidity sensors
Wu et al. Stretchable and self-healing ionic conductive elastomer for multifunctional 3D printable sensor
Li et al. Adaptable ionic liquid-containing supramolecular hydrogel with multiple sensations at subzero temperatures
CN112229317A (zh) 具有大变形性能及其监测功能的柔性传感膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant