CN106868430A - A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability - Google Patents
A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability Download PDFInfo
- Publication number
- CN106868430A CN106868430A CN201710085143.0A CN201710085143A CN106868430A CN 106868430 A CN106868430 A CN 106868430A CN 201710085143 A CN201710085143 A CN 201710085143A CN 106868430 A CN106868430 A CN 106868430A
- Authority
- CN
- China
- Prior art keywords
- based amorphous
- alloy
- amorphous alloy
- amorphous
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 50
- 239000000956 alloy Substances 0.000 title claims abstract description 50
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 47
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000013461 design Methods 0.000 title claims abstract description 23
- 239000004411 aluminium Substances 0.000 title claims 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 25
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- 230000007704 transition Effects 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 16
- 239000005300 metallic glass Substances 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 239000003574 free electron Substances 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 229910000691 Re alloy Inorganic materials 0.000 claims description 4
- 238000005275 alloying Methods 0.000 claims 3
- 239000000203 mixture Substances 0.000 abstract description 33
- 230000003993 interaction Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 238000013459 approach Methods 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 2
- 238000007792 addition Methods 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002056 X-ray absorption spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/08—Amorphous alloys with aluminium as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/10—Analysis or design of chemical reactions, syntheses or processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种调控铝基非晶形成能力的合金成分设计方法,属于铝基非晶态合金技术领域。该方法是根据在Al‑TM(过渡族元素)‑RE(稀土元素)三元非晶合金体系中微量添加TM与RE元素不同的电子作用机制,制定公式(1)为δ=|KP‑2KF|,公式(1)中:当δ值趋近于0时,体系的总能量趋于最低,非晶形成能力则增强;根据该规律对体系的非晶形成能力进行调控,从而制备大尺寸的铝基非晶合金;该方法的提出解决了以往铝基非晶合金成分设计存在的大量资源浪费问题,并设计出了目前国际上最大尺寸的五元完全块体铝非晶合金。本发明对扩大轻质高强铝基非晶合金的应用范围具有重要的推进作用。
The invention discloses an alloy composition design method for regulating the formation ability of aluminum-based amorphous, and belongs to the technical field of aluminum-based amorphous alloys. The method is based on the electronic interaction mechanism of trace addition of TM and RE elements in the Al-TM (transition group elements)-RE (rare earth elements) ternary amorphous alloy system, formulating formula (1) as δ=|K P- 2K F |, in the formula (1): when the δ value approaches 0, the total energy of the system tends to be the lowest, and the amorphous formation ability is enhanced; according to this rule, the amorphous formation ability of the system is regulated to prepare large The proposed method solves the problem of a large amount of waste of resources in the composition design of aluminum-based amorphous alloys in the past, and designs the largest-sized five-element complete bulk aluminum amorphous alloy in the world. The invention plays an important role in promoting the expansion of the application range of the light-weight and high-strength aluminum-based amorphous alloy.
Description
技术领域technical field
本发明涉及铝基非晶态合金技术领域,具体涉及一种调控铝基非晶形成能力的合金成分设计方法。The invention relates to the technical field of aluminum-based amorphous alloys, in particular to an alloy composition design method for regulating the formation ability of aluminum-based amorphous.
背景技术Background technique
目前,轻质化材料的开发对于节约能源、提高各类装备效率具有重要的推进作用。因此,在各类汽车、飞机、舰船、武器装备等领域已成为研发重点。例如,近年来各类轻质材料在武器型号中的应用比例呈快速上升趋势。其中铝合金,特别是高强铝合金由于具有质轻、高比强度、高比刚度的优点,广泛应用于国民经济建设和国防建设的各个领域,在航空工业更是得到大量使用。与传统的铝合金相比,非晶态铝合金具有高的比强度、良好的韧性和优异的耐腐蚀性能,其抗拉强度可超过1000MPa,已超过目前高强钢的水平,比强度可与陶瓷媲美,并保持了良好的塑性和高温稳定性。它的出现为发展轻质超高强金属结构材料提供了一条新的途径。然而,目前限制该类材料应用的主要因素是Al基非晶合金的玻璃形成能力很差,目前获得的最大非晶临界尺寸为1mm,仍无法满足实际工程应用的需要。因此,提高铝基非晶合金的形成能力是扩大其应用范围的首要因素。At present, the development of lightweight materials plays an important role in promoting energy conservation and improving the efficiency of various equipment. Therefore, it has become the focus of research and development in various fields such as automobiles, aircraft, ships, and weaponry. For example, in recent years, the application proportion of various lightweight materials in weapon models has shown a rapid upward trend. Among them, aluminum alloys, especially high-strength aluminum alloys, are widely used in various fields of national economic construction and national defense construction due to their advantages of light weight, high specific strength, and high specific stiffness, and are widely used in the aviation industry. Compared with traditional aluminum alloys, amorphous aluminum alloys have high specific strength, good toughness and excellent corrosion resistance, and their tensile strength can exceed 1000MPa, which has exceeded the current level of high-strength steel. Comparable to, and maintain good plasticity and high temperature stability. Its appearance provides a new way for the development of lightweight ultra-high-strength metal structural materials. However, the main factor limiting the application of this type of material is the poor glass-forming ability of Al-based amorphous alloys. The maximum amorphous critical size obtained so far is 1mm, which still cannot meet the needs of practical engineering applications. Therefore, improving the forming ability of aluminum-based amorphous alloys is the primary factor to expand their application range.
为确定具有最佳非晶形成能力的铝基合金成分,需对影响Al基非晶形成能力的结构本质进行分析。其中,Al基金属玻璃的原子结构对其非晶形成能力有重要的决定性作用,有效团簇堆积(Efficient Cluster Packing,ECP)模型和准等价团簇密堆模型揭示了Al-TM-RE三元体系非晶形成能力的结构本质。但基于硬球假设,以RE(TM)原子为中心的团簇共享Al原子,且按照fcc方式排满整个空间。而这种有序的晶体结构在无序的金属玻璃中是不存在的,并没有考虑化学作用对金属玻璃稳定性的影响。因此,应用该模型预测Al-TM-RE三元体系时,实验值和预测值约有4.6-19.8at.%的偏差。值得注意的是,微合金化对于Al基金属玻璃合金体系的发展和设计起到至关重要的作用,例如:在Al86Ni8Y6合金基础上仅仅2at.%的Co和La替换Ni和Y就能使非晶形成能力提升两倍,最终成功获得直径为1mm的Al基块体金属玻璃棒材;0.5at.%的Ti或者V添加到Al88Y7Fe5合金中就可以显著提高其非晶形成能力。微合金化效应可以增加液态相的稳定性,抑制晶体相的形成,从而提高非晶形成能力。但是,微合金化对于四元和五元Al基非晶形成能力影响的结构本源仍不清楚。前人试图从原子结构角度揭示微合金化对Al基非晶形成能力影响的结构本源,例如:利用X射线吸收光谱法研究La和Co元素添加到Al86Ni8Y6合金中,利用扩展X射线吸收精细结构法研究La和Hf元素添加到Al88Y7Fe5合金中,但研究结果均表明微合金化前后Al基非晶合金原子结构没有差异。In order to determine the Al-based alloy composition with the best amorphous-forming ability, the structural nature that affects the Al-based amorphous-forming ability needs to be analyzed. Among them, the atomic structure of Al-based metallic glasses plays an important decisive role in its amorphous formation ability. The Efficient Cluster Packing (ECP) model and the quasi-equivalent cluster close-packing model reveal that the three The structural nature of the amorphous-forming ability of metasystems. However, based on the hard sphere assumption, the clusters centered on RE(TM) atoms share Al atoms and fill the entire space in an fcc manner. However, this ordered crystal structure does not exist in disordered metallic glasses, and the influence of chemical effects on the stability of metallic glasses is not considered. Therefore, when the model is used to predict the Al-TM-RE ternary system, there is a deviation of about 4.6-19.8 at.% between the experimental value and the predicted value. It is worth noting that microalloying plays a crucial role in the development and design of Al-based metallic glass alloy systems, for example: on the basis of Al 86 Ni 8 Y 6 alloy, only 2 at.% Co and La replace Ni and Y can double the amorphous forming ability, and finally successfully obtained an Al-based bulk metallic glass rod with a diameter of 1mm; adding 0.5 at.% Ti or V to the Al 88 Y 7 Fe 5 alloy can significantly improve its amorphous-forming ability. The microalloying effect can increase the stability of the liquid phase and inhibit the formation of the crystalline phase, thereby enhancing the amorphous-forming ability. However, the structural origin of the effect of microalloying on the formation ability of quaternary and quinary Al-based amorphous remains unclear. Previous attempts to reveal the structural origin of the influence of microalloying on the ability of Al-based amorphous formation from the perspective of atomic structure, for example: using X-ray absorption spectroscopy to study the addition of La and Co elements to Al 86 Ni 8 Y 6 alloys, using extended X The ray absorption fine structure method was used to study the addition of La and Hf elements to Al 88 Y 7 Fe 5 alloys, but the research results all showed that there was no difference in the atomic structure of Al-based amorphous alloys before and after microalloying.
根据金属玻璃电子结构原理,Al基金属玻璃体系中存在强烈的电子轨道杂化效应,对结构具有重要的影响,但常规手段无法对这一结果进行分析,所以应深入理解铝基非晶合金电子结构层次对非晶形成能力的作用机制,以期寻求适用于铝基非晶合金的成分设计方法。According to the principle of electronic structure of metallic glass, there is a strong electron orbital hybridization effect in the Al-based metallic glass system, which has an important impact on the structure, but conventional methods cannot analyze this result, so it is necessary to deeply understand the electronic properties of aluminum-based amorphous alloys. The mechanism of the structure level on the ability of amorphous formation, in order to seek a composition design method suitable for aluminum-based amorphous alloys.
发明内容Contents of the invention
本发明的目的在于提供一种提高铝基非晶形成能力的合金成分设计方法,解决了以往铝基非晶合金成分设计复杂化问题,设计出了临界尺寸为1.5mm的完全非晶合金,是目前国际上制备的最大尺寸铝基块体非晶合金,扩大了轻质高强铝基非晶合金作为结构材料的应用范围。The purpose of the present invention is to provide an alloy composition design method for improving the formation ability of aluminum-based amorphous alloys, which solves the problem of complex composition design of aluminum-based amorphous alloys in the past, and designs a completely amorphous alloy with a critical size of 1.5mm, which is At present, the largest aluminum-based bulk amorphous alloy prepared in the world has expanded the application range of lightweight and high-strength aluminum-based amorphous alloys as structural materials.
为实现上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种调控铝基非晶形成能力的合金成分设计方法,该方法是根据在Al-TM-RE三元非晶合金体系中微量添加TM与RE元素不同的电子作用机制,制定公式(1),公式(1)中呈现的规律为:当δ值趋近于0时,体系的总能量趋于最低,非晶形成能力则增强;根据公式(1)中规律对所述Al-TM-RE三元非晶合金体系的非晶形成能力进行调控,从而制备大尺寸的铝基非晶合金;An alloy composition design method for regulating the formation ability of aluminum-based amorphous. The method is based on the electronic interaction mechanism of micro-addition of TM and RE elements in the Al-TM-RE ternary amorphous alloy system, and formula (1), The law presented in the formula (1) is: when the δ value approaches 0, the total energy of the system tends to be the lowest, and the amorphous formation ability is enhanced; according to the law in the formula (1), the Al-TM-RE three Control the amorphous formation ability of the primary amorphous alloy system to prepare large-sized aluminum-based amorphous alloys;
δ=|KP-2KF| (1);δ=|K P -2K F | (1);
公式(1)中:2KF是费米面的直径,2KF的计算方式如公式(2);KP是伪布里渊区的直径,KP的计算方式如公式(3);In the formula (1): 2K F is the diameter of the Fermi surface, and the calculation method of 2K F is as in formula (2); K P is the diameter of the pseudo-Brillouin zone, and the calculation method of K P is as in formula (3);
公式(2)中,ZFEM是自由电子贡献的电子数,Zhyb是电子杂化效应贡献的电子数,n0是原子数密度;In formula (2), Z FEM is the number of electrons contributed by free electrons, Z hyb is the number of electrons contributed by electron hybridization effect, n 0 is the atomic number density;
公式(3)中,λ是X射线的波长,θ是X射线衍射谱中主漫散峰对应的衍射角。In formula (3), λ is the wavelength of X-rays, and θ is the diffraction angle corresponding to the main diffuse peak in the X-ray diffraction spectrum.
所述Al-TM-RE三元非晶合金体系中:TM为过渡族元素,RE为稀土元素。In the Al-TM-RE ternary amorphous alloy system: TM is a transition group element, and RE is a rare earth element.
在Al-TM-RE合金体系中,通过微量添加Co或La元素,当δ=0.009时,四元铝基非晶合金的非晶形成能力最优,可制备出临界尺寸为1mm(直径)的铝基非晶合金棒材。按原子百分含量计,所述临界尺寸为1mm(直径)的铝基非晶合金棒材的合金成分为:Al 86%,Ni6.75%,Co 2.25%,Y 5%;或者,所述临界尺寸为1mm(直径)的铝基非晶合金棒材的合金成分为:Al 86%,Ni 9%,Y 3.25%,La 1.75%。In the Al-TM-RE alloy system, by adding a small amount of Co or La elements, when δ=0.009, the amorphous formation ability of the quaternary aluminum-based amorphous alloy is the best, and the critical size of 1mm (diameter) can be prepared. Aluminum based amorphous alloy rods. In terms of atomic percentage, the alloy composition of the aluminum-based amorphous alloy rod with a critical dimension of 1 mm (diameter) is: Al 86%, Ni 6.75%, Co 2.25%, Y 5%; or, the The alloy composition of the aluminum base amorphous alloy rod with a critical dimension of 1mm (diameter) is: Al 86%, Ni 9%, Y 3.25%, La 1.75%.
在Al-TM-RE合金体系中,通过微量添加Co或La元素,当δ=0.001时,五元铝基非晶合金体系的非晶形成能力最优,可制备出临界尺寸为1.5mm(直径)的五元完全块体铝基非晶合金。按原子百分含量计,所述临界尺寸为1.5mm(直径)的铝基非晶合金棒材的合金成分为:Al 86%,Ni 6.75%,Co 2.25%,Y 3.25%,La 1.75%。In the Al-TM-RE alloy system, by adding a small amount of Co or La elements, when δ=0.001, the amorphous formation ability of the five-element aluminum-based amorphous alloy system is optimal, and a critical size of 1.5mm (diameter ) of the five-element complete bulk aluminum-based amorphous alloy. In terms of atomic percentage, the alloy composition of the aluminum-based amorphous alloy rod with a critical dimension of 1.5mm (diameter) is: Al 86%, Ni 6.75%, Co 2.25%, Y 3.25%, La 1.75%.
本发明的设计原理及有益效果如下:Design principle of the present invention and beneficial effect are as follows:
在Al-TM(过渡族元素)-RE(稀土元素)三元非晶合金体系基础上,微量添加TM与RE元素存在不同的电子作用机制,其中,微量添加TM元素可造成体系中费米面直径的改变,而微量添加RE元素则与伪布里渊区直径的改变相关,二者的改变分别对体系的非晶形成能力具有不同的影响。根据上述分析,令δ=|KP-2KF|,其中,2KF是费米面的直径,KP是伪布里渊区的直径。具体计算方式为:λ是X射线的波长,θ是X射线衍射谱中主漫散峰对应的衍射角;ZFEM是自由电子贡献的电子数,Zhyb是电子杂化效应贡献的电子数,n0是原子数密度。依据金属玻璃电子结构原理,当δ值趋近于0时,体系的总能量趋于最低,非晶形成能力则增强。因此可根据这一方法对该体系的非晶形成能力进行调控而制备大尺寸的铝基非晶合金。计算结果表明:当δ=0.009时,四元铝基非晶合金的非晶形成能力最优,可制备出临界尺寸为1mm直径的铝基非晶合金棒材,其中一种成分配比为:Al86,Ni6.75,Co2.25,Y5(at.%),另一种成分配比为:Al86,Ni9,Y3.25,La1.75(at.%);而当δ=0.001时,五元铝基非晶合金体系可达到最佳状态,并制备出直径为1.5mm的五元完全块体铝基非晶合金,其成分配比为:Al86,Ni6.75,Co2.25,Y3.25,La1.75(at.%)。该方法的提出解决了以往铝基非晶合金成分设计存在的大量资源浪费问题,并设计出了目前国际上最大尺寸的五元完全块体铝非晶合金。本发明对扩大轻质高强铝基非晶合金的应用范围具有重要的推进作用。On the basis of the Al-TM (transition group elements)-RE (rare earth elements) ternary amorphous alloy system, there are different electronic interaction mechanisms between trace additions of TM and RE elements, among which, trace additions of TM elements can cause the Fermi surface diameter in the system , while the micro-addition of RE elements is related to the change of the diameter of the pseudo-Brillouin zone, and the changes of the two have different effects on the amorphous formation ability of the system. According to the above analysis, let δ=|K P -2K F |, where 2K F is the diameter of the Fermi surface, and K P is the diameter of the pseudo-Brillouin zone. The specific calculation method is: λ is the wavelength of X-rays, θ is the diffraction angle corresponding to the main diffuse peak in the X-ray diffraction spectrum; Z FEM is the number of electrons contributed by free electrons, Z hyb is the number of electrons contributed by the electron hybridization effect, and n 0 is the atomic number density. According to the principle of electronic structure of metallic glasses, when the δ value approaches 0, the total energy of the system tends to be the lowest, and the ability to form amorphous is enhanced. Therefore, according to this method, the amorphous-forming ability of the system can be adjusted to prepare large-sized aluminum-based amorphous alloys. The calculation results show that: when δ=0.009, the amorphous formation ability of the quaternary aluminum-based amorphous alloy is optimal, and an aluminum-based amorphous alloy rod with a critical size of 1 mm in diameter can be prepared, and one of the component ratios is: Al86, Ni6.75, Co2.25, Y5 (at.%), another composition ratio is: Al86, Ni9, Y3.25, La1.75 (at.%); and when δ=0.001, five The elemental aluminum-based amorphous alloy system can reach the best state, and a five-element complete bulk aluminum-based amorphous alloy with a diameter of 1.5mm is prepared, and its composition ratio is: Al86, Ni6.75, Co2.25, Y3. 25, La1.75 (at.%). The proposal of this method solves the problem of a large amount of waste of resources in the composition design of aluminum-based amorphous alloys in the past, and designs the five-element complete bulk aluminum amorphous alloy with the largest size in the world. The invention plays an important role in promoting the expansion of the application range of the light-weight and high-strength aluminum-based amorphous alloy.
附图说明Description of drawings
图1是本发明合金成分设计方法图;其中(a)-(l)中都使设计成分接近于2KF=Kp;Fig. 1 is a diagram of the alloy composition design method of the present invention; wherein (a)-(l) all make the design composition close to 2K F = Kp;
图2是2KF和Kp关系图;Fig. 2 is a relation diagram of 2K F and K p ;
图3是直径为1.5mm棒材(Al86Ni6.75Co2.25Y3.25La1.75)样品的DSC和XRD照片;Fig. 3 is the DSC and XRD photo of the 1.5mm rod (Al 86 Ni 6.75 Co 2.25 Y 3.25 La 1.75 ) sample;
图4是Al86Ni6.75Co2.25Y3.25La1.75合金的高分辨TEM照片。Fig. 4 is a high-resolution TEM photo of Al 86 Ni 6.75 Co 2.25 Y 3.25 La 1.75 alloy.
具体实施方式detailed description
下面结合附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with the accompanying drawings, but the embodiments of the present invention are not limited thereto.
本发明为调控铝基非晶形成能力的合金成分设计方法,该方法是根据在Al-TM(过渡族元素)-RE(稀土元素)三元非晶合金体系中微量添加TM与RE元素不同的电子作用机制,令δ=|KP-2KF|,其中,2KF是费米面的直径,KP是伪布里渊区的直径。具体计算方式为:λ是X射线的波长,θ是X射线衍射谱中主漫散峰对应的衍射角;ZFEM是自由电子贡献的电子数,Zhyb是电子杂化效应贡献的电子数,n0是原子数密度。而当δ值趋近于0时,体系的总能量趋于最低,非晶形成能力则增强。因此可根据这一方法对该体系的非晶形成能力进行调控而制备大尺寸的铝基非晶合金。The present invention is an alloy composition design method for adjusting and controlling the formation ability of aluminum-based amorphous. The method is based on adding a small amount of different TM and RE elements in the Al-TM (transition group element)-RE (rare earth element) ternary amorphous alloy system. Electron interaction mechanism, let δ=|K P -2K F |, where 2K F is the diameter of the Fermi surface, and K P is the diameter of the pseudo-Brillouin zone. The specific calculation method is: λ is the wavelength of X-rays, θ is the diffraction angle corresponding to the main diffuse peak in the X-ray diffraction spectrum; Z FEM is the number of electrons contributed by free electrons, Z hyb is the number of electrons contributed by the electron hybridization effect, and n 0 is the atomic number density. And when the δ value is close to 0, the total energy of the system tends to be the lowest, and the ability of amorphous formation is enhanced. Therefore, according to this method, the amorphous-forming ability of the system can be adjusted to prepare large-sized aluminum-based amorphous alloys.
在Al-TM(过渡族元素)-RE(稀土元素)合金体系中,通过微量添加Co或La元素,当δ=0.009时,四元铝基非晶合金的非晶形成能力最优,可制备出临界尺寸为1mm直径的铝基非晶合金棒材,其中一种成分配比为(at.%):Al 86%,Ni 6.75%,Co2.25%,Y5%,另一种成分配比为(at.%):Al 86%,Ni 9%,Y 3.25%,La 1.75%;当δ=0.001时,五元铝基非晶合金体系可达到最佳状态,并制备出直径为1.5mm的五元完全块体铝基非晶合金,其成分配比为(at.%):Al86%,Ni6.75%,Co2.25%,Y3.25%,La1.75%。In the Al-TM (transition group element)-RE (rare earth element) alloy system, by adding a small amount of Co or La element, when δ=0.009, the amorphous formation ability of the quaternary aluminum-based amorphous alloy is optimal, and can be prepared Aluminum-based amorphous alloy rods with a critical size of 1 mm in diameter, one of which has a composition ratio of (at.%): Al 86%, Ni 6.75%, Co2.25%, Y5%, and another composition ratio For (at.%): Al 86%, Ni 9%, Y 3.25%, La 1.75%; when δ=0.001, the five-element aluminum-based amorphous alloy system can reach the best state, and the diameter of 1.5mm The five-element complete bulk aluminum-based amorphous alloy has a composition ratio (at.%): Al86%, Ni6.75%, Co2.25%, Y3.25%, La1.75%.
实施例1Example 1
选取铝基三元非晶合金中非晶形成能力最强的合金成分(Al86Ni9Y5),如图1所示,通过微量添加La原子,改变伪布里渊区的直径(KP);通过微量添加Co原子,改变费米面的直径(2KF),根据δ值判据:δ=|KP-2KF|,其中,λ是X射线的波长,θ是X射线衍射谱中主漫散峰对应的衍射角;ZFEM是自由电子贡献的电子数,Zhyb是电子杂化效应贡献的电子数,n0是原子数密度(n0=ρNAv/M,ρ是金属玻璃的密度,M是摩尔质量,NAv是阿伏伽德罗常数);而当δ值趋近于0时,体系的总能量趋于最低,非晶形成能力则增强。针对五元铝基非晶合金成分:Al86;Ni6.75;Co2.25;Y3.25;La1.75(at.%),其中,ZFEM=∑iCiZi,C是原子百分比含量,Z(Ni,Co)=2,Z(Al)=3,Z(Y,La)=3,由于Al原子和Ni(Co)原子存在电子轨道杂化效应,Zhyb=CNi(nNi-8)+CCo(nCo-7),nNi和nCo值通过测量电子能量损失谱(EELS)的Ni和Co原子白线峰得出。由此计算出δ=0.001(图2所示),其值接近于零。据此制备出了尺寸为1.5mm合金棒材,图3的DSC和XRD照片以及图4的高分辨TEM照片充分证明了此合金棒材是完全非晶。Select the alloy composition with the strongest amorphous forming ability (Al 86 Ni 9 Y 5 ) in the aluminum-based ternary amorphous alloy, as shown in Figure 1, change the diameter of the pseudo-Brillouin zone (K P ); change the diameter (2K F ) of the Fermi surface by adding a small amount of Co atoms, according to the δ value criterion: δ=|K P -2K F |, wherein, λ is the wavelength of X-rays, θ is the diffraction angle corresponding to the main diffuse peak in the X-ray diffraction spectrum; Z FEM is the number of electrons contributed by free electrons, Z hyb is the number of electrons contributed by electron hybridization effect, n 0 is the atomic number density (n 0 =ρN Av /M, ρ is the density of metallic glass, M is the molar mass, N Av is Avogadro's constant); and when the δ value is close to 0, the total energy of the system tends to be the lowest, and the amorphous formation ability is enhanced. For the five-element aluminum-based amorphous alloy composition: Al86 ; Ni6.75 ; Co2.25 ; Y3.25 ; , Z(Ni,Co)=2, Z(Al)=3, Z(Y,La)=3, due to the electronic orbital hybridization effect of Al atom and Ni(Co) atom, Z hyb =C Ni (n Ni -8)+C Co (n Co -7), n Ni and nCo values were obtained by measuring the white line peaks of Ni and Co atoms in electron energy loss spectroscopy (EELS). From this, it is calculated that δ=0.001 (shown in FIG. 2 ), which is close to zero. Based on this, an alloy rod with a size of 1.5mm was prepared. The DSC and XRD photos in Fig. 3 and the high-resolution TEM photos in Fig. 4 fully prove that the alloy rod is completely amorphous.
实施例2Example 2
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加La和Co元素成分不同,合金成分为:Al86Ni6Co3Y4La1。The trace addition of La and Co elements is different, and the alloy composition is: Al 86 Ni 6 Co 3 Y 4 La 1 .
结果:δ(=|KP-2KF|)=0.008,大于实施例1,临界尺寸为1.08mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.008, which is larger than that of Example 1, the critical dimension is 1.08 mm, and the ability of forming amorphous is lower than that of Example 1.
实施例3Example 3
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加La元素成分不同,合金成分为:Al86Ni6.75Co2.25Y4La1。The composition of the La element added in a small amount is different, and the alloy composition is: Al 86 Ni 6.75 Co 2.25 Y 4 La 1 .
结果:δ(=|KP-2KF|)=0.006,大于实施例1,临界尺寸为1.25mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.006, larger than that of Example 1, the critical dimension is 1.25 mm, and the ability to form amorphous is lower than that of Example 1.
实施例4Example 4
与实施例1的不同之处在于:The difference with Example 1 is:
没有添加Co元素,合金成分为:Al86Ni9Y3.25La1.75。No Co element is added, and the alloy composition is: Al 86 Ni 9 Y 3.25 La 1.75 .
结果:δ(=|KP-2KF|)=0.009,大于实施例1,临界尺寸为1mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.009, greater than that of Example 1, the critical dimension is 1 mm, and the ability to form amorphous is lower than that of Example 1.
实施例5Example 5
与实施例1的不同之处在于:The difference with Example 1 is:
没有添加La元素,合金成分为:Al86Ni6.75Co2.25Y5。No La element is added, and the alloy composition is: Al 86 Ni 6.75 Co 2.25 Y 5 .
结果:δ(=|KP-2KF|)=0.009,大于实施例1,临界尺寸为1mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.009, greater than that of Example 1, the critical dimension is 1 mm, and the ability to form amorphous is lower than that of Example 1.
实施例6Example 6
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加La和Co元素成分不同,合金成分为:Al86Ni6Co3Y3.5La1.5。The trace addition of La and Co elements is different, and the alloy composition is: Al 86 Ni 6 Co 3 Y 3.5 La 1.5 .
结果:δ(=|KP-2KF|)值大于实施例1,非晶形成能力低于实施例1。Results: The value of δ(=|K P -2K F |) is greater than that of Example 1, and the ability to form amorphous is lower than that of Example 1.
实施例7Example 7
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加La元素成分不同,合金成分为:Al86Ni6.75Co2.25Y3.5La1.5。The composition of the La element added in a small amount is different, and the alloy composition is: Al 86 Ni 6.75 Co 2.25 Y 3.5 La 1.5 .
结果:δ(=|KP-2KF|)=0.003,大于实施例1,临界尺寸为1.32mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.003, larger than that of Example 1, the critical dimension is 1.32mm, and the ability to form amorphous is lower than that of Example 1.
实施例8Example 8
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加Co元素成分不同,合金成分为:Al86Ni6Co3Y3.25La1.75。The trace addition of Co elements is different, and the alloy composition is: Al 86 Ni 6 Co 3 Y 3.25 La 1.75 .
结果:δ(=|KP-2KF|)=0.011,大于实施例1,临界尺寸为0.92mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.011, larger than that of Example 1, the critical dimension is 0.92 mm, and the ability to form amorphous is lower than that of Example 1.
实施例9Example 9
与实施例1的不同之处在于:The difference with Example 1 is:
微量添加Co元素成分不同,合金成分为:Al86Ni4.5Co4.5Y3.25La1.75。The composition of trace addition of Co element is different, the alloy composition is: Al 86 Ni 4.5 Co 4.5 Y 3.25 La 1.75 .
结果:δ(=|KP-2KF|)=0.015,大于实施例1,临界尺寸为0.74mm,非晶形成能力低于实施例1。Results: δ(=|K P -2K F |)=0.015, larger than that of Example 1, the critical dimension is 0.74 mm, and the ability to form amorphous is lower than that of Example 1.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710085143.0A CN106868430A (en) | 2017-02-17 | 2017-02-17 | A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710085143.0A CN106868430A (en) | 2017-02-17 | 2017-02-17 | A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106868430A true CN106868430A (en) | 2017-06-20 |
Family
ID=59166190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710085143.0A Pending CN106868430A (en) | 2017-02-17 | 2017-02-17 | A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106868430A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779683A (en) * | 2017-11-02 | 2018-03-09 | 济南大学 | A kind of Al base noncrystal alloys and preparation method thereof |
CN109252060A (en) * | 2018-09-30 | 2019-01-22 | 山东大学 | A kind of preparation method of crystal-amorphous aluminum matrix composite |
CN109440048A (en) * | 2018-12-21 | 2019-03-08 | 中国特种飞行器研究所 | A kind of aluminium-based amorphous alloy coating of ultrahigh relative density and preparation method thereof |
CN109604547A (en) * | 2019-02-01 | 2019-04-12 | 中国科学院金属研究所 | A method for improving the corrosion resistance of Al-Y-TM series aluminum-based amorphous alloys |
CN109881125A (en) * | 2019-04-17 | 2019-06-14 | 常州大学 | A method for widening the precipitation temperature range of aluminum-based amorphous primary crystals |
CN110938786A (en) * | 2019-06-20 | 2020-03-31 | 中国科学院金属研究所 | High-corrosion-resistance Al-TM-RE amorphous aluminum alloy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1341771A (en) * | 2001-08-10 | 2002-03-27 | 大连理工大学 | Large-block amorphous alloy component design method |
-
2017
- 2017-02-17 CN CN201710085143.0A patent/CN106868430A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1341771A (en) * | 2001-08-10 | 2002-03-27 | 大连理工大学 | Large-block amorphous alloy component design method |
Non-Patent Citations (1)
Title |
---|
N.C.WU: "《Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying》", 《ACTA MATERIALIA》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779683A (en) * | 2017-11-02 | 2018-03-09 | 济南大学 | A kind of Al base noncrystal alloys and preparation method thereof |
CN107779683B (en) * | 2017-11-02 | 2019-08-27 | 济南大学 | A kind of Al-based amorphous alloy and preparation method thereof |
CN109252060A (en) * | 2018-09-30 | 2019-01-22 | 山东大学 | A kind of preparation method of crystal-amorphous aluminum matrix composite |
CN109440048A (en) * | 2018-12-21 | 2019-03-08 | 中国特种飞行器研究所 | A kind of aluminium-based amorphous alloy coating of ultrahigh relative density and preparation method thereof |
CN109604547A (en) * | 2019-02-01 | 2019-04-12 | 中国科学院金属研究所 | A method for improving the corrosion resistance of Al-Y-TM series aluminum-based amorphous alloys |
CN109881125A (en) * | 2019-04-17 | 2019-06-14 | 常州大学 | A method for widening the precipitation temperature range of aluminum-based amorphous primary crystals |
CN110938786A (en) * | 2019-06-20 | 2020-03-31 | 中国科学院金属研究所 | High-corrosion-resistance Al-TM-RE amorphous aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106868430A (en) | A kind of alloy component design method of regulation and control aluminium-based amorphous alloy Forming ability | |
CN103255324B (en) | Aluminum alloy material suitable for manufacturing car body panel and preparation method | |
Qu et al. | The solution and room temperature aging behavior of Mg–9Li–xAl (x= 3, 6) alloys | |
CN107385299A (en) | A kind of high-module high-strength magnesium-based composite material and preparation method thereof | |
CN103060638A (en) | Two-stage aging process of Al-Zn-Mg-Cu-Zr-Er alloy | |
Murashkin et al. | Potency of severe plastic deformation processes for optimizing combinations of strength and electrical conductivity of lightweight Al-based conductor alloys | |
Wang et al. | Hot deformation behavior and processing map of 6063 aluminum alloy | |
CN114512203A (en) | Component design method of cobalt, iron and heavy rare earth ternary system amorphous alloy | |
Tian et al. | Effect of Ce addition on microstructure, mechanical properties and corrosion behavior of Al-Cu-Mn-Mg-Fe alloy | |
Hakan et al. | A novel medium entropy alloy based on iron-manganese-aluminum-nickel: influence of boron addition on phase formation, microstructure, and mechanical properties | |
Xie et al. | Study on quenching sensitivity of 7097 aluminum alloy | |
Zuo et al. | Investigation of deformation induced precipitation and the related microstructure evolution of Al–Zn–Mg–Cu alloy | |
Ding et al. | Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy | |
Wang et al. | Microstructure evolution of high-alloyed Al–Zn–Mg–Cu–Zr alloy containing trace amount of Sc during homogenization | |
CN107330215A (en) | A kind of method for calculating solid-solution material twin formation ability | |
Wan et al. | A novel laser-cladded AlCuTiVCr/Cu-Al functionally graded coating with excellent corrosion resistance on Mg-Li alloy | |
Huang et al. | Effects of Sc addition on microstructure, mechanical and corrosion resistance properties of 7055 Al alloy | |
Jia et al. | Strengthening effects of Y and Sr on Al–9Si–0.5 Mg alloy | |
Su et al. | Quantitative evaluation of the short-range order strengthening effect on solid solution and GB strength of Mg–Y alloys by ab initio calculations | |
Duan et al. | Influence of two-stage ageing process and Cu additions on conductive Al alloys based on AA 6063 | |
CN107245600A (en) | A kind of tin phosphorus pltine and preparation method thereof | |
Ye et al. | Quench sensitivity of a 7A46 aluminum alloy | |
Tang et al. | First principle calculation and thermodynamic analysis of coexisting phase of Cu-Cr-Sn copper alloy | |
Duan et al. | Rapid bake-hardening response of Al–Mg–Si alloy during two-stage pre-aging heat treatment | |
Feng et al. | Study on the microstructures of Al-2.5% Mn alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170620 |
|
RJ01 | Rejection of invention patent application after publication |