CN106861756B - 一种Au-Pt双金属纳米复合胶束及制备方法与应用 - Google Patents

一种Au-Pt双金属纳米复合胶束及制备方法与应用 Download PDF

Info

Publication number
CN106861756B
CN106861756B CN201710128679.6A CN201710128679A CN106861756B CN 106861756 B CN106861756 B CN 106861756B CN 201710128679 A CN201710128679 A CN 201710128679A CN 106861756 B CN106861756 B CN 106861756B
Authority
CN
China
Prior art keywords
polymer
micelle
pnipam
nano composite
composite micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710128679.6A
Other languages
English (en)
Other versions
CN106861756A (zh
Inventor
柴志华
张展展
王彦霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Institute of Science and Technology
Original Assignee
North China Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Institute of Science and Technology filed Critical North China Institute of Science and Technology
Priority to CN201710128679.6A priority Critical patent/CN106861756B/zh
Publication of CN106861756A publication Critical patent/CN106861756A/zh
Application granted granted Critical
Publication of CN106861756B publication Critical patent/CN106861756B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明提供了一种聚合物接枝的Au‑Pt双金属纳米复合胶束的制备方法,纳米材料技术领域。具体步骤为,合成嵌段共聚物P4VP‑b‑PNIPAM;将嵌段共聚物P4VP‑b‑PNIPAM溶解在pH=2.0的盐酸溶液中,向聚合物溶液中加入氯金酸,搅拌吸附2‑6h后,再加入NaBH4水溶液进行还原,反应72h后,离心,透析,利用金粒子和硫醇的相互作用,得到以Au为核的聚合物胶束;将一定浓度的氯铂酸加入到聚合物胶束中,再通过加入NaBH4水溶液进行还原,反应72h后,离心、透析,得到以Au核Pt壳结构的复合胶束,该复合胶束应用于硼氢化钠还原对硝基苯酚过程中,表现出较好的催化活性。本发明方法简单、易于操作,成本低,复合胶束的粒径均一,分散性好,在催化等领域有着广阔的应用前景。

Description

一种Au-Pt双金属纳米复合胶束及制备方法与应用
技术领域
本发明属于纳米材料技术领域,特别是涉及一种两步法化学还原制备聚合物接枝的Au-Pt双金属纳米复合胶束,应用于硼氢化钠还原对硝基苯酚过程中,表现出较好的催化活性。
背景技术
在过去的几十年中,贵金属纳米粒子由于具有独特的物理化学性质,而在催化、电子器件、信息存储、光学器件、生物传感、微区成像以及医药等方面具有巨大的应用潜力。与单金属纳米粒子相比,双金属纳米粒子由于其较小的粒径和比较大的比表面积表现出很多新的性能,因此受到人们广泛的关注。但是双金属纳米粒子在溶液中易发生聚集沉淀,稳定性较差,因此在溶液中如何制备粒径可控的双金属纳米粒子成为研究的热点之一。
利用嵌段共聚物作为改性金属纳米粒子的载体能够明显提升贵金属纳米粒子的稳定性,使其获得优异的催化性能。尤其是利用RAFT合成的聚合物带有的双硫酯端基能够一步法制备金纳米粒子:由于双硫酯端基能连接在金粒子表面,由此形成的复合粒子表现出很好的分散性和形态的控制性。而嵌段共聚物中另外一段聚合物还可以负载其他的贵金属纳米粒子,从而制备出负载双金属纳米粒子的复合胶束。
基于此,我们提出利用嵌段共聚物P4VP-b-PNIPAM来负载Au-Pt双金属纳米粒子。第一步利用RAFT合成端基为双硫的嵌段共聚物,然后利用金颗粒和硫醇相互作用制备了聚合物稳定金纳米粒子。第二步将Pt粒子引入金的表面,利用4VP中吡啶环中的N与Pt的络合作用,形成了聚合物接枝的Au-Pt为的双金属纳米复合胶束,这种复合胶束应用在还原对-硝基苯酚时表现出很高的催化活性。
发明内容
针对现有技术中存在的不足,本发明提供了一种制备聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法。
具体的,本发明提供的制备聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,具体包括以下步骤:
S1:合成嵌段共聚物P4VP-b-PNIPAM,所述嵌段共聚物P4VP-b-PNIPAM的分子量分布在1.3以内;
S2:室温下将所述嵌段共聚物P4VP-b-PNIPAM溶解在pH=2.0的盐酸缓冲溶液中,得到聚合物溶液,向聚合物溶液中加入氯金酸,搅拌吸附2-6h后,加入NaBH4水溶液进行还原,反应72h后,离心,透析,得到以Au为核的聚合物胶束;
S3:在搅拌的作用下向所述聚合物胶束中再加入可溶性氯铂酸,搅拌吸附2-6h后,再加入NaBH4水溶液,NaBH4与所述氯铂酸的摩尔比为10:1,反应72h后,离心,透析,得到负载Au-Pt双金属纳米复合胶束。
优选地,所述嵌段共聚物P4VP-b-PNIPAM采用可逆加成断裂的活性自由基聚合的方法合成。
优选地,S2和S3中,所述透析过程的截留分子量均为3500。
优选地,S2中,所述嵌段共聚物P4VP-b-PNIPAM与所述氯金酸的反应摩尔比为10:1。
优选地,S3中,所述P4VP-b-PNIPAM中的4-乙烯基吡啶与所述氯铂酸的摩尔比为10-50:1。
本发明还提供了一种聚合物接枝的Au-Pt双金属纳米复合胶束,由上述任一方法制备得到。
优选地,本发明提供的聚合物接枝的Au-Pt双金属纳米复合胶束应用于硼氢化钠还原对硝基苯酚过程中,表现出较好的催化活性。
本发明提供的复合胶束由嵌段共聚物、Au、Pt双金属纳米粒子组成。其制备方法简单、易于操作,成本低,复合胶束粒径均一,分散性好,易于推广应用,特别是在催化等领域有着广阔的应用前景。
附图说明
图1为实施例1中聚合物接枝的Au-Pt双金属纳米粒子的复合胶束的透射电镜照片图;
图2为实施例1制备得到的复合胶束催化还原对硝基苯酚的紫外光谱变化曲线。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例不作为对本发明的限定。
需要说明的是,以下实施例中所用到的试剂若无特别说明,均为常规试剂,可在市场上购买得到,所涉及的相关化合物的制备方法或检测方法,若无特别说明,均为常规方法。
本发明一种聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,具体包括以下步骤:
S1:合成嵌段共聚物P4VP-b-PNIPAM,所述嵌段共聚物P4VP-b-PNIPAM的分子量分布在1.3以内;
S2:室温下将所述嵌段共聚物P4VP-b-PNIPAM溶解在pH=2.0的盐酸缓冲溶液中,得到聚合物溶液,向聚合物溶液中加入氯金酸,搅拌吸附2-6h后,加入NaBH4水溶液进行还原,反应72h后,离心,透析,得到以Au为核的聚合物胶束;
S3:在搅拌的作用下向所述聚合物胶束中再加入可溶性氯铂酸,搅拌吸附2-6h后,再加入NaBH4水溶液,NaBH4与所述氯铂酸的摩尔比为10:1,反应72h后,离心,透析,得到负载Au-Pt双金属纳米复合胶束。
上述方法简单,易于操作,制备成本低,制备的复合胶束,粒径均一为纳米级,分散性好。可作为催化剂应用于硼氢化钠还原对硝基苯酚过程中,表现出较好的催化活性。
以下就具体的示例对本发明的技术方案进行具体的举例说明。
实施例1
一种聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,具体步骤如下:
采用可逆加成断裂的活性自由基聚合(RAFT)方法,以2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸为链引发剂,依次加入N-异丙基丙烯酰胺(NIPMA)和4-乙烯基吡啶活性聚合得到嵌段共聚物P4VP-b-PNIPAM,该嵌段共聚物P4VP-b-PNIPAM的分子量分布在1.3以内。
室温下将嵌段共聚物P4VP-b-PNIPAM溶解在pH=2.0的盐酸缓冲溶液中,得到聚合物溶液,向聚合物溶液中加入氯金酸,氯金酸与嵌段共聚物的摩尔比为1:10,搅拌吸附4h后,加入NaBH4水溶液进行还原,反应72h后,离心,透析,得到以Au为核的聚合物胶束。
在搅拌的作用下向所聚合物胶束中再加入可溶性氯铂酸,嵌段共聚物中4-乙烯基吡啶与氯铂酸的摩尔比10:1,搅拌吸附4h后,再加入NaBH4水溶液,NaBH4与氯铂酸的摩尔比为10:1,反应72h后,离心,透析,得到聚合物接枝的Au-Pt双金属纳米复合胶束。
对实施例1所制得的复合胶束进行透射电镜测试,透射电镜样品的制备具体为:在室温条件下,用镊子夹持涂有碳膜铜网的一边,使铜网平面略与水平面倾斜。将一滴稀释过的聚合物胶束溶液滴到铜网表面,片刻后用滤纸吸去大部分溶液,待铜网自然晾干后,真空下室温干燥12h以上,保存,然后用透射电子显微镜对复合胶束的形态进行表征。其透射电镜的结果如图1所示,复合胶束的粒径为40nm。
以下通过NaBH4还原对硝基苯酚作为一个典型反应对实施例1制得的聚合物接枝的Au-Pt双金属纳米复合胶束的催化活性进行测试,具体方法为:在标准石英比色皿中加入对硝基苯酚和NaBH4溶液(pH=10,用1mol/mL的NaOH溶液调节),恒温到25℃,然后快速加入相同温度的上述复合胶束。在25℃下,每隔一段时间记录一次紫外可见光谱,分析特征峰强度的变化和观察溶液颜色的改变,如图2所示,催化反应完成时,溶液颜色由淡黄色变为无色。
实施例2
一种聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其具体步骤和实施例1相同,不同之处仅在于,嵌段共聚物中4-乙烯基吡啶与氯铂酸的摩尔质量比为R=25。
实施例3
一种聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其具体步骤和实施例1相同,不同之处仅在于,嵌段共聚物中4-乙烯基吡啶与氯铂酸的摩尔质量比为R=50。
对实施例2和实施例3所制得的复合胶束同样进行透射电镜观察,发现其形态和实施例1相同,复合胶束的粒径逐渐变小,经催化活性测试发现也具有较高的催化活性。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。

Claims (7)

1.一种聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其特征在于,具体包括以下步骤:
S1:合成嵌段共聚物P4VP-b-PNIPAM,所述嵌段共聚物P4VP-b-PNIPAM的分子量分布在1.3以内;
S2:室温下将所述嵌段共聚物P4VP-b-PNIPAM溶解在pH=2.0的盐酸缓冲溶液中,得到聚合物溶液,向聚合物溶液中加入氯金酸,搅拌吸附2-6h后,加入NaBH4水溶液进行还原,反应72h后,离心,透析,得到以Au为核的聚合物胶束;
所述嵌段共聚物P4VP-b-PNIPAM采用可逆加成断裂的活性自由基聚合的方法合成;
S3:在搅拌的作用下向所述聚合物胶束中再加入可溶性氯铂酸,搅拌吸附2-6h后,再加入NaBH4水溶液,NaBH4与所述氯铂酸的摩尔比为10:1,反应72h后,离心,透析,得到负载Au-Pt双金属的纳米复合胶束。
2.根据权利要求1所述的聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其特征在于,所获得的聚合物胶束为纳米级。
3.根据权利要求1所述聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其特征在于,S2和S3中,所述透析过程中的截留分子量均为3500。
4.根据权利要求1所述聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其特征在于,S2中,所述嵌段共聚物P4VP-b-PNIPAM与所述氯金酸的反应摩尔比为10:1。
5.根据权利要求1所述聚合物接枝的Au-Pt双金属纳米复合胶束的制备方法,其特征在于,S3中,所述P4VP-b-PNIPAM中的4-乙烯基吡啶与所述氯铂酸的摩尔比为10-50:1。
6.一种聚合物接枝的Au-Pt双金属纳米复合胶束,其特征在于,由权利要求1-5任一所述的方法制备得到。
7.根据权利要求6所述聚合物接枝的Au-Pt双金属纳米复合胶束,其特征在于,作为催化剂应用在硼氢化钠还原对-硝基苯酚中。
CN201710128679.6A 2017-03-06 2017-03-06 一种Au-Pt双金属纳米复合胶束及制备方法与应用 Expired - Fee Related CN106861756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710128679.6A CN106861756B (zh) 2017-03-06 2017-03-06 一种Au-Pt双金属纳米复合胶束及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710128679.6A CN106861756B (zh) 2017-03-06 2017-03-06 一种Au-Pt双金属纳米复合胶束及制备方法与应用

Publications (2)

Publication Number Publication Date
CN106861756A CN106861756A (zh) 2017-06-20
CN106861756B true CN106861756B (zh) 2019-08-02

Family

ID=59170429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710128679.6A Expired - Fee Related CN106861756B (zh) 2017-03-06 2017-03-06 一种Au-Pt双金属纳米复合胶束及制备方法与应用

Country Status (1)

Country Link
CN (1) CN106861756B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107755689B (zh) * 2017-09-22 2019-09-03 安康德美(中山)纳米科技有限公司 含Pt-Au双金属纳米粒子及其制备方法
CN108682875B (zh) * 2018-05-23 2021-03-30 武汉科利尔立胜工业研究院有限公司 一种基于铂载量可控的铂-纳米空心碳球催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162452A (zh) * 2014-07-18 2014-11-26 复旦大学 一种用可回收模板制备蛋黄-蛋壳结构杂化纳米粒子的方法
CN105016295A (zh) * 2015-06-11 2015-11-04 江苏科技大学 一种加热光照控制合成的金纳米颗粒阵列结构及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162452A (zh) * 2014-07-18 2014-11-26 复旦大学 一种用可回收模板制备蛋黄-蛋壳结构杂化纳米粒子的方法
CN105016295A (zh) * 2015-06-11 2015-11-04 江苏科技大学 一种加热光照控制合成的金纳米颗粒阵列结构及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhanced stability of ZnTPPS by polymeric gold nanoparticles in acidic aqueous solutions;Zhihua Chai et al.;《Journal of Macromolecular Science,Part A:Pure and Applied Chemistry》;20160406;第53卷(第5期);271页2.2、2.3部分
铂纳米粒子的制备及其功能化研究;柴志华等;《华北科技学院学报》;20160630;第13卷(第6期);64页1.3、1.4部分

Also Published As

Publication number Publication date
CN106861756A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
Amalvy et al. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates
Yuan et al. Stimuli-responsive organosilica hybrid nanowires decorated with metal nanoparticles
Du et al. Self‐Assembly of Hydrophilic Homopolymers: A Matter of RAFT End Groups
JP4638128B2 (ja) 水性媒体における増強された分散性を有する、表面が修飾された半導性および金属性のナノ粒子
Muddineti et al. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer
Bradley et al. Distribution of CdSe quantum dots within swollen polystyrene microgel particles using confocal microscopy
Gan et al. Interfacial Nonradiative Energy Transfer in Responsive Core− Shell Hydrogel Nanoparticles
Xia et al. Synthesis and light scattering study of microgels with interpenetrating polymer networks
Zhang et al. Structural difference in macro-RAFT agents redirects polymerization-induced self-assembly
EP1966260B1 (fr) Procede de preparation de particules composites, particules composites obtenues et leur utilisation dans un test diagnostic
Tripathi et al. Hollow microgel based ultrathin thermoresponsive membranes for separation, synthesis, and catalytic applications
Barthel et al. Synthesis of highly fluorescent copper clusters using living polymer chains as combined reducing agents and ligands
KR100645276B1 (ko) 가교 폴리머, 폴리머 미립자 및 이들의 제조 방법
Wu et al. Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels
Yao et al. Phase transition behavior of HPMC‐AA and preparation of HPMC‐PAA nanogels
CN106861756B (zh) 一种Au-Pt双金属纳米复合胶束及制备方法与应用
Duan et al. pH-Responsive capsules derived from nanocrystal templating
CN106832158B (zh) 一种pH响应性动态壳交联聚合物纳米粒子及其制备方法
Chattopadhyay et al. Ethyl (hydroxyethyl) cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom
Scheid et al. Synthesis of Breathing Metallopolymer Hollow Spheres for Redox‐Controlled Release
Liu et al. Thermo-responsive gold/poly (vinyl alcohol)-b-poly (N-vinylcaprolactam) core–corona nanoparticles as a drug delivery system
Amigoni-Gerbier et al. Ultrafine selective metal-complexing nanoparticles: synthesis by microemulsion copolymerization, binding capacity, and ligand accessibility
Echeverria et al. Effect of gold nanoparticles on the thermosensitivity, morphology, and optical properties of poly (acrylamide–acrylic acid) microgels
JP4874179B2 (ja) 限外濾過膜およびその製造方法、並びにナノ粒子のサイズ分別方法
CN106582860B (zh) 负载有贵金属纳米粒子/金属卟啉的复合胶束及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190802

Termination date: 20200306