CN106856294B - 卤化氢化学激光器波长调控方法 - Google Patents

卤化氢化学激光器波长调控方法 Download PDF

Info

Publication number
CN106856294B
CN106856294B CN201510902730.5A CN201510902730A CN106856294B CN 106856294 B CN106856294 B CN 106856294B CN 201510902730 A CN201510902730 A CN 201510902730A CN 106856294 B CN106856294 B CN 106856294B
Authority
CN
China
Prior art keywords
laser
hydrogen halides
air flow
oxidant
chemical laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510902730.5A
Other languages
English (en)
Other versions
CN106856294A (zh
Inventor
多丽萍
金玉奇
唐书凯
李国富
于海军
王元虎
汪健
曹靖
李留成
王增强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510902730.5A priority Critical patent/CN106856294B/zh
Publication of CN106856294A publication Critical patent/CN106856294A/zh
Application granted granted Critical
Publication of CN106856294B publication Critical patent/CN106856294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本发明是卤化氢化学激光器波长调控方法。卤化氢化学激光器包括氟原子发生器,超音速混合喷管、光学谐振腔和扩压真空系统;该技术是基于成熟的氟化氢或氟化氘化学激光器技术,适当改变或添加其他卤素物种,来实现卤化氢化学激光器的激光输出。本发明通过改变氧化剂和燃料相对碰撞能,出光介质温度来实现传统卤化氢化学激光器波长调控输出,特别是特定振动谱带的高转动能级跃迁谱线激光高效输出(这些谱线在传统激光器中输出占比小于5%)。这些谱线输出的激光器在激光探测、红外对抗策略、激光化学光谱测量等许多领域,都有使用需求。

Description

卤化氢化学激光器波长调控方法
技术领域
本发明涉及迄今为止发展最成熟、输出功率最高能量最大HF/DF化学激光器,以及以此为基础的卤化氢化学激光器。这些激光器输出激光谱线分布在2-5微米的中红外区,如:HBr激光输出波段范围为4.0-4.6um,HCl激光3.6-4.0um,HF激光2.6-3.0um,DF激光3.6-4.0um。这些激光器各自长波区域谱线输出功率很小,输出占比很低,但结合不同的应用领域的使用需求,本发明卤化氢化学激光器波长调控方法,具体地说是基于成熟的HF/DF化学激光技术,通过改变氧化剂、燃料的相对碰撞动能和出光介质温度来实现卤化氢化学激光器波长调控输出,特别是实现特定振动谱带的高转动能级跃迁谱线激光高效输出。
背景技术
自1965年G.Pimentel研制成第一台氯化氢化学激光器以来,化学激光经过了快速发展期,期间先后研制了氯化氢、溴化氢、氟化氢、氟化氘化学激光以及后来的氧碘化学激光和许多潜在的可见光区的化学激光器体系。发展最成熟最具规模的有HF/DF化学激光和氧碘化学激光(COIL),国际上DF化学激光和氧碘化学激光的功率输出水平都已经达到兆瓦量级;氯化氢、溴化氢等卤化氢化学激光器研究的不多,输出功率在百瓦量级。这些激光器输出谱线分布在2-5微米的中红外区,但有些谱线输出功率很小,输出占比很低,结合当前的使用需求,本发明卤化氢化学激光器波长调控技术,目的是实现卤化氢化学激光器需求目标波长的高功率和高占比输出,拓宽化学激光的应用领域和应用范围。特别是在激光探测、激光化学光谱测量、红外对抗策略等许多领域,都有不同波段激光的使用需求。
发明内容
本发明的目的是基于已有成熟的HF/DF化学激光器技术,改变氧化剂、燃料的相对碰撞动能和调整出光介质温度来实现卤化氢化学激光器波长调控输出,实现卤化氢化学激光器波长调控。
为实现本发明的目的,具体技术方案包括:
基于已有成熟的HF/DF化学激光器,改变氧化剂和燃料的相对碰撞动能和调整出光介质温度来实现卤化氢化学激光器波长调控输出,特别是特定振动谱带的高转动能级跃迁谱线激光高效输出(这些谱线在传统激光器中输出占比小于5%)。超音速混合喷管包含氧化剂喷管和燃料喷管,设计氧化剂喷管马赫数大约是燃料喷管马赫数的2倍,氧化剂喷管马赫数3-6,燃料喷管马赫数1.5-3,使喷管出口混合气体的氧化剂和燃料相对动能小于2kcal/mol;通过向光学谐振腔之前的气流流通通道中引入放热化学反应粒子、或引入弛豫粒子、或者调整光学谐振腔之前的气流流通通道的结构,来调整光学谐振腔内出光介质温度,使介质温度处于600-800K。实现卤化氢化学激光器波长调控技术,达到目标谱线高占比输出的目的。
本发明的有益效果是:
本发明可以实现卤化氢化学激光器波长调控,高转动跃迁谱线高占比输出,进而服务于科学研究、医疗、工业和军事领域。以卤化氢化学激光体系为基础,根据使用需求,使激光输出的谱线组成及占比调整到需求的卤化氢化学激光器的输出谱线并且高占比输出。
附图说明
图1为传统的HF激光输出谱线组成及占比;
图2为氧化剂喷管和燃料喷管示意图;
图3为HF化学激光器利用波长调控方法得到的激光输出谱线组成及占比。
具体实施方式
实施例
传统的HF化学激光输出波段谱线见图1(引自《化学激光手册》Gross R.W.BottJ.F.主编,罗静远等译,科学出版社,1987,P230页)。
在HF化学激光器中,超音速混合喷管如图2所示,氧化剂喷管马赫数约为4.0,燃料喷管马赫数约为2.0。在进入光腔之前加入小量氟分子实现温度调控,测量介质温度约为700K,实现了氟化氢化学激光器波长调控输出,达到高转动跃迁、长波谱线高占比输出的目的。图3是HF化学激光器利用波长调控方法得到的激光输出谱线,由图可见,得到的激光输出谱线基本都位于长波区域的跃迁谱线上,这些谱线在传统激光器中占比很小或没有输出。

Claims (3)

1.卤化氢化学激光器波长调控方法,所述卤化氢化学激光器包括超音速混合喷管和光学谐振腔,其特征在于:
超音速混合喷管包含氧化剂喷管和燃料喷管,设计氧化剂喷管马赫数是燃料喷管马赫数的2倍,氧化剂喷管马赫数3-6,燃料喷管马赫数1.5-3,使喷管出口混合气体的氧化剂和燃料相对动能小于2kcal/mol;
通过向光学谐振腔之前的气流流通通道中引入放热化学反应粒子、或通过向光学谐振腔之前的气流流通通道中引入弛豫粒子、或者调整光学谐振腔之前的气流流通通道的结构,来调整光学谐振腔内出光介质温度,使介质温度处于600-800K。
2.按照权利要求1所述的方法,其特征在于:
氧化剂为氟原子,燃料为氢气或氘气。
3.按照权利要求1所述的方法,其特征在于:调整光学谐振腔之前的气流流通通道的结构是使光学谐振腔中气流入口之前的气流流通通道截面积沿气流方向逐渐缩小;
放热化学反应粒子为氟气,弛豫粒子为氮气。
CN201510902730.5A 2015-12-09 2015-12-09 卤化氢化学激光器波长调控方法 Active CN106856294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510902730.5A CN106856294B (zh) 2015-12-09 2015-12-09 卤化氢化学激光器波长调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510902730.5A CN106856294B (zh) 2015-12-09 2015-12-09 卤化氢化学激光器波长调控方法

Publications (2)

Publication Number Publication Date
CN106856294A CN106856294A (zh) 2017-06-16
CN106856294B true CN106856294B (zh) 2019-03-22

Family

ID=59131880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510902730.5A Active CN106856294B (zh) 2015-12-09 2015-12-09 卤化氢化学激光器波长调控方法

Country Status (1)

Country Link
CN (1) CN106856294B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916494A (zh) * 2004-08-16 2007-02-21 气体产品与化学公司 用于燃烧燃料的燃烧器和方法
US7453917B1 (en) * 2005-07-12 2008-11-18 The United States Of America As Represented By The Secretary Of The Air Force Supersonic all gas-phase iodine laser
CN104868347A (zh) * 2014-02-26 2015-08-26 中国科学院大连化学物理研究所 一种高超音速高效混合喷管
CN104868357A (zh) * 2014-02-26 2015-08-26 中国科学院大连化学物理研究所 一种基于单重态氧传能的溴化氢化学激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916494A (zh) * 2004-08-16 2007-02-21 气体产品与化学公司 用于燃烧燃料的燃烧器和方法
US7453917B1 (en) * 2005-07-12 2008-11-18 The United States Of America As Represented By The Secretary Of The Air Force Supersonic all gas-phase iodine laser
CN104868347A (zh) * 2014-02-26 2015-08-26 中国科学院大连化学物理研究所 一种高超音速高效混合喷管
CN104868357A (zh) * 2014-02-26 2015-08-26 中国科学院大连化学物理研究所 一种基于单重态氧传能的溴化氢化学激光器

Also Published As

Publication number Publication date
CN106856294A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
Carroll et al. Path to the measurement of positive gain on the 1315-nm transition of atomic iodine pumped by O/sub 2/(a/sup 1//spl Delta/) produced in an electric discharge
Pablant et al. Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device
Groenewegen A revised model for circumstellar molecular emission.
Laux et al. Ionization mechanisms in two-temperature air plasmas
CN106856294B (zh) 卤化氢化学激光器波长调控方法
Ridenti et al. Experimental study of unconfined surface wave discharges at atmospheric pressure by optical emission spectroscopy
Keefer et al. Power absorption in laser-sustained argon plasmas
Huang et al. Imaging diagnostics and gas temperature measurements of atmospheric-microwave-induced air plasma torch
Kirillov Calculation of rate coefficients for the interaction of singlet and triplet vibrationally excited oxygen
Takai et al. Beam profile measurement during top-up injection with a pulsed sextupole magnet
Wu et al. Plasma-enhanced ignition and flame stabilization in microwave plasma-assisted combustion of premixed methane/oxygen/argon mixtures
Packan et al. Measurement and Modeling of OH, NO, and CO Infrared Radiation at 3400 K
Hui et al. Investigation on near Gaussian-shaped spectrum erbium-doped fiber source which applied to the fiber optic gyroscope
Tibere-Inglesse Radiation of nonequilibrium recombining plasma flows
Jans et al. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen
Nedybaliuk et al. Dynamic plasma-liquid system with discharge in reverse vortex flow of “tornado” type
Benthem et al. Thermorefractive and thermochemical noise in the beamsplitter of the GEO600<? format?> gravitational-wave interferometer
Braun et al. IR photon enhanced dissociative electron attachment to SF6: Dependence on photon, vibrational, and electron energy
Fromy et al. Transportation of nitrogen atoms in an atmospheric pressure post-discharge of pure nitrogen
Samuels et al. Emission Spectroscopy in the Plenum Region of an Arc-Heated Tunnel
Luo et al. Kinetics analysis of chemiluminescence in discharge-driven HF chemical lasers
Ahmed et al. Optical control of collisional population flow between molecular electronic states of different spin multiplicity
Yang et al. Analysis of the hyperfine splitting spectral structure of rubidium atomic D1 and D2 lines with pressure broadening
Kryukov Femtosecond lasers for astrophysics
Sutton et al. A numerical and experimental investigation of an axially symmetric RF plasma

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant