CN106840154A - 地下空间惯性测量与无线传感器组合定位系统与方法 - Google Patents

地下空间惯性测量与无线传感器组合定位系统与方法 Download PDF

Info

Publication number
CN106840154A
CN106840154A CN201710169747.3A CN201710169747A CN106840154A CN 106840154 A CN106840154 A CN 106840154A CN 201710169747 A CN201710169747 A CN 201710169747A CN 106840154 A CN106840154 A CN 106840154A
Authority
CN
China
Prior art keywords
inertia measurement
processing module
module
positioning system
integrated positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710169747.3A
Other languages
English (en)
Other versions
CN106840154B (zh
Inventor
季顺海
武俊红
王慧
刘福春
唐玉娟
严中兵
蔡永坚
曹东丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xingyue Mapping Polytron Technologies Inc
Original Assignee
Jiangsu Xingyue Mapping Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Xingyue Mapping Polytron Technologies Inc filed Critical Jiangsu Xingyue Mapping Polytron Technologies Inc
Priority to CN201710169747.3A priority Critical patent/CN106840154B/zh
Publication of CN106840154A publication Critical patent/CN106840154A/zh
Application granted granted Critical
Publication of CN106840154B publication Critical patent/CN106840154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明公开了一种地下空间惯性测量与无线传感器组合定位系统与方法,该系统的惯性测量处理模块接惯性测量数据,通过导航积分计算载体位置、速度、姿态和航向数据以及相对于惯性测量单元的距离,组合定位系统经过锚点布设区域时,无线信号接收器接收锚点发射的无线电信号,计算接收器和锚点的距离,卡尔曼滤波计算模块计算修正参数,惯性测量处理模块接收修正参数,计算导航数据,地下通道反馈模块对导航数据进行修正,得出位置信息。组合定位系统经过非锚点布设区域,惯性测量单元输出的导航数据进入地下通道反馈模块,修正导航数据,得出位置信息。本发明引入了地下空间通道反馈算法,减小了无线传感器的布设密度,节约了成本,提高了定位精度。

Description

地下空间惯性测量与无线传感器组合定位系统与方法
技术领域
本发明涉及一种地下空间定位系统及方法,尤其是一种地下空间通道反馈的惯性测量与无线传感器组合定位系统与方法。
背景技术
由于地下空间区域无法接受全球定位系统信号,所以需要借助其他的手段获取地下空间室内位置信息。
运用惯性测量单元的惯性测量技术是从20世纪初发展起来的一种新的导航技术。基本原理是根据牛顿提出的相对惯性空间的力学定律,利用惯性测量仪中的加速度计测量载体的运动加速度,利用陀螺仪测量载体的旋转角速度,然后通过计算机对这些惯性测量值进行处理,得到载体的位置、速度和姿态。稍具体地讲,给定载体运动状态的初始条件,将加速度测量值对时间进行一次积分可获得载体的运动速度,对时间进行二次积分可获得其空间位置。同样,对旋转角速度测量值对时间进行积分,惯性导航系统可获得载体在空间三维中的姿态角。与其他类型的导航系统不同,惯性导航系统具有自主导航能力,不需要从运载体传送信号或者从外部接收信号,不受环境、载体机动及无线电干扰的影响,能连续地提供载体位置、速度和姿态等定位导航参数,其数据更新率快、量程较大,且具有短时间内较高的相对精度。近几年,随着惯性器件的低成本、低功耗的发展,惯性测量技术应用愈加广泛。
但是,在没有其它测量手段辅助的情况下,惯性测量的误差短时间内会产生累积,容易引起较大的测量误差。在地面上,一般是通过惯性测量和全球定位系统组合,但是,在地下空间环境中,由于信号被遮挡,无法接收全球定位系统信号,需要引入室内定位技术辅助惯性测量。室内定位技术是通过无线信号接收器获取锚点发出的无线信号强度,经过模型反算得到距离和位置信息,可以很好的应用于地下空间环境,因此可以像惯性测量和全球定位系统组合那样,将惯性测量和无线传感器组合获取定位信息。
基于无线信号的室内定位技术由于建模误差等方面的问题,解算的位置信息精度要比全球定位系统的位置信息精度差,通过室内定位和惯性测量组合得到的定位信息精度不能满足地下空间高精度的定位要求。鉴于此,如果在将惯性测量和无线传感器组合的基础上,通过地下空间地图匹配的方法对组合定位的结果进行纠正,既可提高组合定位的精度,又可增加解算的可靠性。目前,还没有地下空间通道反馈的组合定位装置。
发明内容
本发明的目的是要克服已有技术中的不足,提供一种地下空间惯性测量与无线传感器组合定位系统与方法。在将惯性测量和无线传感器组合的基础上,通过地下空间地图匹配的方法对组合定位的结果进行纠正,既可提高组合定位的精度,又可增加解算的可靠性。
本发明提出的地下空间惯性测量与无线传感器组合定位系统,包括惯性测量单元、惯性测量处理模块、无线信号接收器、卡尔曼滤波计算模块、地下通道反馈模块、电源模块。其特征是:惯性测量单元的输出端与惯性测量处理模块相连,惯性测量处理模块与无线信号接收器分别连接卡尔曼滤波计算模块,地下空间反馈模块与惯性测量处理模块相连,卡尔曼滤波计算模块同时接收惯性测量处理模块和无线信号接收器的输出信号,通过多状态卡尔曼滤波计算,修正惯性测量处理模块和无线信号接收器参数,将修正的参数反馈到惯性测量处理模块和无线信号接收器,惯性测量处理模块接收卡尔曼滤波计算模块反馈的修正参数后得到组合导航数据,导航数据输入到地下通道反馈模块中,作进一步的修正反馈,得出最终的定位信息。
所述惯性测量单元,包括陀螺仪、加速度计和温度传感器,三者的输出连接滤波器和同步化模块,再经A/D转换模块进行模数转换后输出。
所述卡尔曼滤波计算模块为采用紧耦合算法的卡尔曼滤波计算模块。
本发明的地下空间惯性测量与无线传感器组合定位方法:
a. 在地下通道每隔设定的距离(如每隔1公里)处布设锚点,并测出锚点的位置信息,通过实验训练,得出无线信号强度(RSS)与距离的关系曲线,简称RSS曲线。
b. 将组合定位系统固定在运动载体上,通过惯性测量单元测量行进中运动载体的三轴角速度和三轴比力值之后传输给惯性测量处理模块,经惯性测量处理模块进行惯性测量力学编排得到运动载体的位置、速度和姿态,根据这些值预测计算相对于惯性测量单元的距离。
c. 组合定位系统经过非锚点布设区域时,惯性测量单元输出的导航数据进入地下通道反馈模块,修正导航数据,得出位置信息。
d. 组合定位系统经过锚点布设区域时,锚点发射无线电信号和锚点的位置信息,无线信号接收器接收锚点发射的无线电信号,由训练RSS曲线计算接收器和锚点的距离,卡尔曼滤波计算模块接收惯性测量处理模块和无线信号接收器的输出的距离信息,通过多状态卡尔曼滤波计算修正参数,并将修正参数反馈到惯性测量处理模块,惯性测量处理模块接收修正参数,计算导航数据,导航数据输入到地下通道反馈模块,对导航数据进行修正,得出位置信息。
本发明系统与方法,在将惯性测量和无线传感器组合的基础上,通过地下空间地图匹配的方法对组合定位的结果进行纠正,既可提高组合定位的精度,又可增加解算的可靠性。引入了地下通道反馈算法,减小了地下空间定位无线传感器的布设密度,节约了成本,进一步提高了定位精度,增强了数据可靠性。
附图说明
图1是本发明地下空间惯性测量与无线传感器组合定位系统的结构框图。
图2是本发明地下空间惯性测量与无线传感器组合定位方法流程图。
图3是本发明的惯性测量处理模块的数据流程图。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细说明。
如图1所示,本发明地下空间惯性测量与无线传感器组合定位系统,包括惯性测量单元1、惯性测量处理模块2、无线信号接收器3、卡尔曼滤波计算模块4、地下通道反馈模块5和电源模块。
所述惯性测量单元1,包括MEMS陀螺仪11、MEMS加速度计12和温度传感器13,三者的输出的角度率、加速度和温度的二进制信号经滤波器14滤波去除误差,再经过同步化模块15使不同传感器的观测值实现时间同步,然后经A/D转换模块进行模数转换,输入至惯性测量处理模块2。
无线信号接收器3采用WLAN信号接收器,其中,无线信号接收模块31接收锚点6发射的无线电信号,经信号消噪模块32消噪处理,由距离运算模块计算无线信号接收器3和锚点6的距离。
惯性测量处理模块2与无线信号接收器3分别连接卡尔曼滤波计算模块4,地下通道反馈模块5与惯性测量处理模块2相连,卡尔曼滤波计算模块4同时接收惯性测量处理模块2和无线信号接收器3的输出信号,通过多状态卡尔曼滤波计算,修正惯性测量处理模块2和无线信号接收器3参数,将修正的参数反馈到惯性测量处理模块2和无线信号接收器3,惯性测量处理模块2接收卡尔曼滤波计算模块4反馈的修正参数后得到组合导航数据,导航数据输入到地下通道反馈模块5中。
如图2所示,本发明地下空间惯性测量与无线传感器组合定位系统,按照本发明提出的定位方法,对矿井井下巷道的车辆进行定位测量,具体过程如下:
a. 在矿井井下巷道每隔1公里处布设锚点,锚点一般设置在巷道的侧壁的上方位置,锚点上安装无线信号发射器,并测出锚点的位置信息,通过实验训练,得出无线信号强度与距离的关系曲线。
b. 将组合定位系统固定在井下运输车辆上,通过惯性测量单元测量行进中井下运输车辆的三轴角速度和三轴比力值之后传输给惯性测量处理模块,经惯性测量处理模块进行惯性测量力学编排得到运动载体的位置、速度和姿态,根据这些值预测计算相对于惯性测量单元的距离,惯性测量力学编排计算如图2所示,由加速度计提供载体坐标系中的比力测量值,陀螺仪提供载体坐标系中角速度的测量值,当给定导航初始时刻载体的姿态估值后,根据相对于惯性坐标系的载体角速度的测量值,姿态计算得到方向余弦矩阵。通过比力测量值左乘方向余弦矩阵,得到导航坐标系中比力值。利用得到的,在速度和位置初始估值的基础上,综合重力计算得到的当地重力矢量和哥氏校正信息经导航计算得到载体的位置和速度及新的哥氏改正,位置信息通过重力计算得到新的当地重力矢量,利用可以提取载体的姿态、航向信息。得到的载体位置、速度、姿态、当地重力矢量和哥氏校正信息作为下一次计算的初始值,直至得到最终时刻载体位置、速度和姿态。
c. 井下运输车辆经过非锚点布设区域时,惯性测量单元输出的导航数据进入地下通道反馈模块,修正导航数据,得出位置信息。
d. 井下运输车辆经过锚点布设区域时,锚点发射无线电信号和锚点的位置信息,无线信号接收器接收锚点发射的无线电信号,由步骤a中得到的关系曲线计算接收器和锚点的距离,卡尔曼滤波计算模块接收惯性测量处理模块和无线信号接收器的输出的距离信息,通过多状态卡尔曼滤波计算修正参数,并将修正参数反馈到惯性测量处理模块,惯性测量处理模块接收修正参数,计算导航数据,导航数据输入到地下通道反馈模块,对导航数据进行修正,得出位置信息。

Claims (4)

1.一种地下空间惯性测量与无线传感器组合定位系统,包括惯性测量单元(1)、惯性测量处理模块(2)、无线信号接收器(3)、卡尔曼滤波计算模块(4)、地下通道反馈模块(5)和电源模块,其特征是:所述惯性测量单元(1)的输出端与惯性测量处理模块(2)相连,惯性测量处理模块(2)与无线信号接收器(3)分别连接卡尔曼滤波计算模块(4),地下通道反馈模块(5)与惯性测量处理模块(2)相连,卡尔曼滤波计算模块(4)同时接收惯性测量处理模块(2)和无线信号接收器(3)的输出信号,通过多状态卡尔曼滤波计算,修正惯性测量处理模块(2)和无线信号接收器(3)参数,将修正的参数反馈到惯性测量处理模块(2)和无线信号接收器(3),惯性测量处理模块(2)接收卡尔曼滤波计算模块(4)反馈的修正参数后得到组合导航数据,导航数据输入到地下通道反馈模块(5)中。
2.根据权利要求1所述的地下空间惯性测量与无线传感器组合定位系统,其特征在于:所述惯性测量单元(1),包括陀螺仪(11)、加速度计(12)和温度传感器(13),三者的输出连接滤波器(14)和同步化模块(15),再经A/D转换模块(16)进行模数转换后输出。
3.根据权利要求1所述的地下空间惯性测量与无线传感器组合定位系统,其特征在于:所述卡尔曼滤波计算模块(4)为采用紧耦合算法的卡尔曼滤波计算模块。
4.一种使用权利要求1、2或3所述地下空间惯性测量与无线传感器组合定位系统进行地下空间组合定位的方法,包括如下步骤:
a. 在地下空间通道每隔设定的距离处布设锚点,并测出锚点的位置信息;
b. 将组合定位系统固定在运动载体上,通过惯性测量单元(1)测量行进中运动载体的三轴角速度和三轴比力值之后传输给惯性测量处理模块(2),经惯性测量处理模块(2)进行惯性测量力学编排得到运动载体的位置、速度和姿态,根据这些值预测计算相对于惯性测量单元(1)的距离;
c. 组合定位系统经过非锚点布设区域时,惯性测量单元(1)输出的导航数据进入地下通道反馈模块,修正导航数据,得出位置信息;
d. 组合定位系统经过锚点布设区域时,锚点(6)发射无线电信号和锚点的位置信息,无线信号接收器(2)接收锚点发射的无线电信号,计算接收器和锚点的距离,卡尔曼滤波计算模块(4)接收惯性测量处理模块(3)和无线信号接收器(2)的输出的距离信息,通过多状态卡尔曼滤波计算修正参数,并将修正参数反馈到惯性测量处理模块(2),惯性测量处理模块(2)接收修正参数,计算导航数据,导航数据输入到地下通道反馈模块(5),对导航数据进行修正,得出位置信息。
CN201710169747.3A 2017-03-21 2017-03-21 地下空间惯性测量与无线传感器组合定位系统与方法 Active CN106840154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710169747.3A CN106840154B (zh) 2017-03-21 2017-03-21 地下空间惯性测量与无线传感器组合定位系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710169747.3A CN106840154B (zh) 2017-03-21 2017-03-21 地下空间惯性测量与无线传感器组合定位系统与方法

Publications (2)

Publication Number Publication Date
CN106840154A true CN106840154A (zh) 2017-06-13
CN106840154B CN106840154B (zh) 2023-07-07

Family

ID=59129939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710169747.3A Active CN106840154B (zh) 2017-03-21 2017-03-21 地下空间惯性测量与无线传感器组合定位系统与方法

Country Status (1)

Country Link
CN (1) CN106840154B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168338A (zh) * 2017-07-07 2017-09-15 中国计量大学 基于毫米波雷达的惯性导引车导航方法及惯性导引车
CN107272690A (zh) * 2017-07-07 2017-10-20 中国计量大学 基于双目立体视觉的惯性导引车导航方法及惯性导引车
CN108981631A (zh) * 2018-07-02 2018-12-11 四川斐讯信息技术有限公司 一种基于惯性测量单元的路径长度测量方法及系统
CN109612466A (zh) * 2018-11-30 2019-04-12 北斗天地股份有限公司山东分公司 一种井下车用多传感器组合导航方法及系统
CN109633544A (zh) * 2018-12-26 2019-04-16 奇点新源国际技术开发(北京)有限公司 一种锚点坐标标定方法、锚点定位方法及装置
CN111670423A (zh) * 2017-12-06 2020-09-15 应美盛股份有限公司 用于融合声学和惯性位置确定的系统
CN111684236A (zh) * 2017-12-18 2020-09-18 弗鲁特创新有限公司 使用惯性传感器和短波低能耗设备的室内导航系统
CN113847912A (zh) * 2021-08-16 2021-12-28 重庆市建筑科学研究院有限公司 地下有水管涵内窥定位系统及其工作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107072A1 (en) * 2002-12-03 2004-06-03 Arne Dietrich Ins-based user orientation and navigation
CN102359787A (zh) * 2011-07-15 2012-02-22 东南大学 一种wsn/mins高精度实时组合导航信息融合方法
CN102494684A (zh) * 2011-11-11 2012-06-13 东南大学 一种基于wsn/mins组合导航的导航信息无偏紧组合方法
CN102508277A (zh) * 2011-10-27 2012-06-20 中国矿业大学 精密单点定位与惯性测量紧组合导航系统及数据处理方法
EP2881708A1 (en) * 2013-12-05 2015-06-10 Deutsche Telekom AG System and method for indoor localization using mobile inertial sensors and virtual floor maps
CN105371871A (zh) * 2015-12-02 2016-03-02 中国矿业大学 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
CN105424030A (zh) * 2015-11-24 2016-03-23 东南大学 基于无线指纹和mems传感器的融合导航装置和方法
CN106121723A (zh) * 2016-02-19 2016-11-16 中国矿业大学 一种工作面装备定位系统
CN106197406A (zh) * 2016-06-20 2016-12-07 天津大学 一种基于惯性导航和rssi无线定位的融合方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107072A1 (en) * 2002-12-03 2004-06-03 Arne Dietrich Ins-based user orientation and navigation
CN102359787A (zh) * 2011-07-15 2012-02-22 东南大学 一种wsn/mins高精度实时组合导航信息融合方法
CN102508277A (zh) * 2011-10-27 2012-06-20 中国矿业大学 精密单点定位与惯性测量紧组合导航系统及数据处理方法
CN102494684A (zh) * 2011-11-11 2012-06-13 东南大学 一种基于wsn/mins组合导航的导航信息无偏紧组合方法
EP2881708A1 (en) * 2013-12-05 2015-06-10 Deutsche Telekom AG System and method for indoor localization using mobile inertial sensors and virtual floor maps
CN105424030A (zh) * 2015-11-24 2016-03-23 东南大学 基于无线指纹和mems传感器的融合导航装置和方法
CN105371871A (zh) * 2015-12-02 2016-03-02 中国矿业大学 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
CN106121723A (zh) * 2016-02-19 2016-11-16 中国矿业大学 一种工作面装备定位系统
CN106197406A (zh) * 2016-06-20 2016-12-07 天津大学 一种基于惯性导航和rssi无线定位的融合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐元等: "面向室内行人的Range-only UWB/INS紧组合导航方法", 《仪器仪表学报》 *
胡伟娅等: "基于RSSI与惯性测量的室内定位系统", 《计算机工程》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168338A (zh) * 2017-07-07 2017-09-15 中国计量大学 基于毫米波雷达的惯性导引车导航方法及惯性导引车
CN107272690A (zh) * 2017-07-07 2017-10-20 中国计量大学 基于双目立体视觉的惯性导引车导航方法及惯性导引车
CN107272690B (zh) * 2017-07-07 2023-08-22 中国计量大学 基于双目立体视觉的惯性导引车导航方法及惯性导引车
CN107168338B (zh) * 2017-07-07 2023-09-15 中国计量大学 基于毫米波雷达的惯性导引车导航方法及惯性导引车
CN111670423A (zh) * 2017-12-06 2020-09-15 应美盛股份有限公司 用于融合声学和惯性位置确定的系统
CN111684236A (zh) * 2017-12-18 2020-09-18 弗鲁特创新有限公司 使用惯性传感器和短波低能耗设备的室内导航系统
CN108981631A (zh) * 2018-07-02 2018-12-11 四川斐讯信息技术有限公司 一种基于惯性测量单元的路径长度测量方法及系统
CN109612466A (zh) * 2018-11-30 2019-04-12 北斗天地股份有限公司山东分公司 一种井下车用多传感器组合导航方法及系统
CN109633544A (zh) * 2018-12-26 2019-04-16 奇点新源国际技术开发(北京)有限公司 一种锚点坐标标定方法、锚点定位方法及装置
CN109633544B (zh) * 2018-12-26 2021-04-06 奇点新源国际技术开发(北京)有限公司 一种锚点坐标标定方法、锚点定位方法及装置
CN113847912A (zh) * 2021-08-16 2021-12-28 重庆市建筑科学研究院有限公司 地下有水管涵内窥定位系统及其工作方法

Also Published As

Publication number Publication date
CN106840154B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN106840154A (zh) 地下空间惯性测量与无线传感器组合定位系统与方法
Chen et al. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system
CN102506857B (zh) 一种基于双imu/dgps组合的相对姿态测量实时动态滤波方法
CN107588769B (zh) 一种车载捷联惯导、里程计及高程计组合导航方法
KR101326889B1 (ko) 이동 기준국을 이용한 차량간 상대 위치 제어 방법 및 그 시스템
US8548731B2 (en) Navigation method, navigation system, navigation device, vehicle provided therewith and group of vehicles
CN102901977B (zh) 一种飞行器的初始姿态角的确定方法
JP5602070B2 (ja) 位置標定装置、位置標定装置の位置標定方法および位置標定プログラム
CN109186597B (zh) 一种基于双mems-imu的室内轮式机器人的定位方法
CN104019828A (zh) 高动态环境下惯性导航系统杆臂效应误差在线标定方法
CN104515527B (zh) 一种无gps信号环境下的抗粗差组合导航方法
CN201955092U (zh) 一种基于地磁辅助的平台式惯性导航装置
CN107015259A (zh) 采用多普勒测速仪计算伪距/伪距率的紧组合方法
CN103644911A (zh) 陀螺仪辅助定位方法
CN103499348A (zh) Ahrs高精度姿态数据计算方法
CN114739425A (zh) 基于rtk-gnss及全站仪的采煤机定位标定系统及应用方法
CN102095424A (zh) 一种适合车载光纤航姿系统的姿态测量方法
CN110779496A (zh) 三维地图构建系统、方法、设备和存储介质
CN111207743B (zh) 基于编码器与惯性设备紧耦合实现厘米级精确定位的方法
US8890747B2 (en) Longitudinal and lateral velocity estimation using single antenna GPS and magnetic compass
CN106979779A (zh) 一种无人车实时姿态测量方法
CN202649469U (zh) 有效全球卫星定位系统所在位置判断的定位装置
CN106646569A (zh) 一种导航定位方法及设备
CN113236363A (zh) 开采设备导航定位方法、系统、设备及可读存储介质
CN106840156B (zh) 一种提高手机惯性导航性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant