CN106837867B - Three-way impeller for axial fans with vein-like structure and splitter blades - Google Patents

Three-way impeller for axial fans with vein-like structure and splitter blades Download PDF

Info

Publication number
CN106837867B
CN106837867B CN201710209298.0A CN201710209298A CN106837867B CN 106837867 B CN106837867 B CN 106837867B CN 201710209298 A CN201710209298 A CN 201710209298A CN 106837867 B CN106837867 B CN 106837867B
Authority
CN
China
Prior art keywords
blade
splitter
vein
impeller
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710209298.0A
Other languages
Chinese (zh)
Other versions
CN106837867A (en
Inventor
窦华书
杨徽
李红军
杨鹏
徐金秋
王天垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Publication of CN106837867A publication Critical patent/CN106837867A/en
Application granted granted Critical
Publication of CN106837867B publication Critical patent/CN106837867B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention discloses an axial flow fan ternary impeller with a vein structure and splitter blades, which comprises a hub, a shaft sleeve and a connecting piece, wherein the hub is fixed on the hub by the connecting piece; the device also comprises a bending blade and a splitter blade which are fixedly connected to the hub; the bending blade comprises a suction surface and a pressure surface; the top of the bending blade is provided with an airfoil groove; the upper half part of the pressure surface of the bending blade is provided with a vein-shaped groove, and the wing-shaped groove is communicated with the vein-shaped groove through an air outlet; the tail part of the suction surface of the bending blade is provided with a winglet protuberance; parabolic small holes are formed in the bending and twisting blades; a splitter blade is arranged between two adjacent bending blades; the height of the splitter blade is less than half the height of the turning blade.

Description

带叶脉状结构和分流叶片的轴流风机三元叶轮Three-way impeller for axial fans with vein-like structure and splitter blades

技术领域technical field

本发明涉及轴流风机设计领域,特别涉及一种带叶脉状结构和分流叶片的新型轴流风机三元叶轮。The invention relates to the design field of an axial flow fan, in particular to a novel three-dimensional impeller of an axial flow fan with a vein-shaped structure and splitter blades.

背景技术Background technique

轴流风机的工作原理是将电机输入的机械能用来提高气体的压力,进行输送和排放气体。轴流风机在国民经济的各个领域发挥着作用,广泛应用于工厂、矿井、车辆、船泊和建筑物等,在通风、排尘和冷却方面发挥着不可替代的作用,据不完全统计,全国各类风机年用电量占全国发电量的20%,其中很多的风机不是年代久远,就是效率低,造成了电力的严重浪费,可见提高风机性能实现节能在国民经济中的重要性。轴流风机通常作用在流量要求高而压力低的场合,结构相对简单且便于安装,在风机领域有着不可替代的作用。The working principle of the axial flow fan is to use the mechanical energy input by the motor to increase the pressure of the gas to transport and discharge the gas. Axial flow fans play a role in various fields of the national economy, widely used in factories, mines, vehicles, boats and buildings, etc., and play an irreplaceable role in ventilation, dust removal and cooling. According to incomplete statistics, all countries in the country The annual power consumption of wind turbines accounts for 20% of the country's power generation. Many of the wind turbines are either old or low in efficiency, resulting in a serious waste of electricity. It can be seen that improving the performance of wind turbines to achieve energy conservation is important in the national economy. Axial flow fans are usually used in occasions with high flow requirements and low pressure. The structure is relatively simple and easy to install, and it plays an irreplaceable role in the field of fans.

尽管轴流风机的结构简单,但是流动情况确实相当复杂。流动往往具有三维性、粘性和非定常性,在以往的风机设计中很少或很难全面的考虑这些情况,即便是数值分析成熟的今天也很难控制上述因素对风机的影响,特别是流体具有粘性这个关键因素,因为粘性常常会使叶片出口边形成叶片尾迹漩涡;由于粘性,叶片表面会存在粘性边界层(特别是叶片表面非常光滑的情况下),与主流之间产生的强烈的相互作用,产生二次流现象;粘性的存在也会形成空气动力噪声,主要包括旋转噪声和涡流噪声。除此之外,叶片压力面和吸力面的压差、叶片顶部和机壳的径向间隙和叶片本身边界层内径向流动产生的二次流也是造成风机损失上升、效率降低的主要根源。Although the structure of the axial flow fan is simple, the flow situation is indeed quite complicated. The flow is often three-dimensional, viscous and unsteady, and it is rarely or difficult to fully consider these situations in the past fan design. Even with the mature numerical analysis, it is difficult to control the influence of the above factors on the fan, especially the fluid The key factor is viscosity, because the viscosity often causes the blade wake vortex to form at the blade outlet; due to the viscosity, there will be a viscous boundary layer on the blade surface (especially when the blade surface is very smooth), and there will be a strong interaction between the blade surface and the mainstream. Effect, resulting in secondary flow phenomenon; the existence of viscosity will also form aerodynamic noise, mainly including rotational noise and eddy current noise. In addition, the pressure difference between the pressure surface and the suction surface of the blade, the radial clearance between the top of the blade and the casing, and the secondary flow generated by the radial flow in the boundary layer of the blade itself are also the main sources of increased fan losses and reduced efficiency.

综上所述,只有控制和减少二次流现象,防止边界层分离,抑制叶片尾迹漩涡的产生,减少湍流耗散和流动损失才能设计出效率高、性能好、噪声低和节能的轴流风机,满足现代生产对风机的需求。In summary, only by controlling and reducing the secondary flow phenomenon, preventing boundary layer separation, suppressing the generation of blade wake vortices, and reducing turbulent dissipation and flow loss can an axial flow fan with high efficiency, good performance, low noise and energy saving be designed , to meet the needs of modern production for fans.

发明内容Contents of the invention

本发明所要解决的问题是针对现有技术的不足通过控制和减少二次流、边界层分离、尾迹漩涡和涡流噪声的产生,提出一种带叶脉状结构和分流叶片的新型轴流风机三元叶轮。该发明能减少二次流现象,防止边界层分离,抑制叶片尾迹漩涡的产生,减少湍流耗散和流动损失,具有效率高、性能好、噪声低和节能的特点。The problem to be solved by the present invention is to propose a new type of axial flow fan with vein-like structure and splitter blades by controlling and reducing secondary flow, boundary layer separation, wake vortex and vortex noise. impeller. The invention can reduce secondary flow phenomenon, prevent boundary layer separation, suppress blade wake vortex generation, reduce turbulent flow dissipation and flow loss, and has the characteristics of high efficiency, good performance, low noise and energy saving.

为了解决上述技术问题,本发明提供一种带叶脉状结构和分流叶片的轴流风机三元叶轮,包括轮毂、轴套用连接件固定在轮毂上;还包括固定连接在轮毂上的弯扭叶片及分流叶片;In order to solve the above technical problems, the present invention provides a ternary impeller of an axial flow fan with a vein-like structure and splitter blades, including a hub and a shaft sleeve fixed on the hub with connectors; splitter vane;

所述弯扭叶片包括为吸力面和压力面;所述弯扭叶片顶部设置有翼型槽;所述弯扭叶片压力面的上半部设置有叶脉状凹槽,翼型槽通过出气口与叶脉状凹槽相通;所述弯扭叶片吸力面尾部设置有小翼突起;所述弯扭叶片上设置有抛物线小孔;The twisted blade includes a suction surface and a pressure surface; the top of the twisted blade is provided with an airfoil groove; the upper half of the pressure surface of the curved blade is provided with a vein-shaped groove, and the airfoil groove passes through the air outlet and The vein-shaped grooves are connected; the tail of the suction surface of the twisted blade is provided with a small wing protrusion; the curved blade is provided with a parabolic small hole;

在相邻两个弯扭叶片之间设置分流叶片;所述分流叶片的高度小于弯扭叶片一半的高度。A splitter vane is arranged between two adjacent twisted vanes; the height of the splitter vane is less than half of the height of the twisted vane.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的改进:所述分流叶片为葛根廷翼;所述分流叶片设置在相邻弯扭叶片的正中间。As an improvement of the ternary impeller of the axial flow fan with vein-like structure and splitter blades of the present invention: the splitter blades are kudzu wings; the splitter blades are arranged in the middle of adjacent curved and twisted blades.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述分流叶片的两侧面的结构相同,均分别为:在侧面上设有至少两个径向等距的凹槽组,每个凹槽组都包含至少两个的仿生圆槽,每个凹槽组的仿生圆槽的中心线连线垂直于轮毂的外表面,仿生凹槽轴心线垂直于分流叶片。As a further improvement of the ternary impeller of the axial flow fan with vein-shaped structure and splitter blades of the present invention: the structures on both sides of the splitter blades are the same, and are respectively: at least two radially equidistant Groove groups, each groove group includes at least two bionic circular grooves, the center line of the bionic circular grooves of each groove group is perpendicular to the outer surface of the hub, and the axis line of the bionic groove is perpendicular to the splitter blade .

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述叶脉状凹槽包括至少两条脉槽,每条脉槽和一个出气口相通,出气口与翼型槽相通。As a further improvement of the ternary impeller of the axial flow fan with vein-shaped structure and splitter blades of the present invention: the vein-shaped groove includes at least two vein grooves, each vein groove communicates with an air outlet, and the air outlet is connected to the airfoil The slots are connected.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述弯扭叶片的吸力面后端等距设置有三个小翼突起。As a further improvement of the ternary impeller of the axial flow fan with vein-like structure and splitter blades of the present invention: the rear end of the suction surface of the twisted blade is equidistantly provided with three winglet protrusions.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述轮毂上等距设置有八个弯扭叶片及八个分流叶片。As a further improvement of the ternary impeller of the axial flow fan with vein-like structure and splitter blades of the present invention: eight curved twisted blades and eight splitter blades are equidistantly arranged on the hub.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述弯扭叶片的扭曲15°-20°,弯曲15°-20°。As a further improvement of the ternary impeller of the axial flow fan with a vein-like structure and splitter blades of the present invention: the twisted and twisted blades are 15°-20° and bent 15°-20°.

作为本发明的带叶脉状结构和分流叶片的轴流风机三元叶轮的进一步改进:所述分流叶片的高度为弯扭叶片的高度的30%-40%。As a further improvement of the ternary impeller of the axial flow fan with vein-like structure and splitter blades of the present invention: the height of the splitter blades is 30%-40% of the height of the twisted blades.

本发明具有以下优点:本发明通过采用弯扭叶片使得叶根部安装角大,弯扭叶片顶部处安装角小,保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的二次流动(静压呈C型分布叶片吸力面和压力面压差小于常规叶片),同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力;弯扭叶片压力面顶部开有叶脉状凹槽,弯扭叶片顶部开有翼型槽,翼型槽和叶脉状凹槽通过出气孔相连,该结构能够在叶脉状凹槽内形成低速二次涡,槽内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将压力面上部的高能气体引通过叶脉状凹槽和出气孔引进叶顶翼型槽,阻止一些气体通过径向间隙从压力面流向吸力面,造成弯扭叶片顶部附近流动的混乱,改善弯扭叶片顶部的流动情况,也可以避免气体从弯扭叶片的压力面流向相邻的吸力面产生的横向二次流现象,从而达到减少流动损失,同时叶脉状凹槽也有普通凹槽的作用;弯扭叶片上的抛物线小孔能减少叶片吸力面和压力面的压力差,改善叶片周围边界层分离,减少了涡流噪声的产生;弯扭叶片尾部上的小翼凸起可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使弯扭叶片吸力面边界层分离点向后运动,减小能量损失;分流叶片能有效破涡,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,另外分流叶片上开有的仿生圆槽能够减少壁面摩擦阻力,降低流动阻力,减少流动损失。依托原理在轴流风机叶轮不同位置进行改进使轴流风机的效率更高,性能更好,更节能环保。The invention has the following advantages: the installation angle of the root of the blade is large and the installation angle of the top of the blade is small by using the curved and twisted blade, so as to ensure that the air has a relatively uniform axial velocity at each position in the radial direction and ensure normal operation. Avoid airflow separation, reduce flow loss and effectively suppress the secondary flow inside the cascade (static pressure is C-shaped distribution blade suction surface and pressure surface pressure difference is smaller than conventional blades), while improving the root reaction degree, reducing the top reaction degree, To achieve the purpose of homogenizing the distribution of reaction degree along the blade height, and improve the flow capacity of the root; there are vein-like grooves on the top of the pressure surface of the curved and twisted blades, and there are airfoil grooves, airfoil grooves and vein-shaped grooves on the top of the curved and twisted blades Connected by air outlets, this structure can form a low-speed secondary vortex in the vein-shaped groove. The viscous resistance in the groove is opposite to the total resistance to reduce the viscous resistance, suppress the turbulence intensity, reduce the turbulence dissipation, and can dissipate the high-energy gas on the pressure surface. The lead is introduced into the airfoil groove on the top of the blade through the vein-like groove and the air outlet, preventing some gas from flowing from the pressure surface to the suction surface through the radial gap, causing chaos in the flow near the top of the twisted blade, improving the flow at the top of the twisted blade, and also It can avoid the lateral secondary flow phenomenon caused by the gas flowing from the pressure surface of the twisted blade to the adjacent suction surface, so as to reduce the flow loss. At the same time, the vein-shaped grooves also have the function of ordinary grooves; the parabolic small holes on the twisted blades It can reduce the pressure difference between the suction surface and the pressure surface of the blade, improve the separation of the boundary layer around the blade, and reduce the generation of eddy noise; the small wing protrusion on the tail of the twisted blade can guide the airflow along the chord direction, which can be well controlled Radial flow, reducing the secondary flow of radial movement, preventing wake jets, making the separation point of the boundary layer on the suction surface of the curved and twisted blade move backwards, reducing energy loss; the splitter blade can effectively break the vortex, making the flow in the flow channel more stable , to reduce unstable phenomena such as flow separation and secondary flow, and the bionic round grooves on the splitter blades can reduce wall friction resistance, flow resistance, and flow loss. Relying on the principle to improve the different positions of the impeller of the axial flow fan, the efficiency of the axial flow fan is higher, the performance is better, and it is more energy-saving and environmentally friendly.

附图说明Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.

图1为本发明带叶脉状结构和分流叶片的新型轴流风机三元叶轮的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the novel axial flow fan ternary impeller of the present invention band leaf vein structure and splitter blade;

图2为图1中弯扭叶片的吸力面的结构示意图;Fig. 2 is a structural schematic diagram of the suction surface of the curved and twisted blade in Fig. 1;

图3为图1中弯扭叶片的压力面的结构示意图;Fig. 3 is a structural schematic diagram of the pressure surface of the curved and twisted blade in Fig. 1;

图4为图1中分流叶片的结构示意图;Fig. 4 is the structural representation of splitter vane in Fig. 1;

图5为图4中分流叶片B-B面的结构示意图;Fig. 5 is a schematic structural view of the B-B surface of the splitter blade in Fig. 4;

图6为图2中弯扭叶片和小翼突起的C-C面的结构示意图;Fig. 6 is a structural schematic diagram of the C-C surface of the twisted blade and the winglet protrusion in Fig. 2;

图7为图1中分流叶片的仿生圆槽的结构示意图;Fig. 7 is a structural schematic diagram of the bionic circular groove of the splitter blade in Fig. 1;

图8为图1中翼型槽的结构示意图;Fig. 8 is a schematic structural view of the airfoil groove in Fig. 1;

图9为图1中弯扭叶片的叶栅结构示意图;Fig. 9 is a schematic diagram of the cascade structure of the curved and twisted blades in Fig. 1;

图10为图1中弯扭叶片1弯曲和扭曲的结构示意图。FIG. 10 is a schematic diagram of the bent and twisted structure of the twisted blade 1 in FIG. 1 .

具体实施方式Detailed ways

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。The present invention will be further described below in conjunction with specific examples, but the protection scope of the present invention is not limited thereto.

实施例1、带叶脉状结构和分流叶片的新型轴流风机三元叶轮,如图所示,包括轮毂、固定连接在轮毂上的弯扭叶片1和分流叶片2、轴套3和连接件4。Embodiment 1. A new three-dimensional impeller for an axial flow fan with a vein-like structure and splitter blades, as shown in the figure, includes a hub, a curved and twisted blade 1 fixedly connected to the hub, splitter blades 2, a shaft sleeve 3 and a connecting piece 4 .

弯扭叶片1包括吸力面18和压力面19,弯扭叶片1的吸力面18顶部设置有叶脉状凹槽15,弯扭叶片1后端设置有小翼突起13,叶脉状凹槽15包括至少两个脉槽,弯扭叶片1的根部处安装角大,顶部安装角小(安装角为弯扭叶片1半径r处回转平面与翼型弦长之间的夹角,由图中的β1和β2表示),保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的二次流动(静压呈C型分布,从而使叶片吸力面18和压力面19压差小于常规叶片),同时能够提高弯扭叶片1根部反动度,降低弯扭叶片1顶部反动度,达到均化反动度沿叶高分布的目的,提高弯扭叶片1根部的通流能力。叶栅是指在某一半径r上,用其轴圆柱面将叶片截断,然后再将这一截面展成的平面,体现相邻弯扭叶片1位置关系,弯扭叶片1安装角等。The curved and twisted blade 1 includes a suction surface 18 and a pressure surface 19. The top of the suction surface 18 of the curved and twisted blade 1 is provided with a vein-shaped groove 15, and the rear end of the curved and twisted blade 1 is provided with a winglet protrusion 13. The vein-shaped groove 15 includes at least Two veins, the installation angle at the root of the twisted blade 1 is large, and the installation angle at the top is small (the installation angle is the angle between the rotation plane at the radius r of the curved blade 1 and the chord length of the airfoil, determined by β1 and β2), to ensure that the air has a relatively uniform axial velocity at each position in the radial direction, to ensure normal operation, avoid air separation, reduce flow loss and effectively suppress the secondary flow inside the cascade (the static pressure is C-shaped distribution , so that the pressure difference between the suction surface 18 and the pressure surface 19 of the blade is smaller than that of a conventional blade), and at the same time, the degree of reaction at the root of the curved and twisted blade 1 can be increased, and the degree of reaction at the top of the curved and twisted blade 1 can be reduced, so as to achieve the purpose of homogenizing the distribution of the degree of reaction along the blade height. The flow capacity of the root of the curved and twisted blade 1 is improved. The cascade refers to the plane that cuts off the blades with its axial cylindrical surface on a certain radius r, and then develops this section, reflecting the positional relationship of adjacent twisted blades 1, the installation angle of twisted blades 1, etc.

在吸力面18设置小翼突起13能使流体在在叶栅内流动,由于弯扭叶片1和流体相互作用,叶片压力面19压力大于吸力面18,流体从弯扭叶片1压力面19向吸力面18流动,加之来流使的吸力面18的气流更紊乱,所以设计尾翼使气流沿着弦向运动,控制径向流动,同时还可以控制弯扭叶片1流道中通道涡的尺寸和叶片表面附面层潜移流,控制径向运动的二次流,减小速度的不均匀,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失。The winglet protrusions 13 are set on the suction surface 18 to enable the fluid to flow in the cascade. Due to the interaction between the twisted blade 1 and the fluid, the pressure on the pressure surface 19 of the blade is greater than that on the suction surface 18, and the fluid flows from the pressure surface 19 of the twisted blade 1 to the suction force. The flow on the surface 18, and the airflow on the suction surface 18 caused by the incoming flow is more turbulent, so the empennage is designed to make the airflow move along the chord direction, control the radial flow, and simultaneously control the size of the channel vortex in the channel of the curved blade 1 and the surface of the blade The boundary layer creeping flow controls the secondary flow of radial movement, reduces the uneven velocity, prevents the wake jet, and makes the separation point of the suction surface 18 of the twisted blade 1 move backward to reduce energy loss.

弯扭叶片1顶部设置有翼型槽11,翼型槽11通过若干出气口14与弯扭叶片1吸力面18顶部的叶脉状凹槽15相通,该结构能够在叶脉状凹槽15内形成低速二次涡,叶脉状凹槽15内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将弯扭叶片1压力面19上部的高能气体引通过叶脉状凹槽15和出气口14引进叶顶翼型槽11,阻止一些气体通过径向间隙从压力面19流向吸力面18,造成弯扭叶片1顶部附近流动的混乱,改善弯扭叶片1顶部的流动情况,也可以避免气体从弯扭叶片1的压力面19流向相邻的吸力面18产生的横向二次流现象,从而达到减少流动损失,同时弯扭叶片1顶部的翼型槽11也有普通凹槽的作用,能形成涡垫效应,使近壁区湍流强度减少。弯扭叶片1上设置有抛物线小孔12,抛物线小孔12能减少弯扭叶片1吸力面18和压力面19的压力差,改善弯扭叶片1周围边界层分离,减少了涡流噪声的产生;弯扭叶片1后端的小翼突起13可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失。分流叶片2为葛根廷翼,设置在相邻两个弯扭叶片1的正中间,两侧面均设有径向等距的凹槽组,每个凹槽组都包含两个以上的仿生圆槽23,仿生圆槽23设置在同一直线上,每个凹槽组的仿生圆槽23的中心线连线垂直于轮毂的外表面,仿生圆槽23的轴心线垂直于分流叶片2。分流叶片2能有效破涡,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,另外弯扭叶片1上开有的仿生圆槽23能够减少壁面摩擦阻力,降低流动阻力,减少流动损失。分流叶片2的高度小于弯扭叶片1一般的高度,轴套3用标准连接件4固定在轮毂上。分流叶片2是为了阻断弯扭叶片1叶根部分出现从弯扭叶片1的压力面19向叶片吸力面18横向的流动以及破涡等。The top of the twisted blade 1 is provided with an airfoil groove 11, and the airfoil groove 11 communicates with the vein-shaped groove 15 on the top of the suction surface 18 of the twisted blade 1 through several air outlets 14. This structure can form a low-speed The secondary vortex, the viscous resistance in the vein-shaped groove 15 is opposite to the total resistance to reduce the viscous resistance, suppress the turbulent flow intensity, reduce the turbulent flow dissipation, and guide the high-energy gas on the upper part of the pressure surface 19 of the twisted blade 1 through the vein-shaped groove 15 and the air outlet 14 into the blade top airfoil groove 11 to prevent some gas from flowing from the pressure surface 19 to the suction surface 18 through the radial gap, causing chaos in the flow near the top of the curved and twisted blade 1, improving the flow at the top of the curved and twisted blade 1, and also It can avoid the lateral secondary flow phenomenon caused by the gas flowing from the pressure surface 19 of the twisted blade 1 to the adjacent suction surface 18, so as to reduce the flow loss. At the same time, the airfoil groove 11 on the top of the twisted blade 1 also has the function of a common groove , can form the vortex pad effect and reduce the turbulence intensity near the wall. The curved and twisted blade 1 is provided with a parabolic small hole 12, which can reduce the pressure difference between the suction surface 18 and the pressure surface 19 of the curved and twisted blade 1, improve the boundary layer separation around the curved and twisted blade 1, and reduce the generation of eddy current noise; The winglet protrusion 13 at the rear end of the twisted blade 1 can guide the airflow to move along the chord direction, which can well control the radial flow, reduce the secondary flow of the radial movement, prevent the wake jet, and make the suction surface 18 of the twisted blade 1 The boundary layer separation point moves backwards to reduce energy loss. The splitter blade 2 is a kudzu wing, which is set in the middle of two adjacent twisted blades 1, and the two sides are provided with radially equidistant groove groups, and each groove group contains more than two bionic circular grooves 23. The bionic circular grooves 23 are arranged on the same straight line, the center line of the bionic circular grooves 23 of each groove group is perpendicular to the outer surface of the hub, and the axis of the bionic circular grooves 23 is perpendicular to the splitter blade 2 . The splitter vane 2 can effectively break the vortex, make the flow in the flow channel more stable, and reduce instability such as flow separation and secondary flow. In addition, the bionic circular groove 23 on the curved and twisted vane 1 can reduce wall friction resistance and flow resistance. , to reduce flow loss. The height of the splitter vane 2 is less than that of the curved and twisted vane 1, and the shaft sleeve 3 is fixed on the hub with a standard connector 4. The splitter vanes 2 are used to block the transverse flow from the pressure surface 19 of the twisted blade 1 to the suction surface 18 of the twisted blade 1 and vortex breaking at the blade root of the twisted blade 1 .

参照叶片的工作原理,弯扭叶片1扭曲能保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常的工作,避免气流分离,减少流动损失,借鉴王仲奇(院士)根据小径高比叶片环形叶栅静态吹风实验和数值计算结果而提出的附面层迁移理论,即弯扭叶片1周向弯曲后,弯扭叶片1表面与气流的作用力在径向的分力不等于零,从而控制了压力沿弯扭叶片1高度的分布,弯扭叶片1周向弯曲以后,弯扭叶片1表面与气流的作用力在径向的分力不等于零,从而控制了压力沿弯扭叶片1高度的分布,使得在弯扭叶片1表面,尤其是吸力面18上形成了两端压力高、中间压力低的压力分布,即“C”型压力分布,在它的作用下,两端附面层被吸到中部并被主流带走,这样就减少了低能流体在两端壁与吸力面18组成的角隅处的堆积,避免了分离的发生,因而两端部的流动损失下降,其次弯扭叶片1的压力面19和吸力面18的压差明显小于常规叶片,在端壁上的横向二次流减弱,相应的横向二次流损失下降,合理的匹配弯扭将使叶轮风机获得极佳的性能,能改善级反动度和提高级通流能力,推迟通道涡形成时间和减小通道涡的尺寸和强度,弯扭叶片1在设计中扭曲15°-20°,弯曲15°-20°,同时为了更有效减少二次流,抑制边界层厚度,控制尾迹翼尖涡的形成,减少湍流耗散等设计了叶脉状凹槽15、翼型槽11、抛物线小孔12和小翼突起13等。Referring to the working principle of the blade, the twisting of the curved and twisted blade 1 can ensure that the air has a relatively uniform axial velocity at all positions in the radial direction, ensure normal work, avoid air separation, and reduce flow loss. The boundary layer migration theory proposed based on the static blowing experiments and numerical calculation results of the blade annular cascade, that is, after the twisted blade 1 is bent in the circumferential direction, the radial component of the force between the surface of the twisted blade 1 and the airflow is not equal to zero, Thus, the distribution of pressure along the height of the curved blade 1 is controlled. After the curved blade 1 is bent in the circumferential direction, the radial component of the force between the surface of the curved blade 1 and the airflow is not equal to zero, thereby controlling the pressure along the curved blade 1. The distribution of the height makes the pressure distribution with high pressure at both ends and low pressure in the middle formed on the surface of the curved and twisted blade 1, especially the suction surface 18, that is, the "C" type pressure distribution. The layer is sucked to the middle and taken away by the main flow, which reduces the accumulation of low-energy fluid at the corner formed by the two end walls and the suction surface 18, avoids the occurrence of separation, and thus reduces the flow loss at both ends, followed by bending The pressure difference between the pressure surface 19 and the suction surface 18 of the twisted blade 1 is obviously smaller than that of the conventional blade, the lateral secondary flow on the end wall is weakened, and the corresponding lateral secondary flow loss is reduced. Excellent performance, can improve stage reaction and increase stage flow capacity, delay channel vortex formation time and reduce channel vortex size and strength, twisted blade 1 is designed to twist 15°-20°, bend 15°-20° °, at the same time, in order to more effectively reduce the secondary flow, suppress the thickness of the boundary layer, control the formation of the wake tip vortex, and reduce the dissipation of turbulent flow, the vein-shaped groove 15, airfoil groove 11, parabolic small hole 12 and winglet protrusions are designed 13 etc.

本发明首先对轮毂上的叶片进行弯扭设计,保证气流在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的径向和横向的二次流,同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力,推迟通道涡形成时间和减小通道涡的尺寸和强度;弯扭叶片1压力面19上半部开有的叶脉状凹槽15和弯扭叶片1顶部的翼型槽11通过出气口14相连,该结构能够在叶脉状凹槽15内形成低速二次涡,槽内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将压力面19上部的高能气体引通过叶脉状凹槽15和出气口14引进叶顶翼型槽11,阻止一些气体通过径向间隙从压力面19流向吸力面18,造成弯扭叶片1顶部附近流动的混乱,改善叶顶的流动情况,也可以避免气体从弯扭叶片1的压力面19流向相邻的吸力面18产生的横向二次流现象,从而达到减少流动损失,同时弯扭叶片1顶部的叶脉状凹槽15也有普通凹槽的作用,能形成涡垫效应,使近壁区湍流强度减少;弯扭叶片1上的抛物线小孔12能减少吸力面18和压力面19的压力差,改善弯扭叶片1周围边界层分离,减少了涡流噪声的产生;尾翼可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失;分流叶片2能有效破涡,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,分流叶片2上开有仿生圆槽23能够减少壁面摩擦阻力,降低流动阻力,减少流动损失,同时抑制涡噪的产生。依托原理在轴流风机叶轮不同位置进行改进使轴流风机的效率更高,性能更好,更节能环保。In the present invention, the blades on the hub are first designed to be bent and twisted to ensure that the air flow has a relatively uniform axial velocity at each position in the radial direction, to ensure normal operation, to avoid air separation, to reduce flow loss and to effectively suppress the internal diameter of the cascade. At the same time, it can increase the degree of reaction at the root, reduce the degree of reaction at the top, achieve the purpose of equalizing the distribution of the degree of reaction along the blade height, improve the flow capacity of the root, delay the formation time of channel vortex and reduce the time of channel vortex Size and strength; the vein-shaped groove 15 on the upper half of the pressure surface 19 of the twisted blade 1 is connected to the airfoil groove 11 on the top of the twisted blade 1 through the air outlet 14, and this structure can be formed in the vein-shaped groove 15 Low-speed secondary vortex, the viscous resistance in the groove is opposite to the total resistance to reduce viscous resistance, suppress turbulent flow intensity, reduce turbulent flow dissipation, and can guide the high-energy gas on the upper part of the pressure surface 19 to the blade tip through the vein-shaped groove 15 and the gas outlet 14 The airfoil groove 11 prevents some gas from flowing from the pressure surface 19 to the suction surface 18 through the radial gap, causing chaos in the flow near the top of the twisted blade 1, improving the flow of the blade tip, and also avoiding the pressure of the gas from the curved blade 1 Surface 19 flows to the lateral secondary flow phenomenon that adjacent suction surface 18 produces, thereby reduces flow loss, and at the same time, the vein-shaped groove 15 on the top of the curved and twisted blade 1 also has the effect of a common groove, which can form a vortex pad effect, making the near The turbulence intensity in the wall area is reduced; the parabolic small hole 12 on the twisted blade 1 can reduce the pressure difference between the suction surface 18 and the pressure surface 19, improve the boundary layer separation around the twisted blade 1, and reduce the generation of eddy current noise; the empennage can guide the airflow Moving along the chord direction can well control the radial flow, reduce the secondary flow of the radial movement, prevent the wake jet, and make the separation point of the suction surface 18 of the twisted blade 1 move backward to reduce energy loss; The splitter blade 2 can effectively break the vortex, make the flow in the flow channel more stable, and reduce the unstable phenomena such as flow separation and secondary flow. loss, while suppressing the generation of eddy noise. Relying on the principle to improve the different positions of the impeller of the axial flow fan, the efficiency of the axial flow fan is higher, the performance is better, and it is more energy-saving and environmentally friendly.

弯扭叶片1是采用等环量孤立翼型法设计的翼型叶片,弯扭叶片1厚度分布与NACA四位数字翼型厚度分布相同,翼型相对厚度为10%-15%,弯扭叶片1数量为8个;弯扭叶片1顶部的翼型槽11的槽深为弯扭叶片1高度的1%-2%,翼型槽11的厚度为弯扭叶片1顶面的50%-60%;在弯扭叶片1后端上等距分布着小翼突起13,小翼突起13间距d1为弯扭叶片1高度H的18%-22%,小翼突起13的长度d4为弯扭叶片1弦长的15%-17%,与弦长的夹角ω为30°-40°,离弯扭叶片1后端边缘的距离d5为弯扭叶片1弦长的1%-3%;弯扭叶片1中分布着抛物线小孔12,孔径为1-2mm;弯扭叶片1压力面19顶部的叶脉状凹槽15槽深为1-2mm,最大槽长为弯扭叶片1高度的30%-40%,脉槽的间距为20-30mm,每条脉槽都单独和一个出气口14相通,脉槽的具体数量视弯扭叶片1大小而定;弯扭叶片1扭曲15°-20°,弯曲15°-20°。弯曲是指弯扭叶片1在用等环量孤立翼型法设计时沿水平中截面(与弯扭叶片1的高垂直的面)弯曲,即不同半径处的翼型截面在水平方向上彼此有相应的间距;扭曲是指弯扭叶片1在用等环量孤立翼型法设计时沿竖直中截面(与弯扭叶片1的高平行的面)扭曲,即不同半径处的翼型截面绕竖直方向扭曲相应的角度。扭曲益处:不仅使得弯扭叶片1的叶根处安装角大,叶尖处安装角小,还能保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失。弯曲和扭曲益处:能够有效抑制叶栅内部的二次流动(静压呈C型分布弯扭叶片1的吸力面18和压力面19压差小于常规叶片),同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力,推迟通道涡形成时间和减小通道涡的尺寸和强度。Twisted blade 1 is an airfoil blade designed by the isocircular isolated airfoil method. The thickness distribution of curved and twisted blade 1 is the same as that of the NACA four-digit airfoil. The relative thickness of the airfoil is 10%-15%. The number of 1 is 8; the groove depth of the airfoil groove 11 on the top of the curved blade 1 is 1%-2% of the height of the curved blade 1, and the thickness of the airfoil groove 11 is 50%-60 of the top surface of the curved blade 1 %; On the rear end of the twisted blade 1, there are winglet protrusions 13 equidistantly distributed, the spacing d1 of the winglet protrusions 13 is 18%-22% of the height H of the twisted blade 1, and the length d4 of the winglet protrusion 13 is the twisted blade 15%-17% of the chord length, the angle ω with the chord length is 30°-40°, and the distance d5 from the rear edge of the curved blade 1 is 1%-3% of the chord length of the curved blade 1; Distributed in the twisted blade 1 are parabolic small holes 12 with a diameter of 1-2mm; the depth of the vein-shaped groove 15 on the top of the pressure surface 19 of the twisted blade 1 is 1-2mm, and the maximum groove length is 30% of the height of the twisted blade 1 -40%, the pitch of the veins is 20-30mm, and each vein is connected to an air outlet 14 independently, and the specific number of veins depends on the size of the twisted blade 1; the twisted blade 1 is twisted by 15°-20° , bend 15°-20°. Bending means that the twisted blade 1 bends along the horizontal mid-section (the surface perpendicular to the height of the twisted blade 1) when it is designed with the equal circulation isolated airfoil method, that is, the airfoil sections at different radii Corresponding pitch; Twist refers to that the twisted blade 1 twists along the vertical middle section (the plane parallel to the height of the twisted blade 1) when the twisted blade 1 is designed with the equal circulation isolated airfoil method, that is, the airfoil sections at different radii wrap around The vertical direction is twisted by the corresponding angle. Twisting benefits: not only makes the installation angle of the blade root of the curved and twisted blade 1 large, but the installation angle of the blade tip is small, but also ensures that the air has a relatively uniform axial velocity at all positions in the radial direction, ensuring normal operation and avoiding air separation , to reduce flow loss. Benefits of bending and twisting: it can effectively suppress the secondary flow inside the cascade (the pressure difference between the suction surface 18 and the pressure surface 19 of the curved and twisted blade 1 is smaller than that of a conventional blade), and at the same time, it can increase the degree of root reaction and reduce the top pressure. The degree of reaction can achieve the purpose of homogenizing the distribution of degree of reaction along the height of the blade, improving the flow capacity of the root, delaying the formation time of channel vortex and reducing the size and strength of channel vortex.

分流叶片2为葛根廷翼,分流叶片2的高度为弯扭叶片1高度的30%-40%,分流叶片2的两侧面均设有径向等距的n个凹槽组(径向是指沿分流叶片2高度方向),每个凹槽组又包含c个仿生圆槽23,仿生圆槽23与分流叶片2顶部、根部、前缘和后端最小的间距都为圆弧形板长的6%-12%,相邻仿生圆槽23彼此间距d均为5-8mm,仿生圆槽23半径为1-2mm,n和c的值具体视分流叶片2的高度和宽度而定;仿生圆槽23呈直线分布,不同仿生圆槽23的间距定了,距离四周的间距能也定了。上述连接件4用轴套3固定在轮毂上,轴套3采用常规的轴套,连接件4采用标准件螺栓来通过轴套3与轮毂连接。The splitter vane 2 is a kudzu wing, and the height of the splitter vane 2 is 30%-40% of the height of the twisted vane 1. Both sides of the splitter vane 2 are provided with radially equidistant n groove groups (radial means Along the direction of the height of the splitter vane 2), each groove group contains c bionic circular grooves 23, and the minimum distance between the bionic round groove 23 and the top, root, leading edge and rear end of the splitter vane 2 is the length of the arc-shaped plate. 6%-12%, the distance d between adjacent bionic circular grooves 23 is 5-8mm, the radius of the bionic circular grooves 23 is 1-2mm, and the values of n and c depend on the height and width of the splitter blade 2; The grooves 23 are distributed in a straight line, and the distance between different bionic circular grooves 23 is fixed, so is the distance between them. The above-mentioned connecting piece 4 is fixed on the wheel hub with the axle sleeve 3, the axle sleeve 3 adopts a conventional axle sleeve, and the connecting piece 4 adopts standard bolts to connect with the wheel hub through the axle sleeve 3.

实验一、将实施例1所述的“带叶脉状结构和分流叶片的新型轴流风机三元叶轮”采用CFD技术进行简单的验证,在入口速度2m/s、旋转速度100rad/s等边界条件一致的情况下,通过测量出口的静压来判断性能,因为轴流风机主要是将机械能转化为风的静压,在输入功率相同的情况下,静压大说明效率高,湍流耗散和流动损失较少,即二次流、尾迹漩涡等都得到了有效的控制。Experiment 1. The "three-dimensional impeller of a new axial flow fan with leaf vein structure and splitter blades" described in Example 1 was simply verified using CFD technology. Under the boundary conditions of inlet speed 2m/s and rotation speed 100rad/s In the case of consistency, the performance is judged by measuring the static pressure at the outlet, because the axial flow fan mainly converts mechanical energy into the static pressure of the wind. In the case of the same input power, a large static pressure indicates high efficiency, turbulence dissipation and flow The loss is less, that is, the secondary flow, wake vortex, etc. have been effectively controlled.

对比例1:取消实施例1中的弯扭叶片1顶部的翼型槽11及弯扭叶片1吸力面18顶部的叶脉状凹槽15,其余等同于实施例1,进行对比例1,。Comparative Example 1: Cancel the airfoil groove 11 on the top of the twisted blade 1 and the vein-like groove 15 on the top of the suction surface 18 of the twisted blade 1 in Example 1.

对比例2:取消实施例1中的抛物线小孔12,其余等同于实施例1,进行对比例2。Comparative Example 2: Cancel the parabolic small hole 12 in Example 1, the rest is the same as Example 1, and carry out Comparative Example 2.

对比例3:取消实施例1中分流叶片2,其余等同于实施例1,进行对比例3。Comparative example 3: cancel the splitter blade 2 in the embodiment 1, the rest is the same as the embodiment 1, and carry out the comparative example 3.

对比例4:将实施例1中的弯扭叶片1替换成普通直叶片,其余等同于实施例1,进行对比例4。Comparative Example 4: The twisted blade 1 in Embodiment 1 was replaced with an ordinary straight blade, and the rest was the same as Embodiment 1, and Comparative Example 4 was carried out.

将上述所有的对比例1-4,如同实验一所述方法进行检测,输入功率相同,所得结果(参考大气压)分别为:All of the above comparative examples 1-4 were detected as described in Experiment 1, the input power was the same, and the obtained results (reference atmospheric pressure) were respectively:

工况Condition 出口静压outlet static pressure 实验一experiment one 190.03pa190.03Pa 对比例1Comparative example 1 164.11pa164.11Pa 对比例2Comparative example 2 183.61pa183.61Pa 对比例3Comparative example 3 156.32pa156.32Pa 对比例4Comparative example 4 133.22pa133.22Pa

本发明在相同的条件下下,相较于对比例1-4,出口静压得到了显著的提高,说明湍流耗散和流动损失得到了明显的减少。Under the same conditions, the static pressure at the outlet of the present invention is significantly improved compared with Comparative Examples 1-4, indicating that turbulence dissipation and flow loss are significantly reduced.

最后应说明的是:以上各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照签署各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前处各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离发明各实施例方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to signing each embodiment, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the embodiments of the invention. .

Claims (5)

1. The axial flow fan ternary impeller with the blade vein structure and the splitter blades comprises a hub, and a shaft sleeve (3) is fixed on the hub by a connecting piece (4); the method is characterized in that: the device also comprises a bending blade (1) and a splitter blade (2) which are fixedly connected to the hub;
the bending blade (1) comprises a suction surface (18) and a pressure surface (19); the top of the bending blade (1) is provided with an airfoil groove (11); the upper half part of the pressure surface of the bending blade (1) is provided with a vein-shaped groove (15), and the wing-shaped groove (11) is communicated with the vein-shaped groove (15) through an air outlet (14); the tail part of the suction surface of the bending blade (1) is provided with a winglet protuberance (13); parabolic small holes (12) are formed in the bending and twisting blades (1);
a splitter blade (2) is arranged between two adjacent bending blades (1); the height of the splitter blade (2) is smaller than the height of half of the bending blade (1);
the splitter blade (2) is a Gettin root wing; the splitter blade (2) is arranged in the middle of the adjacent bending blade (1);
the two side surfaces of the splitter blade (2) have the same structure and are respectively: at least two radial equidistant groove groups are arranged on the side surface, each groove group comprises at least two circular grooves (23), the central line connecting line of the circular grooves (23) of each groove group is perpendicular to the outer surface of the hub, and the axial lead of the circular grooves (23) is perpendicular to the splitter blade (2);
the vein-shaped groove (15) comprises at least two vein grooves, each vein groove is communicated with one air outlet (14), and the air outlet (14) is communicated with the wing-shaped groove (11).
2. The impeller of axial flow fan with impeller vein structure and splitter blades according to claim 1, characterized in that: three winglet protrusions (13) are equidistantly arranged at the rear end of the suction surface (18) of the bending blade (1).
3. The impeller of axial flow fan with impeller vein structure and splitter blades according to claim 2, characterized in that: eight turning blades (1) and eight splitter blades (2) are equidistantly arranged on the hub.
4. The impeller of axial flow fan with impeller vein structure and splitter blades according to claim 3, characterized in that: the twisting blade (1) is twisted by 15-20 degrees and bent by 15-20 degrees.
5. The impeller of axial flow fan with impeller vein structure and splitter vane as set forth in claim 4, wherein: the height of the splitter blade (2) is 30% -40% of the height of the bending blade (1).
CN201710209298.0A 2016-12-07 2017-03-31 Three-way impeller for axial fans with vein-like structure and splitter blades Active CN106837867B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611118397X 2016-12-07
CN201611118397 2016-12-07

Publications (2)

Publication Number Publication Date
CN106837867A CN106837867A (en) 2017-06-13
CN106837867B true CN106837867B (en) 2023-05-30

Family

ID=59142340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710209298.0A Active CN106837867B (en) 2016-12-07 2017-03-31 Three-way impeller for axial fans with vein-like structure and splitter blades

Country Status (1)

Country Link
CN (1) CN106837867B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005949B (en) * 2017-07-18 2024-05-14 宁波方太厨具有限公司 Impeller of open type water pump
CN113653672B (en) * 2021-08-31 2023-11-10 佛山市南海九洲普惠风机有限公司 An axial flow impeller with splitter blades
TWI851419B (en) * 2023-09-15 2024-08-01 元山科技工業股份有限公司 Cooling fan

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201436402U (en) * 2009-06-08 2010-04-07 珠海格力电器股份有限公司 Axial flow fan blade
CN103775388A (en) * 2014-01-08 2014-05-07 南京航空航天大学 Sweeping and twisting type three-dimensional blade diffuser and design method thereof
CN104033422A (en) * 2014-06-12 2014-09-10 浙江理工大学 Small axial flow fan with splitter vanes
CN203962051U (en) * 2014-06-30 2014-11-26 中航商用航空发动机有限责任公司 A kind of concave surface rib point turbine blade and turbogenerator
CN204610372U (en) * 2015-04-22 2015-09-02 浙江理工大学 A kind of centrifugal impeller of blade trailing edge band winglet
CN205135721U (en) * 2015-09-30 2016-04-06 北京大学 Adopt leaf top rib wing structure's turbine blade
CN105650032A (en) * 2016-03-29 2016-06-08 浙江理工大学 Pressure expander of centrifugal compressor
EP3029336A1 (en) * 2014-12-03 2016-06-08 ebm-papst Mulfingen GmbH & Co. KG Blade of a fan wheel, fan wheel and axial fan
CN105736426A (en) * 2016-04-26 2016-07-06 浙江理工大学 Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures
CN207004919U (en) * 2016-12-07 2018-02-13 浙江理工大学 Axial flow blower 3 d impeller with leaf vein texture and splitterr vanes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201436402U (en) * 2009-06-08 2010-04-07 珠海格力电器股份有限公司 Axial flow fan blade
CN103775388A (en) * 2014-01-08 2014-05-07 南京航空航天大学 Sweeping and twisting type three-dimensional blade diffuser and design method thereof
CN104033422A (en) * 2014-06-12 2014-09-10 浙江理工大学 Small axial flow fan with splitter vanes
CN203962051U (en) * 2014-06-30 2014-11-26 中航商用航空发动机有限责任公司 A kind of concave surface rib point turbine blade and turbogenerator
EP3029336A1 (en) * 2014-12-03 2016-06-08 ebm-papst Mulfingen GmbH & Co. KG Blade of a fan wheel, fan wheel and axial fan
CN204610372U (en) * 2015-04-22 2015-09-02 浙江理工大学 A kind of centrifugal impeller of blade trailing edge band winglet
CN205135721U (en) * 2015-09-30 2016-04-06 北京大学 Adopt leaf top rib wing structure's turbine blade
CN105650032A (en) * 2016-03-29 2016-06-08 浙江理工大学 Pressure expander of centrifugal compressor
CN105736426A (en) * 2016-04-26 2016-07-06 浙江理工大学 Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures
CN207004919U (en) * 2016-12-07 2018-02-13 浙江理工大学 Axial flow blower 3 d impeller with leaf vein texture and splitterr vanes

Also Published As

Publication number Publication date
CN106837867A (en) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106762824B (en) Axial fan three-way impeller with vein-like structure and seagull-shaped splitter blades
CN106704261B (en) Axial flow fan ternary impeller with vein structure and non-uniform tail fin
CN105650032B (en) The diffuser of centrifugal compressor
CN105756975B (en) The axial flow blower that a kind of blade inlet edge is blown with groove structure and blade root
CN105736426A (en) Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures
CN105736425B (en) A kind of blade has the axial flow blower of bionical trailing edge with aerofoil profile deflector and stator
CN105756996B (en) A kind of blade suction surface has the axial flow blower of turbo-charger set structure and leaf top fluting
CN205639000U (en) Blade leading edge takes axial fan that groove structure and blade root blew
CN205559366U (en) Centrifugal compressor's diffuser
CN109026830B (en) Centrifugal impeller
CN104564802B (en) Volute-less centrifugal ventilator with resistance reduction grooves
CN114396393A (en) An adaptive design method for guide vanes of a bulb tubular pump and guide vanes of a bulb tubular pump
CN106837867B (en) Three-way impeller for axial fans with vein-like structure and splitter blades
CN206929130U (en) Axial flow blower 3 d impeller with leaf vein texture and sea-gull type splitterr vanes
CN207004920U (en) Axial flow blower 3 d impeller with leaf vein texture and circular arc post splitterr vanes
CN219492667U (en) Energy-saving centrifugal sewage pump
CN204921480U (en) Centrifugal compressor model level
CN205639001U (en) Axial fan that winglet and ye ding have air -blowing structure is worn to blade pressure
CN103016401B (en) Novel axial fan for air-conditioner outdoor unit
CN207004919U (en) Axial flow blower 3 d impeller with leaf vein texture and splitterr vanes
CN108953222B (en) Centrifugal impeller
CN209228724U (en) A kind of blade of adaptive active control
CN105257590B (en) Half Tandem Blades To An Aeroengine and its design method
CN215293004U (en) Blade, impeller, centrifugal fan and range hood
CN206929131U (en) Axial flow blower 3 d impeller with leaf vein texture and non-homogeneous empennage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant