CN106830850B - 发泡混凝土及其生产工艺 - Google Patents

发泡混凝土及其生产工艺 Download PDF

Info

Publication number
CN106830850B
CN106830850B CN201710152693.XA CN201710152693A CN106830850B CN 106830850 B CN106830850 B CN 106830850B CN 201710152693 A CN201710152693 A CN 201710152693A CN 106830850 B CN106830850 B CN 106830850B
Authority
CN
China
Prior art keywords
parts
foamed concrete
propylene glycol
cement
aqueous polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710152693.XA
Other languages
English (en)
Other versions
CN106830850A (zh
Inventor
卫晓勇
任铁钺
石华山
刘杰
贾吉学
崔福军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Urban Construction Nine Qiushi Concrete Co
Original Assignee
Beijing Urban Construction Nine Qiushi Concrete Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Urban Construction Nine Qiushi Concrete Co filed Critical Beijing Urban Construction Nine Qiushi Concrete Co
Priority to CN201710152693.XA priority Critical patent/CN106830850B/zh
Publication of CN106830850A publication Critical patent/CN106830850A/zh
Application granted granted Critical
Publication of CN106830850B publication Critical patent/CN106830850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Abstract

本发明涉及一种发泡混凝土及其生产工艺,其特征在于,以重量份数计,其原料包括:水泥200‑230份;矿渣微粉150‑175份;粉煤灰175‑200份;环氧乙烷/环氧丙烷嵌段共聚物4‑7份;含硼型表面活性剂10‑13份;缔合型水性聚氨酯乳液2‑3份;羧甲基纤维素钠2‑3份;水100‑110份。其具有优异的发泡性能。

Description

发泡混凝土及其生产工艺
技术领域
本发明涉及节能环保建筑材料技术领域,更具体的说,它涉及一种发泡混凝土及其生产工艺。
背景技术
发泡混凝土又名泡沫混凝土,是通过化学或物理的方式将空气等气体引入混凝土浆体中,经过成型、养护形成含有大量孔洞并具有一定强度的混凝土制品,具有轻质、保温隔热、隔音、不易燃等性能,是一种节能环保建筑材料。
美国、英国、荷兰、加拿大等欧美国家以及日本、韩国等亚洲国家,充分利用泡沫混凝土的良好特性,将它在建筑工程中的应用领域不断扩大,加快了工程进度,提高了工程质量。近年来,我国越来越重视建筑节能工作,随着与建筑节能有关政策的实施,节能材料倍受欢迎。泡沫混凝土以其良好的特性,在我国应用得到快速发展和应用,年增长率约在8%以上,成为大规模的新型保温材料。
但是,发泡混凝土在施工方面常常遇到下述困境:泡沫表面粘度小,发泡倍数高,但接触水泥、粉煤灰浆料时破泡严重,破泡后的发泡剂吸附在水泥、粉煤灰颗粒的表面而严重影响水泥凝结;泡沫表面粘度大,接触水泥、粉煤灰浆料时虽然破泡减少,但发泡倍数明显降低,单位质量发泡剂的泡沫混凝土产量降低。因而,寻求发泡性能优异的发泡混凝土是非常有必要的。
发明内容
本发明的目的在于提供一种发泡混凝土,其具有优异的发泡性能。
本发明的上述目的是通过以下技术方案得以实现的:一种发泡混凝土,以重量份数计,其原料包括:水泥200-230份;矿渣微粉150-175份;粉煤灰175-200份;环氧乙烷/环氧丙烷嵌段共聚物4-7份;含硼型表面活性剂10-13份;缔合型水性聚氨酯乳液2-3份;羧甲基纤维素钠2-3份;水100-110份。
本发明较优选地,所述环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的重量比为2.2-2.4:4.6-5:1。
本发明较优选地,所述环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的重量比为2.3:5:1。
本发明较优选地,所述含硼型表面活性剂为双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的混合物。
本发明较优选地,所述双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的重量比为3:1。
本发明较优选地,所述水泥为P.O42.5硅酸盐水泥。
本发明的另一目的提供上述所述发泡混凝土的生产工艺,包括如下步骤:
步骤1:将水泥、矿渣微粉、粉煤灰和2/3的水加入搅拌机,制成水泥浆;
步骤2:将环氧乙烷/环氧丙烷嵌段共聚物和剩余量的1/6的水混合均匀;
步骤3:将含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯和剩余水混合均匀后,再加入缔合型水性聚氨酯乳液、羧甲基纤维素钠混合均匀,发泡;
步骤4:在发泡的过程中,将步骤2中的溶液逐渐加入步骤3中溶液中;
步骤5:将泡沫加入到搅拌机中,泡沫和水泥浆混合均匀,制成发泡混凝土料浆,浇筑,养护。
综上所述,本发明具有以下有益效果:
1、本发明其具有优异的发泡性能。
2、其中,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的添加与否,对发泡混凝土的抗压强度没有太大影响,但是对发泡混凝土的干密度和导热系数有很大影响,且通过数据分析,于提高发泡混凝土的干密度和导热性能而言,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液具有协同效应。再者,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的重量比为2.3:5:1时,本发明发泡混凝土具有较为优异的性能。
3、双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的添加与否,对发泡混凝土的抗压强度没有太大影响,但是对发泡混凝土的干密度和导热系数有很大影响,且通过数据分析,于提高发泡混凝土的干密度和导热性能而言,双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯具有协同效应。再者,双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的重量比为3:1时,本发明发泡混凝土具有较为优异的性能。
4、生产工艺中步骤3能够进一步实现本发明的发明目的。这可能是由于含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯、缔合型水性聚氨酯乳液、羧甲基纤维素钠和水的混合顺序,可以影响表面活性剂的性能。
具体实施方式
以下结合实施例对本发明作进一步详细说明。
表一实施例1-9的组成表(单位:Kg)
实施例1-9发泡混凝土的生产工艺,包括如下步骤:步骤1:将水泥、矿渣微粉、粉煤灰和2/3的水加入搅拌机,制成水泥浆;步骤2:将环氧乙烷/环氧丙烷嵌段共聚物和剩余量的1/6的水混合均匀;步骤3:将含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯和剩余水混合均匀后,再加入缔合型水性聚氨酯乳液、羧甲基纤维素钠混合均匀,发泡;步骤4:在发泡的过程中,将步骤2中的溶液逐渐加入步骤3中溶液中;步骤5:将泡沫加入到搅拌机中,泡沫和水泥浆混合均匀,制成发泡混凝土料浆,浇筑,养护。
对比例1:对比例1和实施例5的区别在于,未添加双十二酸酰氧基丙二醇硼酸,而添加了12.5Kg的松香胺甲基乙二醇硼酸酯。
对比例2:对比例2和实施例5的区别在于,未添加松香胺甲基乙二醇硼酸酯,而添加了12.5Kg的双十二酸酰氧基丙二醇硼酸。
对比例3:对比例3和实施例5的区别在于,未添加双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯。
对比例4:对比例4和实施例5的区别在于,未添加环氧乙烷/环氧丙烷嵌段共聚物。
对比例5:对比例5和实施例5的区别在于,未添加缔合型水性聚氨酯乳液。
对比例6:对比例6和实施例5的各组份含量均相同,两者的区别在于,对比例6的步骤3:将含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯、缔合型水性聚氨酯乳液、羧甲基纤维素钠和剩余水混合均匀后,发泡;
对上述实施例1-9以及对比例1~6制成的发泡混凝土进行抗压强度检测,按照GB/T5486-2008进行检测,取边长为100mm的立方体试件,置于标准养护箱内养护至规定龄期。先测量试样的尺寸,精确至1mm,并计算试件的受压面积,再采用液压式万能试验机以10±1mm/min的速度连续均匀地对试样进行加荷,直至破坏,记录破坏荷载,精确至10N。泡沫混凝土的抗压强度按fcc=F/A计算,式中:fcc为泡沫混凝土立方体试件抗压强度,MPa;F为试件破坏荷载,N;A为试件受压面积,mm2
将3个试件作为一个抗压强度试验小组,将抗压强度检测值精确至0.1MPa。抗压强度值可以通过以下三种方式进行选择:(1)待3组检测值测出后,当出现最大值或着是最小值其中的一个值,和中间强度的差值相比较,超出其差值的15%,就应该取中间值当作这个小组试件检测抗压强度值;(2)同样参考上述检测计算方法,如果测得的最大值、最小值都处于中间值的15%的范围内,则取该小组的3个试件的算术平均值,当作这个小组检测抗压强度值;(3)一旦3个数据的最大值、最小值都处于中间值的15%的范围外,该组实验数据不可使用,应重新考虑制作试件并进行检测,,检测结果如表二所示。
对上述实施例1-9以及对比例1~6制成的泡沫混凝土进行干密度检测,按照GB/T5486-2008《无机硬质绝热实验方法》,取边长为100mm、养护龄期为28d的立方试样,置入电热鼓风干燥箱内,缓慢升温至110±5℃,烘干至恒定质量,然后移至干燥器中冷却至室温。恒定质量的判定依据为恒温3h,2次称量试件质量的变化率小于0.2%。称量试件自然状态下的质量,保留5位有效数字,计算样品的干密度。
对上述实施例1-9以及对比例1~6制成的泡沫混凝土进行导热系数检测,按照GB/T 10294-2008《绝热材料稳态热阻及有关特性的测定防护热板法》,利用DB11-111导热系数测试仪进行检测。试件为边长200mm、厚度20mm的正方形板块,在试件到达预定养护龄期3d前,将试件放入电热鼓风干燥箱中,放入干燥器中冷却至室温,进行导热系数的检测,检测结果如表二所示。
表二发泡混凝土的性能
对比例实施例5和对比例3-5中可以看出,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的添加与否,对发泡混凝土的抗压强度没有太大影响,但是对发泡混凝土的干密度和导热系数有很大影响,且通过数据分析,于提高发泡混凝土的干密度和导热性能而言,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液具有协同效应。再者,对比实施例3-7可知,环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的重量比为2.3:5:1时,本发明发泡混凝土具有较为优异的性能。
对比实施例5和对比例1-3中可以看出,双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的添加与否,对发泡混凝土的抗压强度没有太大影响,但是对发泡混凝土的干密度和导热系数有很大影响,且通过数据分析,于提高发泡混凝土的干密度和导热性能而言,双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯具有协同效应。再者,通过对比实施例2、5和8可知,双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的重量比为3:1时,本发明发泡混凝土具有较为优异的性能。
对比实施例5和对比例6可知,对比例6的步骤3能够进一步实现本发明的发明目的。这可能是由于含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯、缔合型水性聚氨酯乳液、羧甲基纤维素钠和水的混合顺序,可以影响表面活性剂的性能。
对上述实施例1-9以及对比例1~6制成的泡沫混凝土在实验过程中观察泡沫质量、气孔分布的情况,结果如表三所示。
表三泡沫质量、气孔分布的情况
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (6)

1.一种发泡混凝土,其特征在于,以重量份数计,其原料包括:水泥200-230份;矿渣微粉150-175份;粉煤灰175-200份;环氧乙烷/环氧丙烷嵌段共聚物4-7份;含硼型表面活性剂10-13份;缔合型水性聚氨酯乳液2-3份;羧甲基纤维素钠2-3份;水100-110份。
2.根据权利要求1所述的发泡混凝土,其特征在于,所述环氧乙烷/环氧丙烷嵌段共聚物、含硼型表面活性剂和缔合型水性聚氨酯乳液的重量比为2.3:5:1。
3.根据权利要求2所述的发泡混凝土,其特征在于,所述含硼型表面活性剂为双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的混合物。
4.根据权利要求3所述的发泡混凝土,其特征在于,所述双十二酸酰氧基丙二醇硼酸和松香胺甲基乙二醇硼酸酯的重量比为3:1。
5.根据权利要求1所述的发泡混凝土,其特征在于,所述水泥为P.O42.5硅酸盐水泥。
6.一种如权利要求1至5中任意一项所述的发泡混凝土的生产工艺,其特征在于,包括如下步骤:
步骤1:将水泥、矿渣微粉、粉煤灰和2/3的水加入搅拌机,制成水泥浆;
步骤2:将环氧乙烷/环氧丙烷嵌段共聚物和剩余量的1/6的水混合均匀;
步骤3:将含双十二酸酰氧基丙二醇硼酸、松香胺甲基乙二醇硼酸酯和剩余水混合均匀后,再加入缔合型水性聚氨酯乳液、羧甲基纤维素钠混合均匀,发泡;
步骤4:在发泡的过程中,将步骤2中的溶液逐渐加入步骤3中溶液中;
步骤5:将泡沫加入到搅拌机中,泡沫和水泥浆混合均匀,制成发泡混凝土料浆,浇筑,养护。
CN201710152693.XA 2017-03-15 2017-03-15 发泡混凝土及其生产工艺 Active CN106830850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710152693.XA CN106830850B (zh) 2017-03-15 2017-03-15 发泡混凝土及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710152693.XA CN106830850B (zh) 2017-03-15 2017-03-15 发泡混凝土及其生产工艺

Publications (2)

Publication Number Publication Date
CN106830850A CN106830850A (zh) 2017-06-13
CN106830850B true CN106830850B (zh) 2019-06-04

Family

ID=59143862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710152693.XA Active CN106830850B (zh) 2017-03-15 2017-03-15 发泡混凝土及其生产工艺

Country Status (1)

Country Link
CN (1) CN106830850B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292998A1 (en) * 2022-06-17 2023-12-20 Sika Technology AG Rigid inorganic foams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320858A (zh) * 2011-08-15 2012-01-18 杨淑贤 一种阻燃保温泡沫混凝土及其制备方法
CN105439615A (zh) * 2015-11-24 2016-03-30 北京民佳新型建材有限公司 泡沫混凝土

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320858A (zh) * 2011-08-15 2012-01-18 杨淑贤 一种阻燃保温泡沫混凝土及其制备方法
CN105439615A (zh) * 2015-11-24 2016-03-30 北京民佳新型建材有限公司 泡沫混凝土

Also Published As

Publication number Publication date
CN106830850A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Xiao et al. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement
Nepomuceno et al. Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate
Khaliq et al. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures
Wang et al. Stress–strain model of cement asphalt mortar subjected to temperature and loading rate
Min et al. Investigation on thermal and mechanical characteristics of concrete mixed with shape stabilized phase change material for mix design
Afzal et al. Assessment of early-age autogenous shrinkage strains in concrete using bentonite clay as internal curing technique
CN107236347A (zh) 隔热腻子及其制备方法
Garbalińska et al. Thermal and strength properties of lightweight concretes with variable porosity structures
CN112745058A (zh) 一种发泡剂及包含该发泡剂的泡沫混凝土
CN106830850B (zh) 发泡混凝土及其生产工艺
Vavřínová et al. Research of mechanical and thermal properties of composite material based on gypsum and straw
Park et al. Measurement of skeletal density and porosity of construction materials using a new proposed vacuum pycnometer
Li et al. Determination of the apparent activation energy of concrete carbonation
Shafigh et al. Thermo-mechanical efficiency of fibre-reinforced structural lightweight aggregate concrete
Ju et al. Steam exploded peanut shell fiber as the filler in the rigid polyurethane foams
Kalkan et al. A study on the usage of denim waste as reinforcement element in composite mortars on exterior building application
Cheng et al. Effects of mold growth on building materials by different environments in Taiwan
Šadzevičius et al. Research on the properties of concrete with hemp shives
Zhou et al. Elevated temperature properties of foam concrete: Experimental study, numerical simulation, and theoretical analysis
Bahnick et al. Exploring the curing condition and age effect on thermal conductivity of concrete
Ali et al. Improvement of the physical, mechanical and thermal insulation properties to produce gypsum boards by using waste materials
Nevezhin et al. Research of Attenuation of the Electromagnetic Wave Amplitude by Organic Materials in a Coaxial Cell
Wu et al. Experimental study on freeze-thaw performance and thermal conductivity of green ecological concrete
Yang The Relationship Between the Concrete Strength Values of Curing Specimens Using Microwave and Standard Methods
BICER et al. Thermal and mechanical properties of cement-eps-marble powder composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant