CN106812179A - 一种基于太阳能供电的智能空气汲水装置和方法 - Google Patents

一种基于太阳能供电的智能空气汲水装置和方法 Download PDF

Info

Publication number
CN106812179A
CN106812179A CN201710130290.5A CN201710130290A CN106812179A CN 106812179 A CN106812179 A CN 106812179A CN 201710130290 A CN201710130290 A CN 201710130290A CN 106812179 A CN106812179 A CN 106812179A
Authority
CN
China
Prior art keywords
water
heat exchanger
double
tube
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710130290.5A
Other languages
English (en)
Other versions
CN106812179B (zh
Inventor
豆瑞锋
吴镇伸
刘宜霖
张炎
蒋旌帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710130290.5A priority Critical patent/CN106812179B/zh
Publication of CN106812179A publication Critical patent/CN106812179A/zh
Application granted granted Critical
Publication of CN106812179B publication Critical patent/CN106812179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种基于太阳能供电的智能空气汲水装置和方法,属于热力学和传热学技术领域。该装置包括地上部分的太阳能电池板、蓄电池、定时电路,地下部分的套管换热器、制冷半导体、蓄水装置,套管换热器的一部分位于地面以上,轴流抽风扇放置在套管换热器内管的出口处,外管管壁镶嵌制冷半导体,半导体冷端加装肋片位于外管内壁,热端加装肋片位于外管外壁,手压水泵与蓄水装置相连。使用过程中,太阳能电池板将太阳能转变为电能存储在蓄电池中,蓄电池为定时电路、轴流风扇和制冷半导体供电。本发明适用于干旱缺水地区,能够从空气中获取纯净的液态水。

Description

一种基于太阳能供电的智能空气汲水装置和方法
技术领域
本发明涉及热力学和传热学技术领域,特别是指一种基于太阳能供电的智能空气汲水装置和方法。
背景技术
任何地区都需要水的供给保证动植物的生存和人类的正常活动,虽然不是处处有水源,但是空气中的水含量是十分可观的,如果能从空气中汲取水分,除了可以缓解干旱,也不会对于环境造成破坏。
空气在每个温度下的饱和湿度不尽相同,在空气冷却的过程中,空气饱和湿度不断下降(即绝对湿度下降),含水量固定不变,相对湿度不断增加,当相对湿度达到100%后继续冷却空气,空气中的水分便会过饱和从而以液态水的形式凝结出来。
发明内容
本发明要解决的技术问题是提供一种基于太阳能供电的智能空气汲水装置和方法,在一定的温度、一定的天气条件下可从空气中获取纯净的液态水。
该装置包括太阳能电池板、蓄电池、轴流风扇、套管换热器、制冷半导体、蓄水装置、抽水管和手压水泵;太阳能电池板、蓄电池、制冷半导体和手压水泵位于地面上,套管换热器的一部分、蓄水装置、抽水管位于地面以下;太阳能电池板与蓄电池相连,蓄电池为轴流风扇和制冷半导体供电,制冷半导体镶嵌在套管换热器上,套管换热器下端连接蓄水装置,蓄水装置通过抽水管与手压水泵相连。
其中,套管换热器为同心的薄壁圆管,分别为套管换热器内管和套管换热器外管,内外管连接部分通过螺栓螺母将套管换热器内管和套管换热器外管相连;在套管换热器外管上镶嵌制冷半导体,在套管换热器内管地面上方出口安装轴流风扇。
套管换热器外管采用绝缘性材料制成,套管换热器内管采用两导热性材料制成,外管良好的绝热性能可以避免外部环境温度对管内流体温度的影响。
制冷半导体一端为冷端,一端为热端,工作时热端发热冷端制冷,但冷热端最大温差一定,所以在冷端加装制冷半导体冷端肋片,在热端加装制冷半导体热端肋片,以增强散热,强化制冷效果,同时根据所需制冷量选择合适功率的芯片。
套管换热器外管下端与蓄水装置连接处采用渐缩口设计,可以减少因蒸发损失的水分;蓄水装置由不锈钢材料制成。
蓄电池设有时间控制开关,利用单片机达到每隔24小时启动工作6小时。
蓄水装置埋于地下0.5-1.0米。
手压水泵主要由手摇抽水泵和PPR管路组成,抽水管与蓄水装置接通,使用时在地面上摇动手摇抽水泵,即可将地下蓄水抽到地面上来。
采用该装置进行汲水的方法,具体过程如下:
该装置根据定时控制开关,在清晨环境温度最低时启动装置,轴流风扇抽风,环境中的湿热空气从套管换热器内外套管夹层吸入装置,流经制冷半导体冷端肋片,随着湿热空气温度的降低,湿热空气中的水分凝结形成液态水,湿热空气变为干冷空气,液态水随着干冷空气向下流动,液态水流入蓄水池,干冷空气顺着套管换热器内管上行,上行过程中将部分冷量通过套管换热器内管传递给湿热空气,完成冷量回收,随后通过轴流风扇排入环境。
本发明的上述技术方案的有益效果如下:
本发明采用太阳能供电,且加入定时控制开关,保证装置可以在最优时间段进行制水操作,制水装置采用逆流套管换热器的形式,内管向外抽风,外部湿热空气从内外管间隙走入,内管内的干冷空气与需要降温的湿热空气可以再进行热交换,可以大幅提高装置的制冷效率,并且外管与蓄水装置连接部分采用收口设计,减少因水分蒸发而减少的蓄水量。具体优点如下:
1、将汲水部分放入地下,由传热学理论可以证明,地下0.8米左右的深度可以保证装置的工作温度相对稳定,且可以节省大量地表空间,减小安装时的工作难度和工作量,也保证了制得水分的洁净。
2、采用套管装置,外管与内管之间走湿热空气,内管向外抽冷空气,冷空气和湿热空气在循环过程进行热交换实现了冷量回收,极大提高了装置效率,套管装置可以只利用一个风扇就实现空气循环;
3、将外管下端做成收口,可减少蓄水装置水分蒸发;
4、利用单片机实现了整个装置智能化工作,不需要人为管理即可实现长时间连续工作。
5、蓄水装置中加入浮球开关,水位达到设置高度时反馈断电,汲水装置停止工作。
附图说明
图1为本发明的基于太阳能供电的智能空气汲水装置结构示意图;
图2为本发明装置地下部分正视图;
图3为本发明装置中套管换热器俯视图。
其中:1-太阳能电池板;2-蓄电池;3-轴流风扇;4-套管换热器内管;5-制冷半导体热端肋片;6-制冷半导体;7-制冷半导体冷端肋片;8-蓄水装置;9-抽水管;10-手压水泵;11-套管换热器外管;12-内外管连接部分。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种基于太阳能供电的智能空气汲水装置和方法。
如图1所示,该装置中太阳能电池板1、蓄电池2、制冷半导体6和手压水泵10位于地面上,如图2所示,套管换热器的一部分、蓄水装置8、抽水管9位于地面以下;太阳能电池板1与蓄电池2相连,蓄电池2为轴流风扇3和制冷半导体6供电,制冷半导体6镶嵌在套管换热器上,套管换热器下端连接蓄水装置8,蓄水装置8通过抽水管9与手压水泵10相连。
如图3所示,套管换热器为同心的薄壁圆管,分别为套管换热器内管4和套管换热器外管11,内外管连接部分12通过螺栓螺母将套管换热器内管4和套管换热器外管11相连;在套管换热器外管11上镶嵌制冷半导体6,在套管换热器内管4地面上方出口安装轴流风扇3。
套管换热器外管11采用绝缘性材料制成,套管换热器内管4采用良导热性材料制成。
制冷半导体6一端为冷端,一端为热端,在冷端加装制冷半导体冷端肋片7,在热端加装制冷半导体热端肋片5。
套管换热器外管11下端与蓄水装置8连接处采用渐缩口设计,蓄水装置8由不锈钢材料制成。
蓄电池2设有时间控制开关,利用单片机达到每隔24小时启动工作6小时。
蓄水装置8埋于地下0.5-1.0米。
该汲水方法利用不同温度下水的饱和蒸汽压不同的基本原理,通过太阳能供电驱动制冷半导体工作降低同一压强下的空气温度使得空气中的水分过饱并析出。这种制水方法具有简单、可靠性好的优点。由于采用本装置和方法所制取水量多少依赖于周围环境,所以具体制水量还要根据每个地区的差异进行实际计算和操作可以得出,如下以北京市6月-10月为例对制水量进行简要说明。
1.设备准备
根据当地环境条件确定制冷半导体和太阳能电池板的功率,确定蓄电池的容量,设置定时开关,保证制水设备工作时间在当地日出前六小时左右,将制冷半导体与套管正确连接,保证外管内外壁与制冷半导体冷热端接触部位绝热良好。确定制冷半导体和太阳能电池板功率可以基于以下设计方法:
1.1制冷区域制冷功率计算:
定性分析:根据北京气象局发布的数据得到北京六月到九月,白天平均气温30摄氏度,相对湿度80%。凌晨温度Te为26摄氏度,将此刻的空气引入设备降至Ti=16℃,即温降ΔT=Te-Ti=26-16=10℃。根据《空气调节设计手册》,30℃时空气中饱和水含量为30.3g/m3,26℃时空气中饱和水含量为24.3g/m3,16℃为13.6g/m3。风扇抽风流速v=2m/s,出风口直径d=65mm。
定性温度查得空气的比热和密度为:Cp=1007J/kg.℃,ρ=1.201kg/m3
空气的质量流量m为:
实际所需制冷功率Q实际为:
Q实际=m·Cp·△T=0.008×1007×(26-16)=84.2W
上述式中:m为空气的质量流量;v空气流速;ρ为对应温度下空气密度;Cp为对应温度下的比热。
1.2.制冷校核
拟使用规格为40×42×3.8mm制冷功率为27W的制冷半导体,其上冷端和热端分别接触良好加装8个40×10×5mm的铜质肋板。
设定制冷半导体冷端工作温度TS为0℃
A板+fin=(16×40×10+40×42)×10-6=0.0081㎡
在内管四周分别加装3个上述规格半导体,则A=12×A板+fin=0.0972㎡
拟工作过程中将空气从Te降至Ti
ΔT=Te-Ti=26-16=10℃
该传热过程可以近似为气体在管内横略肋片(制冷半导体冷端肋片)对流流动换热,假定空气与制冷半导体冷端换热系数为h=40W/㎡℃
根据传热公式:
当入口温度Ti=26℃,空气换热系数h=40W/㎡℃,空气质量流量m=0.008kg/s时,换热后的气体温度Te=16℃,满足设计要求。
1.3太阳能电池板功率选择
北京日平均光照时长7.4小时
300W太阳能电池板可发电量Q=7.4×0.3=2.22KWh
抽风扇功率为20W,电路控制单片机功率很小可忽略,制冷半导体功率12×27W
工作6小时所需电量Qtotal=(20+12×27)×6÷1000=2.064KWh
因此,正常情况下选用300W太阳能发电足够供应汲水设备正常运行并有富余。
1.设备安装
尽可能将太阳能电池板与当地最强日照方向垂直放置,输出端与蓄电池相连,蓄电池与浮球开关串联再与定时控制芯片串联,控制芯片输出线与轴流风扇、制冷半导体连接。
2.制水量估算
根据北京气象局发布的数据得到北京六月到九月,白天平均气温30摄氏度,相对湿度80%。凌晨温度26摄氏度,将此刻的空气引入设备降至10℃。根据《空气调节设计手册》,30℃时空气中饱和水含量为30.3g/m3,26℃时空气中饱和水含量为24.3g/m3,16℃为13.6g/m3
夏季空气中含水量为:0.8×30.3=24.24g/m3
设备工作六小时可制取水量:M=v×As×6×3600×(24.24-13.6)=2287.88g
在该条件下,设备正常工作一天可从空气中汲取水约2.28L。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种基于太阳能供电的智能空气汲水装置,其特征在于:包括太阳能电池板(1)、蓄电池(2)、轴流风扇(3)、套管换热器、制冷半导体(6)、蓄水装置(8)、抽水管(9)和手压水泵(10);太阳能电池板(1)、蓄电池(2)、制冷半导体(6)和手压水泵(10)位于地面上,套管换热器的一部分、蓄水装置(8)、抽水管(9)位于地面以下;太阳能电池板(1)与蓄电池(2)相连,蓄电池(2)为轴流风扇(3)和制冷半导体(6)供电,制冷半导体(6)镶嵌在套管换热器上,套管换热器下端连接蓄水装置(8),蓄水装置(8)通过抽水管(9)与手压水泵(10)相连。
2.根据权利要求1所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述套管换热器为同心的薄壁圆管,分别为套管换热器内管(4)和套管换热器外管(11),内外管连接部分(12)通过螺栓螺母将套管换热器内管(4)和套管换热器外管(11)相连;在套管换热器外管(11)上镶嵌制冷半导体(6),在套管换热器内管(4)地面上方出口安装轴流风扇(3)。
3.根据权利要求2所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述套管换热器外管(11)采用绝缘性材料制成,套管换热器内管(4)采用良导热性材料制成。
4.根据权利要求1所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述制冷半导体(6)一端为冷端,一端为热端,在冷端加装制冷半导体冷端肋片(7),在热端加装制冷半导体热端肋片(5)。
5.根据权利要求2所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述套管换热器外管(11)下端与蓄水装置(8)连接处采用渐缩口设计,蓄水装置(8)由不锈钢材料制成。
6.根据权利要求1所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述蓄电池(2)设有时间控制开关,利用单片机达到每隔24小时启动工作6小时。
7.根据权利要求1所述的基于太阳能供电的智能空气汲水装置,其特征在于:所述蓄水装置(8)埋于地下0.5-1.0米。
8.采用权利要求1所述的基于太阳能供电的智能空气汲水装置进行汲水的方法,其特征在于:该装置根据定时控制开关,在清晨环境温度最低时启动装置,轴流风扇(3)抽风,环境中的湿热空气从套管换热器内外套管夹层吸入装置,流经制冷半导体冷端肋片(7),随着湿热空气温度的降低,湿热空气中的水分凝结形成液态水,湿热空气变为干冷空气,液态水随着干冷空气向下流动,液态水流入蓄水池(2),干冷空气顺着套管换热器内管(4)上行,上行过程中将部分冷量通过套管换热器内管(4)传递给湿热空气,完成冷量回收,随后通过轴流风扇(3)排入环境。
CN201710130290.5A 2017-03-07 2017-03-07 一种基于太阳能供电的智能空气汲水装置和方法 Active CN106812179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710130290.5A CN106812179B (zh) 2017-03-07 2017-03-07 一种基于太阳能供电的智能空气汲水装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710130290.5A CN106812179B (zh) 2017-03-07 2017-03-07 一种基于太阳能供电的智能空气汲水装置和方法

Publications (2)

Publication Number Publication Date
CN106812179A true CN106812179A (zh) 2017-06-09
CN106812179B CN106812179B (zh) 2023-04-25

Family

ID=59114656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710130290.5A Active CN106812179B (zh) 2017-03-07 2017-03-07 一种基于太阳能供电的智能空气汲水装置和方法

Country Status (1)

Country Link
CN (1) CN106812179B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108104198A (zh) * 2017-12-06 2018-06-01 江苏大学 一种利用空气冷凝的分布式集水装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254402A (ja) * 2000-03-13 2001-09-21 Toshio Suekane 空気からの採水方法とその装置
US20020011075A1 (en) * 2000-07-27 2002-01-31 Faqih Abdul-Rahman Abdul-Kader M. Production of potable water and freshwater needs for human, animal and plants from hot and humid air
FR2833044A1 (fr) * 2001-12-04 2003-06-06 Marc Hugues Noel Parent Reacteur thermodynamique eolien
RU2245967C2 (ru) * 2002-12-26 2005-02-10 Дагестанский государственный технический университет (ДГТУ) Устройство для получения воды из атмосферного воздуха
FR2893959A1 (fr) * 2005-11-29 2007-06-01 Marc Hugues Parent Machine de production d'eau a partir d'energie eolienne
CN101120646A (zh) * 2006-08-09 2008-02-13 姚福来 从空气中取水的沙漠植物灌溉装置
CN101457539A (zh) * 2009-01-04 2009-06-17 陈台胜 从空气中凝集水的方法
CN102587452A (zh) * 2012-02-28 2012-07-18 朱剑文 坎儿井大气形态转化采水装置
CN102986499A (zh) * 2012-11-07 2013-03-27 黑龙江海昌生物技术有限公司 一种基于地表温差的自供电辅冷空气汲水自灌溉系统
CN103132560A (zh) * 2011-11-29 2013-06-05 朱杰 风电空气冷凝取水装置
EA019081B1 (ru) * 2013-01-18 2013-12-30 Александр Сергеевич Бадерко Устройство для производства пресной воды
CN203934432U (zh) * 2014-07-11 2014-11-12 中工武大设计研究有限公司 一种风光互补空气冷凝水自动灌溉装置
CN104452879A (zh) * 2013-09-15 2015-03-25 南京大五教育科技有限公司 一种水平式风光互补的空气取水器
CN205348277U (zh) * 2016-01-19 2016-06-29 海南大学 一种太阳能半导体冷凝空气取水装置
CN106368267A (zh) * 2016-11-11 2017-02-01 湖南大学 空气取水器
CN206581334U (zh) * 2017-03-07 2017-10-24 北京科技大学 一种基于太阳能供电的智能空气汲水装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254402A (ja) * 2000-03-13 2001-09-21 Toshio Suekane 空気からの採水方法とその装置
US20020011075A1 (en) * 2000-07-27 2002-01-31 Faqih Abdul-Rahman Abdul-Kader M. Production of potable water and freshwater needs for human, animal and plants from hot and humid air
FR2833044A1 (fr) * 2001-12-04 2003-06-06 Marc Hugues Noel Parent Reacteur thermodynamique eolien
RU2245967C2 (ru) * 2002-12-26 2005-02-10 Дагестанский государственный технический университет (ДГТУ) Устройство для получения воды из атмосферного воздуха
FR2893959A1 (fr) * 2005-11-29 2007-06-01 Marc Hugues Parent Machine de production d'eau a partir d'energie eolienne
CN101120646A (zh) * 2006-08-09 2008-02-13 姚福来 从空气中取水的沙漠植物灌溉装置
CN101457539A (zh) * 2009-01-04 2009-06-17 陈台胜 从空气中凝集水的方法
CN103132560A (zh) * 2011-11-29 2013-06-05 朱杰 风电空气冷凝取水装置
CN102587452A (zh) * 2012-02-28 2012-07-18 朱剑文 坎儿井大气形态转化采水装置
CN102986499A (zh) * 2012-11-07 2013-03-27 黑龙江海昌生物技术有限公司 一种基于地表温差的自供电辅冷空气汲水自灌溉系统
EA019081B1 (ru) * 2013-01-18 2013-12-30 Александр Сергеевич Бадерко Устройство для производства пресной воды
CN104452879A (zh) * 2013-09-15 2015-03-25 南京大五教育科技有限公司 一种水平式风光互补的空气取水器
CN203934432U (zh) * 2014-07-11 2014-11-12 中工武大设计研究有限公司 一种风光互补空气冷凝水自动灌溉装置
CN205348277U (zh) * 2016-01-19 2016-06-29 海南大学 一种太阳能半导体冷凝空气取水装置
CN106368267A (zh) * 2016-11-11 2017-02-01 湖南大学 空气取水器
CN206581334U (zh) * 2017-03-07 2017-10-24 北京科技大学 一种基于太阳能供电的智能空气汲水装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108104198A (zh) * 2017-12-06 2018-06-01 江苏大学 一种利用空气冷凝的分布式集水装置

Also Published As

Publication number Publication date
CN106812179B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN104320953B (zh) 一种二次水环路服务器机柜散热系统
CN103453604B (zh) 一种太阳能空调系统
CN104033950A (zh) 一种蓄热型太阳能地源热泵耦合系统
CN205351809U (zh) 一种住宅用冷暖循环系统
CN109114804A (zh) 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水系统及其运行方法
CN203964260U (zh) 一种地源热泵系统的自动控制系统
CN201302322Y (zh) 一种地热空调装置
CN205403243U (zh) 空气能土壤蓄热及蓄冷装置
CN104236165A (zh) 太阳能蓄能冷热源风能塔热泵系统
CN106440404A (zh) 一种太阳能热水热泵系统
CN101266104A (zh) 一种低能耗或完全被动式的热量转移装置
CN205026995U (zh) 自适应蓄热太阳能地源热泵装置
WO2019179274A1 (zh) 全效型空气源热泵系统
CN206581334U (zh) 一种基于太阳能供电的智能空气汲水装置
CN104596007A (zh) 天然能源中央空调
CN106812179A (zh) 一种基于太阳能供电的智能空气汲水装置和方法
CN107036214A (zh) 一种太阳能空调系统
CN204460554U (zh) 天然能源中央空调
CN204757451U (zh) 一种太阳能辅助式热泵机组
CN204272824U (zh) 一种温室大棚节能控温系统
CN207317071U (zh) 一种温室集蓄热装置
CN105258379A (zh) 热泵型太阳能蒸发式冷凝空调机组
CN203177290U (zh) 真空管太阳能和地热互补组合式供暖供热系统
KR101027134B1 (ko) 볼텍스 발열장치를 이용한 고효율 히트펌프 시스템
CN205593060U (zh) 冷暖一体机空调

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant