CN106803731A - A kind of five-phase PMSM model prediction method for controlling torque - Google Patents
A kind of five-phase PMSM model prediction method for controlling torque Download PDFInfo
- Publication number
- CN106803731A CN106803731A CN201710022345.0A CN201710022345A CN106803731A CN 106803731 A CN106803731 A CN 106803731A CN 201710022345 A CN201710022345 A CN 201710022345A CN 106803731 A CN106803731 A CN 106803731A
- Authority
- CN
- China
- Prior art keywords
- delta
- voltage vector
- voltage
- flux linkage
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000013598 vector Substances 0.000 claims abstract description 87
- 230000001360 synchronised effect Effects 0.000 claims abstract description 12
- 230000004907 flux Effects 0.000 claims description 49
- 230000009466 transformation Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 20
- 230000004044 response Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种五相永磁同步电机模型预测转矩控制方法,属于电力电子与电力传动领域中多相电机交流控制系统设计与制造,其主要步骤为:首先计算无差拍电压矢量所在的扇区,只选取该扇区内的4个电压矢量(2个中矢量+2个大矢量)作为模型预测转矩控制的输入集,做到实时更新;然后利用预测模型对输入集里的4个电压矢量进行预测计算,结合目标函数选取最优的电压矢量作为系统在下一时刻的输入。本发明方法采用模型预测转矩控制,具有优良的动态响应性能,且计算量较小,数字实现更为容易,缓解了数字芯片的压力。
The invention discloses a model predictive torque control method of a five-phase permanent magnet synchronous motor, which belongs to the design and manufacture of multi-phase motor AC control systems in the field of power electronics and electric transmission. The main steps are: first, calculate where the deadbeat voltage vector lies sector, only select 4 voltage vectors (2 medium vectors + 2 large vectors) in this sector as the input set of model predictive torque control, so as to achieve real-time update; then use the predictive model to The four voltage vectors are predicted and calculated, and the optimal voltage vector is selected as the input of the system at the next moment in combination with the objective function. The method of the invention adopts model predictive torque control, has excellent dynamic response performance, and has less calculation amount, easier digital realization, and eases the pressure of digital chips.
Description
技术领域technical field
本发明涉及电力电子与电力传动领域中多相电机交流控制系统(包含五相逆变器、五相永磁同步电机)设计与制造,特别涉及一种五相永磁同步电机模型预测转矩控制方法。The invention relates to the design and manufacture of a multi-phase motor AC control system (including a five-phase inverter and a five-phase permanent magnet synchronous motor) in the field of power electronics and electric transmission, in particular to a model predictive torque control of a five-phase permanent magnet synchronous motor method.
背景技术Background technique
微电子技术和电力电子技术的进步,为多相交流调速系统的发展奠定了基础。多相系统的优势主要在于:电机的振动和噪声较小,逆变器容量大、输出特性好,并且可靠性强、功率密度高。Advances in microelectronics and power electronics have laid the foundation for the development of multiphase AC speed control systems. The advantages of the multi-phase system mainly lie in: the vibration and noise of the motor are small, the inverter has a large capacity, good output characteristics, high reliability, and high power density.
有限集模型预测转矩控制(Finite-Control-Set Model Predictive TorqueControl,FCS-MPTC)是一种在线优化控制算法。在五相变流器-电机驱动系统中,通常只选取11个矢量(大矢量+零矢量,MPTC-11)或是21个矢量(大矢量+中矢量+零矢量,MPTC-21)作为输入集合。在FCS-MPTC算法中,每一个控制周期内都要对输入集合中的电压矢量进行遍历计算。选取11个矢量作为输入集合,虽然一定程度上减小了计算量,但电机定子电流中会出现较大的谐波,造成电机稳态时转矩脉动较大且控制效果不佳;而选取21个矢量作为输入集合虽然丰富了控制集的数量,并提高了系统的控制性能,但给数字控制系统带来了较大的计算负担,会产生数字延时等其他问题。Finite-Control-Set Model Predictive Torque Control (FCS-MPTC) is an online optimization control algorithm. In a five-phase converter-motor drive system, usually only 11 vectors (large vector + zero vector, MPTC-11) or 21 vectors (large vector + medium vector + zero vector, MPTC-21) are selected as input gather. In the FCS-MPTC algorithm, the voltage vector in the input set must be traversed and calculated in each control cycle. Selecting 11 vectors as the input set reduces the amount of calculation to a certain extent, but large harmonics will appear in the motor stator current, resulting in large torque ripple and poor control effect when the motor is in a steady state; while selecting 21 Although a vector as an input set enriches the number of control sets and improves the control performance of the system, it brings a large computational burden to the digital control system and will cause other problems such as digital delay.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种五相永磁同步电机模型预测转矩控制方法,减轻数字控制系统的计算负担,保证系统优良的控制性能。The technical problem to be solved by the present invention is to provide a five-phase permanent magnet synchronous motor model predictive torque control method, which can reduce the calculation burden of the digital control system and ensure the excellent control performance of the system.
为解决上述技术问题,本发明采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种五相永磁同步电机模型预测转矩控制方法,包括以下步骤:A five-phase permanent magnet synchronous motor model predictive torque control method, comprising the following steps:
步骤1:根据扩展的派克旋转变换式将五相永磁同步电机在自然坐标系下的电压、电流、磁链、转矩等物理量分别映射到d1-q1和d3-q3两个正交坐标系下;Step 1: According to the extended Parker rotation transformation formula, the physical quantities such as voltage, current, flux linkage, and torque of the five-phase permanent magnet synchronous motor in the natural coordinate system are mapped to two orthogonal coordinate systems d1-q1 and d3-q3 respectively Down;
步骤2:对两电平五相电压源逆变器的基本空间电压矢量进行分类,并计算大、中、小电压矢量的幅值分别为:Step 2: Classify the basic space voltage vectors of the two-level five-phase voltage source inverter, and calculate the magnitudes of the large, medium and small voltage vectors as follows:
式中,UL,UM,US分别表示大、中、小电压矢量的幅值;Udc表示逆变器直流侧的母线电压大小;In the formula, U L , U M , U S represent the amplitudes of the large, medium and small voltage vectors respectively; U dc represents the bus voltage of the DC side of the inverter;
步骤3:根据五相电机的转矩以及磁链误差计算出无差拍电压矢量预测值,再提取出无差拍预测电压矢量的幅值及位置信息;Step 3: Calculate the predicted value of the deadbeat voltage vector according to the torque and flux linkage error of the five-phase motor, and then extract the amplitude and position information of the deadbeat predicted voltage vector;
步骤4:根据计算得到的电压矢量位置信息确定无差拍电压矢量的所在扇区;Step 4: Determine the sector where the deadbeat voltage vector is located according to the calculated voltage vector position information;
步骤5:选取无差拍电压矢量所在扇区内的4个矢量作为预测控制的输入集;Step 5: Select 4 vectors in the sector where the deadbeat voltage vector is located as the input set of predictive control;
步骤6:对控制集中的电压矢量进行预测评价计算,选取目标函数的最小值对应的电压矢量施加给逆变器。Step 6: Predict, evaluate and calculate the voltage vectors in the control set, and select the voltage vector corresponding to the minimum value of the objective function to apply to the inverter.
进一步的,所述步骤3具体为:Further, the step 3 is specifically:
根据k时刻的转矩误差计算出所需负载角δ的变化量△δ为:According to the torque error at time k, the change amount Δδ of the required load angle δ is calculated as:
Te ref表示电机转速外环转矩的给定值;δ表示电机定转子磁链之间的负载角,Np表示电机极对数,Ld表示直轴电感,ψf表示永磁体的磁链,ψs表示定子磁链矢量; Te ref represents the given value of the outer ring torque of the motor speed; δ represents the load angle between the motor stator and rotor flux linkage, N p represents the number of pole pairs of the motor, L d represents the direct axis inductance, ψ f represents the magnetic flux of the permanent magnet chain, ψ s represents the stator flux linkage vector;
根据式计算出αβ坐标系下的定子磁链误差:According to formula Calculate the stator flux linkage error in the αβ coordinate system:
ψs ref表示基波磁链的给定值;ψ s ref represents the given value of fundamental flux linkage;
无差拍电压矢量预测值在两相αβ静止坐标系下的分量Uα和Uβ为:The components U α and U β of the deadbeat voltage vector prediction value in the two-phase αβ stationary coordinate system are:
最后根据式求得无差拍控制方法中电压矢量的幅值及位置信息:final basis Obtain the amplitude and position information of the voltage vector in the deadbeat control method:
进一步的,所述目标函数为:Further, the objective function is:
其中,i=m,m+1,m+2,m+3;m表示每个采样周期内无差拍电压矢量所在的扇区号;ψsd1-q1 ref表示基波空间定子磁链的给定值;Te(k+1)、ψsd1-q1(k+1)分别表示k+1时刻转矩和定子磁链的预测值;ψsd3-q3(k+1)表示k+1时刻定子磁链的谐波预测值;ψsd3-q3 ref为谐波空间定子磁链的给定值;λ1、λ2分别在基波空间和谐波空间定子磁链分量的权重系数。Among them, i=m, m+1, m+2, m+3; m represents the sector number where the deadbeat voltage vector is located in each sampling period; ψ sd1-q1 ref represents the given fundamental space stator flux linkage value; T e (k+1), ψ sd1-q1 (k+1) represent the predicted values of torque and stator flux linkage at k+1 time respectively; ψ sd3-q3 (k+1) represents the stator flux at k+1 time The harmonic prediction value of flux linkage; ψ sd3-q3 ref is the given value of stator flux linkage in harmonic space; λ 1 and λ 2 are the weight coefficients of stator flux components in fundamental wave space and harmonic space respectively.
进一步的,目标函数中Imax为:Further, I max in the objective function is:
|Ilim|表示设置的电流限定值,当检测某一电压矢量作用后的电流幅值超过最大值的限制,则不选取该电压矢量。|I lim | indicates the set current limit value, when it is detected that the current amplitude after the action of a certain voltage vector exceeds the limit of the maximum value, the voltage vector will not be selected.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
1)简化了FCS-MPTC方法的输入控制集,避免了大量的冗余计算,减轻了数字控制系统的计算负担。1) The input control set of the FCS-MPTC method is simplified, a large number of redundant calculations are avoided, and the calculation burden of the digital control system is reduced.
2)保留了FCS-MPTC方法动态响应速度快、鲁棒性好等优点。2) The FCS-MPTC method retains the advantages of fast dynamic response and good robustness.
3)本发明基于五相变频电机驱动系统进行分析,同样可以扩展应用于其他多相电机;同时,对于其他功率变换的场合涉及到诸如功率、转矩脉动、电流谐波等问题亦提供参考价值。3) The present invention is based on the analysis of the five-phase variable frequency motor drive system, which can also be extended and applied to other multi-phase motors; at the same time, it also provides reference value for other power conversion occasions involving issues such as power, torque ripple, and current harmonics .
附图说明Description of drawings
图1为本发明方法的整体功能框图。Fig. 1 is the overall functional block diagram of the method of the present invention.
图2为计算无差拍电压矢量的示意图。Fig. 2 is a schematic diagram of calculating the deadbeat voltage vector.
图3为预测转矩和磁链的框图。Figure 3 is a block diagram of predicted torque and flux linkage.
图4为空间旋转坐标变换计算框图。Fig. 4 is a block diagram of space rotation coordinate transformation calculation.
图5为本发明方法计算时长。Fig. 5 is the calculation duration of the method of the present invention.
图6为MPTC-21(10个大矢量+10个中矢量+零矢量)方法的计算时长。Figure 6 shows the calculation time of the MPTC-21 (10 large vectors + 10 medium vectors + zero vector) method.
图7为稳态情况下的电机转速、转矩以及a相电流波形(n=550r/min,TL=8N·m)。Fig. 7 shows the motor speed, torque and a-phase current waveform (n=550r/min, T L =8N·m) in the steady state.
图8为动态情况下的电机转速、转矩以及a相电流波形(n=550r/min,TL由2N·m跳变至8N·m)。Figure 8 shows the motor speed, torque and a-phase current waveform under dynamic conditions (n=550r/min, T L jumps from 2N·m to 8N·m).
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步详细的说明。本发明方法显著减小计算量,也实现对转矩的预测控制,提高系统的动态响应能力。具体包括以下步骤:The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The method of the invention significantly reduces the amount of calculation, also realizes the predictive control of the torque, and improves the dynamic response capability of the system. Specifically include the following steps:
五相电机系统包含有4个自由度和零序分量。电机正常运行状态下,根据扩展的派克旋转变换式将自然坐标系下的对称物理量分别映射到d1-q1和d3-q3两个正交坐标系下。对两电平五相电压源逆变器的空间矢量进行分类(表1),并根据式(1)计算各类电压矢量的幅值大小。The five-phase motor system contains four degrees of freedom and zero-sequence components. In the normal running state of the motor, the symmetrical physical quantities in the natural coordinate system are mapped to the two orthogonal coordinate systems of d1-q1 and d3-q3 according to the extended Parker rotation transformation formula. Classify the space vectors of two-level five-phase voltage source inverters (Table 1), and calculate the magnitudes of various voltage vectors according to formula (1).
表1电压矢量组分类Table 1 Classification of voltage vector groups
式(1)中,Udc表示逆变器直流侧的母线电压大小。d1-q1坐标系下的矢量与d3-q3坐标系下的矢量存在对应关系:d1-q1坐标系下的大、中、小矢量,在d3-q3坐标系下会映射成小、中、大矢量。In formula (1), U dc represents the bus voltage on the DC side of the inverter. There is a corresponding relationship between the vectors in the d1-q1 coordinate system and the vectors in the d3-q3 coordinate system: the large, medium, and small vectors in the d1-q1 coordinate system will be mapped into small, medium, and large vectors in the d3-q3 coordinate system vector.
为了减小计算量,首先计算无差拍电压矢量,只选取无差拍电压矢量所在扇区内的4个矢量(2个大矢量+2个中矢量)作为输入集,避免了对无关矢量的冗余计算。In order to reduce the amount of calculation, the deadbeat voltage vector is calculated first, and only 4 vectors (2 large vectors + 2 medium vectors) in the sector where the deadbeat voltage vector is located are selected as the input set, which avoids the calculation of irrelevant vectors. Redundant calculations.
表贴式五相永磁同步电机转矩Te的表达式为:The expression of surface-mounted five-phase permanent magnet synchronous motor torque T e is:
式中,δ表示电机定转子磁链之间的负载角,Np表示电机极对数,Ld表示直轴电感,ψf表示永磁体的磁链,ψs表示定子磁链。直接转矩控制方法中通常保持定子磁链幅值不变,通过改变负载角的大小来调节电机的转矩变化。一般情况下,负载角及其变化量均较小,可做近似处理:In the formula, δ represents the load angle between the motor stator and rotor flux linkage, N p represents the number of pole pairs of the motor, L d represents the direct axis inductance, ψ f represents the flux linkage of the permanent magnet, and ψ s represents the stator flux linkage. In the direct torque control method, the magnitude of the stator flux linkage is usually kept constant, and the torque change of the motor is adjusted by changing the magnitude of the load angle. In general, the load angle and its variation are small, which can be approximated:
δ≈sinδ (3)δ≈sinδ (3)
基于此,根据k时刻的转矩误差计算出所需负载角的变化量△δ为:Based on this, according to the torque error at time k, the change amount Δδ of the required load angle is calculated as:
Te ref表示电机转速外环转矩的给定值。T e ref represents the given value of the outer ring torque of the motor speed.
根据式(4)计算出αβ坐标系下的磁链误差:Calculate the flux linkage error in the αβ coordinate system according to formula (4):
ψs ref表示基波磁链的给定值,根据电机定子电压方程,可得到无差拍预测电压矢量的αβ分量大小:ψ s ref represents the given value of the fundamental flux linkage. According to the stator voltage equation of the motor, the αβ component of the deadbeat predicted voltage vector can be obtained:
最后根据式(6)求得无差拍控制算法中电压矢量的幅值及位置信息:Finally, the amplitude and position information of the voltage vector in the deadbeat control algorithm are obtained according to formula (6):
表2中对所得的无差拍电压矢量进行了划分定义。根据计算得到的电压位置角信息来确定其所在的扇区。Table 2 divides and defines the resulting deadbeat voltage vector. The sector where it is located is determined according to the calculated voltage position angle information.
表2扇区划分以及控制集选取表Table 2 Sector division and control set selection table
根据扇区号,对其控制集中的4个电压矢量(2个大矢量+2个中矢量)进行遍历预测计算,再根据目标函数选取最优矢量。定义目标函数J为:According to the sector number, the four voltage vectors (2 large vectors + 2 medium vectors) in the control set are traversed and predicted, and then the optimal vector is selected according to the objective function. Define the objective function J as:
其中i=m,m+1,m+2,m+3;m表示每个采样周期内无差拍电压矢量所在的扇区号;ψsd1-q1 ref表示基波空间磁链的给定值;Te(k+1)、ψsd1-q1(k+1)分别表示k+1时刻转矩和磁链的预测值;ψsd3-q3(k+1)表示k+1时刻谐波磁链的预测值;λ1、λ2分别基波空间和谐波空间定子磁链分量在评价函数中的权重系数;ψsd3-q3 ref为谐波空间磁链的给定值,为了抑制定子电流的低次谐波,其取值均设置为0。目标函数中的Imax项,体现了电流保护作用,其定义如式(9):Where i=m, m+1, m+2, m+3; m represents the sector number where the deadbeat voltage vector is located in each sampling period; ψ sd1-q1 ref represents the given value of the fundamental space flux linkage; T e (k+1), ψ sd1-q1 (k+1) represent the predicted values of torque and flux linkage at time k+1 respectively; ψ sd3-q3 (k+1) represents the harmonic flux linkage at time k+1 ; λ 1 , λ 2 are the weight coefficients of the fundamental wave space and harmonic space stator flux components in the evaluation function; ψ sd3-q3 ref is the given value of harmonic space flux linkage, in order to suppress the The values of low harmonics are all set to 0. The I max item in the objective function reflects the current protection function, and its definition is as formula (9):
|Ilim|表示设置的电流限定值,当检测某一电压矢量作用后的电流幅值超过最大值的限制,则不选取该电压矢量;若在给定值范围之内,则此项不会影响目标函数的调节作用。|I lim | indicates the set current limit value. When the current amplitude after detecting a certain voltage vector exceeds the limit of the maximum value, the voltage vector will not be selected; if it is within the range of the given value, this item will not be selected. Affects the moderating effect of the objective function.
图1中,整个系统分为转子磁链与转矩观测,无差拍电压矢量计算、转矩与磁链预测计算、空间旋转坐标变换计算四个部分。其中主要部分的具体内容为:In Fig. 1, the whole system is divided into four parts: rotor flux linkage and torque observation, deadbeat voltage vector calculation, torque and flux linkage prediction calculation, and space rotation coordinate transformation calculation. The specific contents of the main parts are:
1)转子磁链与转矩观测1) Rotor flux linkage and torque observation
本发明方法需要根据磁链、转矩误差反算出第k时刻需要施加的电压矢量,因此需要对转子磁链进行实时观测。转矩的给定值由转速误差经过一个PI控制器得到。The method of the present invention needs to inversely calculate the voltage vector to be applied at the kth moment according to the flux linkage and torque error, so real-time observation of the rotor flux linkage is required. The given value of the torque is obtained from the speed error through a PI controller.
2)无差拍电压矢量计算2) Deadbeat voltage vector calculation
图2示出无差拍电压矢量的计算原理图。对负载角进行近似计算,结合转矩误差得到负载角的期望变化量△δ,并计算出αβ坐标系下的磁链误差。根据磁链误差,计算出无差拍电压矢量及其所在扇区,扇区中的4个电压矢量(2个中矢量+2个大矢量)即为FCS-MPTC方法的输入集。Fig. 2 shows a schematic diagram of the calculation principle of the deadbeat voltage vector. The load angle is approximated, combined with the torque error to obtain the expected change of the load angle △δ, and the flux linkage error in the αβ coordinate system is calculated. According to the flux linkage error, the deadbeat voltage vector and its sector are calculated, and the 4 voltage vectors (2 medium vectors + 2 large vectors) in the sector are the input set of the FCS-MPTC method.
3)转矩与磁链预测计算3) Predictive calculation of torque and flux linkage
FCS-MPTC方法中,转矩预测计算部分的精度直接影响系统的控制性能。取电流为状态变量,按照标准状态空间函数的形式,状态方程写为:为了得到离散化的电机电流状态方程,在采样时间Ts较小的情况下作出假设:认为系统输入变量u在kTs~(k+1)Ts时间内恒定;H代表反电势的影响,对于电流环来说变化较慢,同样认为H在kTs~(k+1)Ts时间间隔内恒定。得到图的转矩与磁链预测框图,式中的系数矩阵如下:In the FCS-MPTC method, the accuracy of the torque prediction calculation part directly affects the control performance of the system. Taking the current as the state variable, according to the form of the standard state space function, the state equation is written as: In order to obtain the discretized motor current state equation, an assumption is made when the sampling time T s is small: it is considered that the system input variable u is constant within the time of kT s ~ (k+1)T s ; H represents the influence of back EMF, For the current loop, the change is relatively slow, and it is also considered that H is constant within the time interval of kT s ~ (k+1)T s . The torque and flux linkage prediction block diagram of the graph is obtained, and the coefficient matrix in the formula is as follows:
输入集合中不同的电压矢量对应不同的转矩与磁链预测值,结合目标函数,对预测的磁链与转矩进行评估,选取目标函数值最小的开关状态作为系统在下一时刻的输入。Different voltage vectors in the input set correspond to different predicted values of torque and flux linkage. Combined with the objective function, the predicted flux linkage and torque are evaluated, and the switch state with the smallest objective function value is selected as the input of the system at the next moment.
4)空间旋转坐标变换计算4) Space rotation coordinate transformation calculation
图5给出了由五相静止坐标系变换到双d-q坐标系所使用的扩展派克变化矩阵。传感器检测到的是通常abcde坐标系下的相电流,而预测模型是在d-q旋转坐标系下进行的,因此有必要首先将传感器检测的电流变换到d1-q1坐标系与d3-q3坐标系下。Figure 5 shows the extended Parker transformation matrix used for the transformation from the five-phase stationary coordinate system to the double d-q coordinate system. The sensor detects the phase current in the usual abcde coordinate system, and the prediction model is carried out in the d-q rotating coordinate system, so it is necessary to first transform the current detected by the sensor into the d1-q1 coordinate system and the d3-q3 coordinate system .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710022345.0A CN106803731B (en) | 2017-01-12 | 2017-01-12 | A kind of five-phase PMSM model prediction method for controlling torque |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710022345.0A CN106803731B (en) | 2017-01-12 | 2017-01-12 | A kind of five-phase PMSM model prediction method for controlling torque |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106803731A true CN106803731A (en) | 2017-06-06 |
CN106803731B CN106803731B (en) | 2018-12-25 |
Family
ID=58984412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710022345.0A Active CN106803731B (en) | 2017-01-12 | 2017-01-12 | A kind of five-phase PMSM model prediction method for controlling torque |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106803731B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107231111A (en) * | 2017-07-31 | 2017-10-03 | 福州大学 | The Direct Torque Control of five-phase PMSM high load capability |
CN107994832A (en) * | 2017-11-24 | 2018-05-04 | 东南大学 | A kind of multichannel permanent magnet synchronous motor mixing Direct Torque Control |
CN108667389A (en) * | 2018-04-02 | 2018-10-16 | 江苏大学 | A Predictive Fault Tolerant Control Method Based on Virtual Voltage Vector Model |
CN109495055A (en) * | 2018-09-17 | 2019-03-19 | 沈阳工业大学 | A kind of five-phase PMSM one-phase open circuit predictive-current control method |
CN109842338A (en) * | 2019-03-13 | 2019-06-04 | 河北工业大学 | Permanent magnet synchronous motor prediction model parameters on-line amending method |
CN110112974A (en) * | 2019-05-13 | 2019-08-09 | 中国科学院深圳先进技术研究院 | Motor control method, controller, storage medium and motor driven systems |
CN110661462A (en) * | 2019-10-25 | 2020-01-07 | 中南大学 | Deadbeat torque control device, method and system |
CN110838808A (en) * | 2019-11-18 | 2020-02-25 | 东南大学 | Diagnosis-free self-healing method for open-circuit fault of dual-phase permanent magnet synchronous motor drive system |
CN110868111A (en) * | 2019-10-22 | 2020-03-06 | 北方工业大学 | Model Predictive Control Method of Permanent Magnet Synchronous Motor Based on Discrete Space Vector Modulation |
CN111162714A (en) * | 2020-01-03 | 2020-05-15 | 湖南大学 | Multiphase energy storage permanent magnet motor robust prediction torque control method, system and medium considering parameter mismatch |
CN111600524A (en) * | 2020-05-26 | 2020-08-28 | 成都运达科技股份有限公司 | A Model Predictive Current Control Method for Five-Phase Inverter Based on Duty Cycle Optimization |
CN111800050A (en) * | 2020-06-18 | 2020-10-20 | 中国石油大学(华东) | A Three-Vector Model Predictive Torque Control Method for Permanent Magnet Synchronous Motor Based on Voltage Vector Screening and Optimization |
CN112994553A (en) * | 2021-03-15 | 2021-06-18 | 合肥恒大江海泵业股份有限公司 | Simplified model prediction voltage control method for permanent magnet motor system |
CN113037167A (en) * | 2021-05-20 | 2021-06-25 | 西南交通大学 | Five-phase PMSM model prediction control method for improving voltage utilization rate |
CN113093542A (en) * | 2021-03-31 | 2021-07-09 | 吉林大学 | Motor torque optimization finite set prediction control parallel computing method |
US11356045B2 (en) | 2020-04-10 | 2022-06-07 | Jiangsu University | Double virtual voltage vectors predictive torque control method without weighting factor for five-phase permanent magnet synchronous motor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6107762A (en) * | 1996-02-06 | 2000-08-22 | S-B Power Tool Company | Speed control device for electrical motor-driven apparatus |
CN103715973A (en) * | 2014-01-03 | 2014-04-09 | 天津大学 | Space voltage vector pulse width modulation algorithm of five-phase voltage source inverter bridge |
CN106026833A (en) * | 2016-06-23 | 2016-10-12 | 北京理工大学 | Space vector based control method for five-phase dual-rotor permanent magnet synchronous motor |
-
2017
- 2017-01-12 CN CN201710022345.0A patent/CN106803731B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6107762A (en) * | 1996-02-06 | 2000-08-22 | S-B Power Tool Company | Speed control device for electrical motor-driven apparatus |
CN103715973A (en) * | 2014-01-03 | 2014-04-09 | 天津大学 | Space voltage vector pulse width modulation algorithm of five-phase voltage source inverter bridge |
CN106026833A (en) * | 2016-06-23 | 2016-10-12 | 北京理工大学 | Space vector based control method for five-phase dual-rotor permanent magnet synchronous motor |
Non-Patent Citations (2)
Title |
---|
牛峰等: ""永磁同步电机模型预测直接转矩控制"", 《电机与控制学报》 * |
薛诚等: ""五相永磁同步电机多目标优化直接转矩控制算法"", 《中国电机工程学报》 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107231111A (en) * | 2017-07-31 | 2017-10-03 | 福州大学 | The Direct Torque Control of five-phase PMSM high load capability |
CN107231111B (en) * | 2017-07-31 | 2020-03-10 | 福州大学 | Direct torque control method for high load capacity of five-phase permanent magnet synchronous motor |
CN107994832A (en) * | 2017-11-24 | 2018-05-04 | 东南大学 | A kind of multichannel permanent magnet synchronous motor mixing Direct Torque Control |
CN108667389B (en) * | 2018-04-02 | 2020-06-09 | 江苏大学 | Virtual voltage vector model-based prediction fault-tolerant control method |
CN108667389A (en) * | 2018-04-02 | 2018-10-16 | 江苏大学 | A Predictive Fault Tolerant Control Method Based on Virtual Voltage Vector Model |
CN109495055A (en) * | 2018-09-17 | 2019-03-19 | 沈阳工业大学 | A kind of five-phase PMSM one-phase open circuit predictive-current control method |
CN109495055B (en) * | 2018-09-17 | 2022-03-22 | 沈阳工业大学 | Five-phase permanent magnet synchronous motor one-phase open-circuit prediction current control method |
CN109842338A (en) * | 2019-03-13 | 2019-06-04 | 河北工业大学 | Permanent magnet synchronous motor prediction model parameters on-line amending method |
CN109842338B (en) * | 2019-03-13 | 2021-07-09 | 河北工业大学 | On-line Correction Method of Predictive Model Parameters of Permanent Magnet Synchronous Motor |
CN110112974A (en) * | 2019-05-13 | 2019-08-09 | 中国科学院深圳先进技术研究院 | Motor control method, controller, storage medium and motor driven systems |
CN110868111A (en) * | 2019-10-22 | 2020-03-06 | 北方工业大学 | Model Predictive Control Method of Permanent Magnet Synchronous Motor Based on Discrete Space Vector Modulation |
CN110661462A (en) * | 2019-10-25 | 2020-01-07 | 中南大学 | Deadbeat torque control device, method and system |
CN110661462B (en) * | 2019-10-25 | 2021-06-08 | 中南大学 | Deadbeat torque control device, method and system |
CN110838808A (en) * | 2019-11-18 | 2020-02-25 | 东南大学 | Diagnosis-free self-healing method for open-circuit fault of dual-phase permanent magnet synchronous motor drive system |
CN110838808B (en) * | 2019-11-18 | 2021-03-16 | 东南大学 | Diagnosis-free self-healing method for open-circuit fault of dual-phase permanent magnet synchronous motor drive system |
CN111162714A (en) * | 2020-01-03 | 2020-05-15 | 湖南大学 | Multiphase energy storage permanent magnet motor robust prediction torque control method, system and medium considering parameter mismatch |
US11356045B2 (en) | 2020-04-10 | 2022-06-07 | Jiangsu University | Double virtual voltage vectors predictive torque control method without weighting factor for five-phase permanent magnet synchronous motor |
CN111600524A (en) * | 2020-05-26 | 2020-08-28 | 成都运达科技股份有限公司 | A Model Predictive Current Control Method for Five-Phase Inverter Based on Duty Cycle Optimization |
CN111600524B (en) * | 2020-05-26 | 2023-09-05 | 成都运达轨道交通技术服务有限公司 | Five-phase inverter model prediction current control method based on duty ratio optimization |
CN111800050A (en) * | 2020-06-18 | 2020-10-20 | 中国石油大学(华东) | A Three-Vector Model Predictive Torque Control Method for Permanent Magnet Synchronous Motor Based on Voltage Vector Screening and Optimization |
CN111800050B (en) * | 2020-06-18 | 2023-04-14 | 中国石油大学(华东) | A three-vector model predictive torque control method for permanent magnet synchronous motors based on voltage vector screening and optimization |
CN112994553A (en) * | 2021-03-15 | 2021-06-18 | 合肥恒大江海泵业股份有限公司 | Simplified model prediction voltage control method for permanent magnet motor system |
CN113093542A (en) * | 2021-03-31 | 2021-07-09 | 吉林大学 | Motor torque optimization finite set prediction control parallel computing method |
CN113093542B (en) * | 2021-03-31 | 2022-08-12 | 吉林大学 | A Parallel Calculation Method for Motor Torque Optimization Finite Set Predictive Control |
CN113037167A (en) * | 2021-05-20 | 2021-06-25 | 西南交通大学 | Five-phase PMSM model prediction control method for improving voltage utilization rate |
CN113037167B (en) * | 2021-05-20 | 2021-09-07 | 西南交通大学 | A Five-Phase PMSM Model Predictive Control Method for Improving Voltage Utilization |
Also Published As
Publication number | Publication date |
---|---|
CN106803731B (en) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106803731A (en) | A kind of five-phase PMSM model prediction method for controlling torque | |
CN106505927B (en) | A kind of five-phase PMSM finite aggregate model prediction current control method | |
CN108306571A (en) | A kind of five fault-tolerant Direct Thrust Control Strategies of phase permanent-magnetism linear motor one-phase open circuit | |
CN103746624B (en) | Based on the current control method of the bisalient-pole permanent-magnet synchronous machine of model prediction | |
CN113271048B (en) | Open-circuit unified fault-tolerant control method for five-phase permanent magnet fault-tolerant motor control driving system | |
CN111030542B (en) | Permanent magnet synchronous motor prediction current control method and device | |
CN105375804A (en) | Model prediction current control method based on NPC topology grid connected inverter under asymmetric voltage | |
CN107370436A (en) | A kind of direct Torque Control based on Super twisting sliding formworks | |
WO2022110277A1 (en) | Model predictive decomposition control method and apparatus for open-winding five-phase permanent magnet synchronous motor | |
CN110299882B (en) | Three-vector model predictive control method for hybrid power supply type open-winding permanent magnet synchronous motor | |
CN103715962A (en) | Permanent magnet synchronous motor sliding-mode speed observer driven by two-stage matrix converter | |
CN103746629B (en) | Current Control Method of Switched Flux Linkage Permanent Magnet Synchronous Motor Based on Model Prediction | |
CN108011555B (en) | Permanent magnet synchronous motor model prediction current control method | |
CN101917158A (en) | A Dead Zone Compensation Method for Voltage Source Inverter | |
CN111800050B (en) | A three-vector model predictive torque control method for permanent magnet synchronous motors based on voltage vector screening and optimization | |
CN103107534B (en) | A kind of double-fed induction electricity generation system optimizing power forecast Control Algorithm | |
CN112260605B (en) | Five-phase permanent magnet synchronous motor missing one-phase fault direct torque control method | |
CN111800056A (en) | A Three-Vector Model Predictive Torque Control Method for Permanent Magnet Synchronous Motor Based on Novel Switch Table | |
CN109525158A (en) | Compressor of air conditioner dead beat current predictive control method and system | |
CN113098349B (en) | Model Predictive Control Method of Permanent Magnet Synchronous Motor Based on Discrete Space Vector Modulation | |
CN115021636A (en) | A Deadbeat-Based Model Predictive Fault-tolerant Control Method for Five-Phase Permanent Magnet Synchronous Motors | |
CN105790664A (en) | Permanent magnet synchronous motor model prediction control method | |
CN112803861A (en) | Zero-vector-free algorithm for predictive control of three-vector model of permanent magnet synchronous motor | |
CN109728756B (en) | Dual reference voltage single vector open-winding permanent magnet motor predictive control method and device | |
CN118033476A (en) | Fundamental wave counter potential estimated value extraction method during turn-to-turn short circuit fault of permanent magnet synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |