CN106803069B - 基于深度学习的人群高兴程度识别方法 - Google Patents

基于深度学习的人群高兴程度识别方法 Download PDF

Info

Publication number
CN106803069B
CN106803069B CN201611242470.4A CN201611242470A CN106803069B CN 106803069 B CN106803069 B CN 106803069B CN 201611242470 A CN201611242470 A CN 201611242470A CN 106803069 B CN106803069 B CN 106803069B
Authority
CN
China
Prior art keywords
layer
convolution
size
dimension
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611242470.4A
Other languages
English (en)
Other versions
CN106803069A (zh
Inventor
张文静
卢官明
闫静杰
李海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201611242470.4A priority Critical patent/CN106803069B/zh
Publication of CN106803069A publication Critical patent/CN106803069A/zh
Application granted granted Critical
Publication of CN106803069B publication Critical patent/CN106803069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/174Facial expression recognition
    • G06V40/175Static expression

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于深度学习的人群高兴程度识别方法,首先将人工标注的单个人脸图像做分类和图像尺寸归一化处理,得到人脸高兴程度数据库和人脸遮挡程度数据库,再分别将它们分为训练集和验证集,用于训练卷积神经网络,然后利用训练好的网络模型对输入的一幅合影图像中的人脸进行高兴程度和遮挡程度的识别,最后采用人脸高兴程度加权的方式计算出图像中的人群高兴程度。采用深度学习对图像中的群体表情进行分析,相比于传统提取PHOG、Gabor特征的方法要更准确,为解决图像中的人群情感识别问题提拱了新的思路和途径。

Description

基于深度学习的人群高兴程度识别方法
技术领域
本发明涉及图像处理与模式识别领域,涉及一种人群情感识别方法,特别涉及一种基于深度学习的人群高兴程度识别方法。
背景技术
人脸表情识别的研究近几年可以看到很多,然而很少有人关注图像中一群人所表达的情感。随着数据分享的普及程度以及类似YouTube、Flickr等社交网站的兴起,每天都会有用户上传成亿上万的社交图片和视频,比如参加的聚会、婚礼、毕业宴会等。通常情况下,这些上传的视频和图像中可能包含一个或者多个人,因此对人群的学习是关键的一步。
举个例子,现在如果需要推测一群参加同学聚会的人物合影中人们的心情,运用现有的情感检测算法来解决这种偏向于实际场景的问题还是具有挑战性的,比如缺少群体性的情感建模方法、带有标签的数据集、人脸分析方法。表情分析已经被研究了很多年,但都只局限于推测单个人物的情感状态。
要分析群体的高兴程度问题,需要关注的是每个人的高兴程度和它对整体情感基调的影响大小。这种影响程度与社交场景有关,包括各种全局和局部的影响因素,比如说图像中的人数、脸部的遮挡情况等。一般来说合影中的人数越多,整个场景中高兴或是愤怒的氛围越为浓厚,因此是个很有必要考虑的影响因素。脸部的遮挡包括自我遮挡(墨镜)或者其他人的遮挡(一个人站在另一个人的斜前方),这是合影时很常见的现象,脸部的遮挡会降低能见度进而影响对其面部表情准确地评估,也会降低其对整体高兴程度的影响力,因此在图像中对被有所遮挡的人脸的高兴强度应做惩罚处理。本发明所采用的方法是基于这类全局和局部信息进行建模的。
分析图像中一群人所传达的情感目前看来还是极具应用价值的,比如图片搜索、检索和浏览,事件概括和重点析出,最佳照片拍摄选择,视频表情峰值检测,视频缩略图创建等。鉴于较为广泛的应用价值,人们对于理解人类情感属性的表现拥有越来越大的兴趣,然而从情感分析的角度,图像中场景的变化在情感计算领域仍鲜有关注。目前在情感识别分析方面,一般都是针对单个人的,将人脸表情划分为6种基本表情:高兴、惊讶、厌恶、生气、恐惧、悲伤,很少有研究者从事群体表情的分类识别研究。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种基于深度学习的人群高兴程度识别方法。
本发明为解决上述技术问题采用以下技术方案:
基于深度学习的人群高兴程度识别方法,包括以下步骤:
步骤A),将由人工标注的单个人脸图像,按照标签分类并对图像大小归一化后,得到人脸高兴程度数据库和人脸遮挡程度数据库,将它们分别分为训练集和验证集并进行预处理操作;
步骤B),分别构建用于识别人脸高兴程度和人脸遮挡程度的卷积神经网络;
步骤C),对步骤B)中构建的两个卷积神经网络进行初始学习率、权重衰减系数、训练迭代次数的设置后,将经过预处理操作后的人脸高兴程度和人脸遮挡程度样本分别对应输入所述两个卷积神经网络,得到用于识别人脸高兴程度和人脸遮挡程度的网络模型;
步骤D),使用含上述数据集的人脸和非人脸图像对Adaboost分类器做再训练;
步骤E),输入需要进行人群高兴程度识别的合影图像,利用训练好的Adaboost分类器检测出输入的合影图像中的所有人脸图像,并对检测出的第i个人脸图像fi直接输入用于识别人脸高兴程度和人脸遮挡程度的网络模型分别进行人脸高兴程度Ii和人脸遮挡程度qi的识别,其中,Ii为合影图像中第i个人脸的高兴程度识别结果,取值范围为0≤Ii≤u-1,u为人脸高兴程度的类别总数,qi为第i个人脸的遮挡程度识别结果,取值范围为0≤qi≤p-1,p为人脸的遮挡程度的类别总数;
步骤F),计算输入的合影图像中的合影人数对该合影图像中每张人脸高兴程度的影响权重值,具体计算公式如下:
Figure GDA0002797027880000021
其中,m为训练数据集中图像的平均合影人数,s为输入合影图像中检测出的人脸数,预设的参数α用于控制权重δi的影响大小;
步骤G),计算输入的合影图像中每个人脸的遮挡程度对图像中对应人脸的高兴程度的惩罚值,具体计算公式如下:
λi=||1-βqi||,0≤λi≤1,0≤qi≤p-1
其中,p为人脸的遮挡程度的类别总数,qi为第i个人脸的遮挡程度,预设的参数β用于控制λi的影响大小;
步骤H),计算出输入合影图像中的人群高兴程度,具体计算公式如下:
Figure GDA0002797027880000031
其中,πi=δiλi
作为本发明的一种优选方案,所述步骤B)中构建用于识别人脸高兴程度的卷积神经网络的具体步骤如下:
步骤B1.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 1×a1 1维,其中,a1 1×a1 1为构建的此网络中第一层输出数据的大小;
步骤B1.2),构建第二层卷积层,第二层卷积层选用k2 1个a2 1×a2 1维的卷积核对输入数据进行卷积操作,卷积步长为s2 1,不采用像素填补加边,卷积层偏置常数为c2 1,卷积后再经过修正线性单元函数进行非线性映射,得到k2 1个l2 1×l2 1维的特征图,其中,k2 1为第二层中卷积核的个数,a2 1×a2 1为卷积核的大小,l2 1×l2 1为本层输出特征图的大小;
步骤B1.3),构建第三层池化层,第三层池化层用a3 1×a3 1维的窗口、以步长s3 1对上一层的结果进行下采样,得到k2 1个l3 1×l3 1维的特征图,其中,k2 1为要进行下采样操作的特征图数目,即为第二层输出的特征图数目,a3 1×a3 1为下采样操作的窗口大小,l3 1×l3 1为本层输出特征图的大小;
步骤B1.4),构建第四层卷积层,第四层卷积层选用k4 1个a4 1×a4 1维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 1,不采用像素填补加边,卷积层偏置常数为c4 1,卷积结果经过ReLU函数,得到k4 1个l4 1×l4 1维的特征图,其中,k4 1为第四层中卷积核的个数,a4 1×a4 1为卷积核的大小,l4 1×l4 1为本层输出特征图的大小;
步骤B1.5),构建第五层池化层,第五层池化层用a5 1×a5 1维的窗口、以步长s5 1对上一层的结果进行下采样,得到k4 1个l5 1×l5 1维的特征图,其中,k4 1为要进行下采样操作的特征图数目,即为第四层输出的特征图数目,a5 1×a5 1为下采样操作的窗口大小,l5 1×l5 1为本层输出特征图的大小;
步骤B1.6),构建第六层卷积层,第六层卷积层选用k6 1个a6 1×a6 1维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 1,采用像素填补,加边数目为p6 1,卷积层偏置常数为c6 1,同样再经过ReLU函数,得到k6 1个l6 1×l6 1维的特征图,其中,k6 1为第六层中卷积核的个数,a6 1×a6 1为卷积核的大小,l6 1×l6 1为本层输出特征图的大小;
步骤B1.7),构建第七层卷积层,第七层卷积层选用k7 1个a7 1×a7 1维的卷积核对上一卷积层的输出数据进行卷积操作,卷积步长为s7 1,不采用像素填补加边,卷积层偏置常数为c7 1,经过ReLU函数,得到k7 1个l7 1×l7 1维的特征图,其中,k7 1为第七层中卷积核的个数,a7 1×a7 1为卷积核的大小,l7 1×l7 1为本层输出特征图的大小;
步骤B1.8),构建第八层池化层,第八层池化层用a8 1×a8 1维大小的窗口、以步长s8 1对上一层的结果进行下采样,得到k7 1个l8 1×l8 1维的特征图,其中,k7 1为要进行下采样操作的特征图数目,即为第七层输出的特征图数目,a8 1×a8 1为下采样操作的窗口大小,l8 1×l8 1为本层输出特征图的大小;
步骤B1.9),构建第九层、第十层,第九层、第十为全连接层,第九层将上一层的输出全连接至本层的k9 1个输出神经元,构成一个k9 1维的特征向量,将其再经过ReLU函数非线性变换,然后使用dropout方法调整连接权重,作为第十层的输入,第十层将输入再连接至k10 1个输出神经元,k10 1即为人脸高兴程度的类别数,最后再经过Softmax-loss层,通过计算网络实际输出与数据标签之间的差值得到损失值函数J(θ):
Figure GDA0002797027880000051
上式为加入规则项的损失函数,其中k指人脸高兴程度的类别总数,b为设置的网络批处理大小,即整个网络训练迭代完一次所使用的输入数据个数,y(t)为第t个输入数据对应的数据标签,l{·}是指示性函数,即当大括号中的值为真时,该函数的结果为1,否则结果为0;x(t)为Softmax-loss层的第t个输入向量,n为输入向量的维数,γ为预设的权重衰减率,θ为要调整的权重参数矩阵:
Figure GDA0002797027880000052
作为本发明的一种优选方案,所述步骤B)中构建用于识别人脸遮挡程度的卷积神经网络的具体步骤如下:
步骤B2.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 2×a1 2维,a1 2×a1 2为本层输出数据的大小;
步骤B2.2),构建第二层卷积层,第二层卷积层选用k2 2个a2 2×a2 2维的卷积核对输入数据进行卷积操作,卷积步长为s2 2,不采用像素填补加边,卷积层偏置常数为c2 2,卷积后再经过ReLU函数进行非线性映射,得到k2 2个l2 2×l2 2维的特征图,其中,k2 2为本层中卷积核的个数,a2 2×a2 2为卷积核的大小,l2 2×l2 2为本层输出特征图的大小;
步骤B2.3),构建第三层池化层,第三层池化层用a3 2×a3 2维大小的窗口、以步长s3 2对上一层的结果进行下采样,得到k2 2个l3 2×l3 2维的特征图,其中,k2 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a3 2×a3 2为下采样操作的窗口大小,l3 2×l3 2为本层输出特征图的大小;
步骤B2.4),构建第四层卷积层,第四层卷积层选用k4 2个a4 2×a4 2维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 2,不采用像素填补加边,卷积层偏置常数为c4 2,卷积结果经过ReLU函数,得到k4 2个l4 2×l4 2维的特征图,其中,k4 2为本层中卷积核的个数,a4 2×a4 2为卷积核的大小,l4 2×l4 2为本层输出特征图的大小;
步骤B2.5),构建第五层池化层,第五层池化层用a5 2×a5 2维大小的窗口、以步长s5 2对上一层的结果进行下采样,得到k4 2个l5 2×l5 2维的特征图,其中,k4 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a5 2×a5 2为下采样操作的窗口大小,l5 2×l5 2为本层输出特征图的大小;
步骤B2.6),构建第六层卷积层,第六层卷积层选用k6 2个a6 2×a6 2维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 2,不采用像素填补加边,卷积层偏置常数为c6 2,经过ReLU函数,得到k6 2个l6 2×l6 2维的特征图,其中,k6 2为本层中卷积核的个数,a6 2×a6 2为卷积核的大小,l6 2×l6 2为本层输出特征图的大小;
步骤B2.7),构建第七层池化层,第七层池化层用a7 2×a7 2维大小的窗口、以步长s7 2对上一层的结果进行下采样,得到k6 2个l7 2×l7 2维的特征图,其中,k6 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a7 2×a7 2为下采样操作的窗口大小,l7 2×l7 2为本层输出特征图的大小;
步骤B2.8),构建第八层、第九层,第八层、第九层为全连接层,第八层将上一层的输出全连接至本层的k8 2个输出神经元,构成一个k8 2维的特征向量,将其再经过ReLU函数非线性变换,然后同样使用dropout方法调整连接权重,作为第九层的输入,第九层将输入再连接至k9 2个输出神经元,k9 2即为人脸遮挡程度的类别数,最后再经过Softmax-loss层,计算网络实际输出与数据标签之间的差值得到损失值函数。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
(1)在对高兴程度进行识别分类问题中采用深度学习来提取特征并进行分类,具有更高的准确性和稳定性,并且提高了识别速度。
(2)在由个人高兴程度对人群高兴程度进行估测时,既考虑了局部特征,如人脸遮挡程度的不同,又考虑了全局特征,如合影人数对整体人群高兴程度的影响,这比直接求取平均更贴近实际情况。
附图说明
图1是卷积神经网络(CNN,Convolution Neural Network)的卷积和下采样过程;
图2是本发明的基于深度学习的人群高兴程度识别方法的流程图;
图3是构建的用于人脸高兴程度识别的卷积神经网络的基本架构图;
图4是构建的用于人脸遮挡程度识别的卷积神经网络的基本架构图;
图5是HAPPEI(HAPpy PEople Images)数据库中的部分图像。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
如图2所示,本发明公开了一种基于深度学习的人群高兴程度识别方法,包括以下步骤:
步骤A),将由人工标注的单个人脸图像,按照标签分类并对图像大小归一化后,得到人脸高兴程度数据库和人脸遮挡程度数据库,将它们分别分为训练集和验证集并进行预处理操作;
步骤B),分别构建用于识别人脸高兴程度和人脸遮挡程度的卷积神经网络;
步骤C),对步骤B)中构建的两个卷积神经网络进行初始学习率、权重衰减系数、训练迭代次数的设置后,将经过预处理操作后的人脸高兴程度和人脸遮挡程度样本分别对应输入所述两个卷积神经网络,得到用于识别人脸高兴程度和人脸遮挡程度的网络模型;
步骤D),使用含上述数据集的人脸和非人脸图像对Adaboost分类器做再训练;
如图3所示,所述步骤B)中构建用于识别人脸高兴程度的卷积神经网络的具体步骤如下:
步骤B1.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 1×a1 1维,其中,a1 1×a1 1为构建的此网络中第一层输出数据的大小;
步骤B1.2),构建第二层卷积层,第二层卷积层选用k2 1个a2 1×a2 1维的卷积核对输入数据进行卷积操作,卷积步长为s2 1,不采用像素填补加边,卷积层偏置常数为c2 1,卷积后再经过修正线性单元函数进行非线性映射,得到k2 1个l2 1×l2 1维的特征图,其中,k2 1为第二层中卷积核的个数,a2 1×a2 1为卷积核的大小,l2 1×l2 1为本层输出特征图的大小;
步骤B1.3),构建第三层池化层,第三层池化层用a3 1×a3 1维的窗口、以步长s3 1对上一层的结果进行下采样,得到k2 1个l3 1×l3 1维的特征图,其中,k2 1为要进行下采样操作的特征图数目,即为第二层输出的特征图数目,a3 1×a3 1为下采样操作的窗口大小,l3 1×l3 1为本层输出特征图的大小;
步骤B1.4),构建第四层卷积层,第四层卷积层选用k4 1个a4 1×a4 1维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 1,不采用像素填补加边,卷积层偏置常数为c4 1,卷积结果经过ReLU函数,得到k4 1个l4 1×l4 1维的特征图,其中,k4 1为第四层中卷积核的个数,a4 1×a4 1为卷积核的大小,l4 1×l4 1为本层输出特征图的大小;
步骤B1.5),构建第五层池化层,第五层池化层用a5 1×a5 1维的窗口、以步长s5 1对上一层的结果进行下采样,得到k4 1个l5 1×l5 1维的特征图,其中,k4 1为要进行下采样操作的特征图数目,即为第四层输出的特征图数目,a5 1×a5 1为下采样操作的窗口大小,l5 1×l5 1为本层输出特征图的大小;
步骤B1.6),构建第六层卷积层,第六层卷积层选用k6 1个a6 1×a6 1维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 1,采用像素填补,加边数目为p6 1,卷积层偏置常数为c6 1,同样再经过ReLU函数,得到k6 1个l6 1×l6 1维的特征图,其中,k6 1为第六层中卷积核的个数,a6 1×a6 1为卷积核的大小,l6 1×l6 1为本层输出特征图的大小;
步骤B1.7),构建第七层卷积层,第七层卷积层选用k7 1个a7 1×a7 1维的卷积核对上一卷积层的输出数据进行卷积操作,卷积步长为s7 1,不采用像素填补加边,卷积层偏置常数为c7 1,经过ReLU函数,得到k7 1个l7 1×l7 1维的特征图,其中,k7 1为第七层中卷积核的个数,a7 1×a7 1为卷积核的大小,l7 1×l7 1为本层输出特征图的大小;
步骤B1.8),构建第八层池化层,第八层池化层用a8 1×a8 1维大小的窗口、以步长s8 1对上一层的结果进行下采样,得到k7 1个l8 1×l8 1维的特征图,其中,k7 1为要进行下采样操作的特征图数目,即为第七层输出的特征图数目,a8 1×a8 1为下采样操作的窗口大小,l8 1×l8 1为本层输出特征图的大小;
步骤B1.9),构建第九层、第十层,第九层、第十为全连接层,第九层将上一层的输出全连接至本层的k9 1个输出神经元,构成一个k9 1维的特征向量,将其再经过ReLU函数非线性变换,然后使用dropout方法调整连接权重,作为第十层的输入,第十层将输入再连接至k10 1个输出神经元,k10 1即为人脸高兴程度的类别数,最后再经过Softmax-loss层,通过计算网络实际输出与数据标签之间的差值得到损失值函数J(θ):
Figure GDA0002797027880000101
上式为加入规则项的损失函数,其中k指人脸高兴程度的类别总数,b为设置的网络批处理大小,即整个网络训练迭代完一次所使用的输入数据个数,y(t)为第t个输入数据对应的数据标签,l{·}是指示性函数,即当大括号中的值为真时,该函数的结果为1,否则结果为0;x(t)为Softmax-loss层的第t个输入向量,n为输入向量的维数,γ为预设的权重衰减率,θ为要调整的权重参数矩阵:
Figure GDA0002797027880000102
如图4所示,所述步骤B)中构建用于识别人脸遮挡程度的卷积神经网络的具体步骤如下:
步骤B2.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 2×a1 2维,a1 2×a1 2为本层输出数据的大小;
步骤B2.2),构建第二层卷积层,第二层卷积层选用k2 2个a2 2×a2 2维的卷积核对输入数据进行卷积操作,卷积步长为s2 2,不采用像素填补加边,卷积层偏置常数为c2 2,卷积后再经过ReLU函数进行非线性映射,得到k2 2个l2 2×l2 2维的特征图,其中,k2 2为本层中卷积核的个数,a2 2×a2 2为卷积核的大小,l2 2×l2 2为本层输出特征图的大小;
步骤B2.3),构建第三层池化层,第三层池化层用a3 2×a3 2维大小的窗口、以步长s3 2对上一层的结果进行下采样,得到k2 2个l3 2×l3 2维的特征图,其中,k2 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a3 2×a3 2为下采样操作的窗口大小,l3 2×l3 2为本层输出特征图的大小;
步骤B2.4),构建第四层卷积层,第四层卷积层选用k4 2个a4 2×a4 2维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 2,不采用像素填补加边,卷积层偏置常数为c4 2,卷积结果经过ReLU函数,得到k4 2个l4 2×l4 2维的特征图,其中,k4 2为本层中卷积核的个数,a4 2×a4 2为卷积核的大小,l4 2×l4 2为本层输出特征图的大小;
步骤B2.5),构建第五层池化层,第五层池化层用a5 2×a5 2维大小的窗口、以步长s5 2对上一层的结果进行下采样,得到k4 2个l5 2×l5 2维的特征图,其中,k4 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a5 2×a5 2为下采样操作的窗口大小,l5 2×l5 2为本层输出特征图的大小;
步骤B2.6),构建第六层卷积层,第六层卷积层选用k6 2个a6 2×a6 2维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 2,不采用像素填补加边,卷积层偏置常数为c6 2,经过ReLU函数,得到k6 2个l6 2×l6 2维的特征图,其中,k6 2为本层中卷积核的个数,a6 2×a6 2为卷积核的大小,l6 2×l6 2为本层输出特征图的大小;
步骤B2.7),构建第七层池化层,第七层池化层用a7 2×a7 2维大小的窗口、以步长s7 2对上一层的结果进行下采样,得到k6 2个l7 2×l7 2维的特征图,其中,k6 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a7 2×a7 2为下采样操作的窗口大小,l7 2×l7 2为本层输出特征图的大小;
步骤B2.8),构建第八层、第九层,第八层、第九层为全连接层,第八层将上一层的输出全连接至本层的k8 2个输出神经元,构成一个k8 2维的特征向量,将其再经过ReLU函数非线性变换,然后同样使用dropout方法调整连接权重,作为第九层的输入,第九层将输入再连接至k9 2个输出神经元,k9 2即为人脸遮挡程度的类别数,最后再经过Softmax-loss层,计算网络实际输出与数据标签之间的差值得到损失值函数。
所述步骤D)的详细步骤如下:
步骤D1),使用人脸和非人脸图像训练Adaboost分类器,然后利用训练好的分类器检测出输入的合影图像中的所有人脸图像,并对检测出的每个人脸图像使用用于识别人脸高兴程度和人脸遮挡程度的网络模型分别进行人脸高兴程度Ii和人脸遮挡程度qi的识别,其中,i为合影图像中的人脸图像的数量;
步骤D2),根据以下公式计算输入的合影图像中的合影人数对该合影图像中每张人脸高兴程度的影响权重值:
Figure GDA0002797027880000121
其中,m为训练数据集中图像的平均合影人数,s为输入合影图像中检测出的人脸数,预设的参数α用于控制权重δi的影响大小;
步骤D3),根据以下公式计算输入的合影图像中每个人脸的遮挡程度对图像中对应人脸的高兴程度的惩罚值:
λi=||1-βqi||,0≤λi≤1,0≤qi≤p-1
其中,p为人脸的遮挡程度的类别总数,qi为第i个人脸的遮挡强度,预设的参数β用于控制λi的影响大小;
步骤D4),根据以下公式计算出输入合影图像中的人群高兴程度:
Figure GDA0002797027880000122
其中,πi=δiλi
下面结合具体的例子来说明:
步骤1:分出HAPPEI数据库中的人脸图像数据并做预处理
在具体实施过程中,采用HAPPEI数据库。如图5所示,该数据库包含来自Flickr网站的2638张社交合影图像,每张图像都有对应的由人工标注的人群高兴程度的标签(0—5),分别为平静、愉快、喜悦、欢喜、大喜、狂喜,除此之外,每张图像中的人脸的高兴程度及遮挡程度都以.xml的方式给出,可用MATLAB读取出。整理后的人脸图像共有9924张,对应的人脸高兴程度标签同样分为6级(0—5),分别用以表示平静、含笑、微笑、轻笑、大笑、狂笑6种高兴程度,其中轻笑、大笑、狂笑时均露齿,当嘴张的特别大时,即标记为狂笑,含笑、微笑时均不露齿。对应的遮挡强度标签分为4级(0—3),分别用以表示完全可见、轻微遮挡、部分遮挡、高度遮挡。使用编写的MATLAB程序将标记有高兴程度的人脸分至相应类别的文件夹中,同理将标记有遮挡程度的人脸也分至相应类别的文件夹中,至此初步的人脸高兴程度数据库和人脸遮挡程度数据库已建成。由于其中既有彩色图像又有灰度图像,需将其全部变换为灰度图像,并将大小统一为256×256。如要将它们作为卷积神经网络的输入数据,还需分为训练集和验证集,各任意选取其中70%的人脸作为训练集,剩下30%作为验证集,分别构成人脸高兴程度数据集和人脸遮挡程度数据集。
步骤2:构建出用于识别人脸高兴程度的卷积神经网络,并用经过预处理的人脸高兴程度数据集训练卷积神经网络,得到优化后的网络模型
第一层为数据输入层,数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为256×256大小,并将数据对应的标签输入网络;
第二层为卷积层,选用96个12×12的卷积核对输入数据进行卷积操作,卷积步长为4,不采用像素填补加边,卷积层偏置常数为1,再经过ReLU进行非线性映射,得到卷积层的输出即96个62×62的特征图;
第三层为池化层,用6×6大小的窗口,以步长2对上一层的结果进行下采样,得到96个29×29的特征图;
第四层为卷积层,选用256个3×3的卷积核对上一层的输出数据进行卷积操作,卷积步长为1,不采用像素填补加边,卷积层偏置常数为1,卷积结果同样再经过ReLU函数,得到256个27×27的特征图;
第五层为池化层,用3×3大小的窗口,以步长1对上一层的结果进行下采样,得到256个25×25的特征图;
第六层为卷积层,选用512个3×3的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为1,采用像素填补,加边数目为1,卷积层偏置常数为1,同样再经过ReLU函数,得到512个25×25的特征图;
第七层为卷积层,选用512个3×3的卷积核对上一卷积层的输出数据进行卷积操作,卷积步长为2,不采用像素填补加边,卷积层偏置常数为1,同样经过ReLU函数,得到512个12×12的特征图;
第八层为池化层,用2×2大小的窗口,以步长2对上一层的结果进行下采样,得到512个6×6的特征图;
第九层、第十层为全连接层,第九层将上一层的输出全连接至本层的4096个输出神经元,构成一个4096维的特征向量,将其再经过ReLU函数非线性变换,然后使用dropout方法调整连接权重,作为第十层的输入,第十层将输入再连接至6个输出神经元,输出神经元个数即为人脸高兴程度的类别数,最后再经过Softmax-loss层,通过计算网络实际输出与数据标签之间的差值得到损失值函数:
Figure GDA0002797027880000141
上式为加入规则项的损失函数,其中k指人脸高兴程度的类别总数,b为设置的网络批处理大小,即整个网络训练迭代完一次所使用的输入数据个数,y(t)为第t个输入数据对应的数据标签,l{·}是指示性函数,即当大括号中的值为真时,该函数的结果为1,否则结果为0,x(t)为Softmax-loss层的第t个输入向量,n为输入向量的维数,γ为预设的权重衰减率,θ为要调整的权重参数矩阵:
Figure GDA0002797027880000142
网络使用随机梯度下降算法(SGD,Stochastic gradient descent)对网络各层的权重参数进行调整,最终使得损失目标函数达到最小,即求解使损失函数的偏导数为零时的各层网络参数,损失函数的偏导数如下:
Figure GDA0002797027880000143
各层权重θuv的更新公式为:
Figure GDA0002797027880000144
由于HAPPEI数据库中人脸的高兴程度较难分辨,所以网络中增加了单独卷积层的设置,能够将人脸部的信息特征更充分地融合。将已经预处理过的人脸高兴程度数据集(包括训练集和验证集)输入构建好的卷积神经网络进行训练,训练的初始学习率η设置为0.001,权值衰减率设置为0.0005,在训练过程中需要观察识别率是否出现不正常的忽高忽低的波动,若存在这种过拟合现象,需要及时修改相应的参数后再次训练,直到得到合适的结果。
步骤3:构建出用于识别人脸遮挡程度的卷积神经网络,并用经过预处理的人脸遮挡程度数据集训练卷积神经网络,得到优化后的网络模型
第一层为数据输入层,数据输入层分为训练数据输入层和测试数据输入层,其将输入数据同样裁剪为256×256大小,并将数据对应的标签输入网络;
第二层为卷积层,选用96个12×12的卷积核对输入数据进行卷积操作,卷积步长为4,不采用像素填补加边,卷积层偏置常数为1,卷积后再经过ReLU函数进行非线性映射,得到卷积层的输出即96个62×62的特征图;
第三层为池化层,用6×6大小的窗口,以步长2对上一层的结果进行下采样,得到96个29×29的特征图;
第四层为卷积层,选用256个3×3的卷积核对上一层的输出数据进行卷积操作,卷积步长为1,不采用像素填补加边,卷积层偏置常数为1,卷积结果同样再经过ReLU函数,得到256个27×27的特征图;
第五层为池化层,用3×3大小的窗口,以步长1对上一层的结果进行下采样,得到256个25×25的特征图;
第六层为卷积层,选用512个3×3的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为2,不采用像素填补加边,卷积层偏置常数为1,同样经过ReLU函数,得到512个12×12的特征图;
第七层为池化层,用2×2大小的窗口,以步长2对上一层的结果进行下采样,得到512个6×6的特征图;
第八层、第九层为全连接层,第八层将上一层的输出全连接至本层的4096个输出神经元,构成一个4096维的特征向量,将其再经过ReLU函数非线性变换,然后同样使用dropout方法调整连接权重,作为第九层的输入,第九层将输入再连接至4个输出神经元,输出神经元的个数即为人脸遮挡程度的类别数,最后再经过Softmax-loss层,同上一卷积神经网络一样计算网络实际输出与数据标签之间的差值得到损失值函数,并用SGD算法更新网络各层的权重参数。
实验时将已经预处理过的人脸遮挡程度数据集(包括训练集和验证集)输入按上述步骤构建好的卷积神经网络中进行训练,训练的初始学习率η仍设置为0.001,权值衰减率设置为0.0005,同上一网络训练的过程类似,直到得到合适的结果。
步骤4:检测输入合影图像中的s张人脸,使用训练后的两个卷积神经网络分别得到每张人脸fi的高兴程度预测值IHi和遮挡程度预测值qi,,其中,i为合影图像中的人脸图像的数量,具体步骤如下:
首先截取部分HAPPEI库中的人脸图像作为正样本,非人脸图像作为负样本,训练Adaboost分类器,然后使用训练好的分类器对输入合影图像进行人脸检测,将图像中的s个人脸fi(1≤i≤s)检测出来,并保存为人脸图像,然后用步骤2和步骤3中训练好的卷积神经网络分别估测出每个人脸fi对应的高兴程度IHi和遮挡程度qi
步骤5:对每个人脸图像计算由合影人数s和人脸遮挡程度qi引起的对人脸高兴程度IHi的加权值πi,并由此计算图像的整体人群高兴程度I,具体步骤如下:
一般情况下,合影人数越多,高兴或是愤怒的氛围越为浓厚,因此考虑合影人数的多少对人群高兴程度的影响是很有必要的,由合影人数对图像中每张人脸高兴程度的影响权重值计算如下:
Figure GDA0002797027880000161
其中m为训练数据集中图像的平均合影人数,s为输入测试的合影图像中包含的已检测出的人脸数,参数α可用于控制权重δi的影响大小。
由于每个人脸的遮挡程度也会对整体的气氛造成影响,被遮挡的人脸表情被判定错误的几率高,而且在整个人群中变得不显眼,因此需要针对人脸的遮挡情况对每张人脸的高兴程度进行惩罚,将人脸的遮挡程度分为p类,在这里p=4,计算公式如下:
λi=||1-βqi||,0≤λi≤1,0≤qi≤p-1 (6)
其中qi为第i个人脸的遮挡强度,参数β用于控制λi的影响大小。所以最终的惩罚项为:
πi=δiλi (7)
由此可估算出图像中的人群高兴程度为:
Figure GDA0002797027880000171
此公式既考虑了全局信息,又考虑了局部信息,比较符合实际情况。
实验结果表明,本发明通过引入基于深度学习的人群高兴程度识别方法,将其应用在人群合影图像的高兴程度分类识别工作中,能有效地识别出人群高兴程度的0—5级,0表示平静的自然状态,5表示极度高兴的状态,为开发人类情感自动评估系统提供了一种新的方法和途径。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.基于深度学习的人群高兴程度识别方法,其特征在于,包括以下步骤:
步骤A),将由人工标注的单个人脸图像,按照标签分类并对图像大小归一化后,得到人脸高兴程度数据库和人脸遮挡程度数据库,将它们分别分为训练集和验证集并进行预处理操作;
步骤B),分别构建用于识别人脸高兴程度和人脸遮挡程度的卷积神经网络;
步骤C),对步骤B)中构建的两个卷积神经网络进行初始学习率、权重衰减系数、训练迭代次数的设置后,将经过预处理操作后的人脸高兴程度和人脸遮挡程度样本分别对应输入所述两个卷积神经网络,得到用于识别人脸高兴程度和人脸遮挡程度的网络模型;
步骤D),使用含上述数据集的人脸和非人脸图像对Adaboost分类器做再训练;
步骤E),输入需要进行人群高兴程度识别的合影图像,利用训练好的Adaboost分类器检测出输入的合影图像中的所有人脸图像,并对检测出的第i个人脸图像fi直接输入用于识别人脸高兴程度和人脸遮挡程度的网络模型分别进行人脸高兴程度Ii和人脸遮挡程度qi的识别,其中,Ii为合影图像中第i个人脸的高兴程度识别结果,取值范围为0≤Ii≤u-1,u为人脸高兴程度的类别总数,qi为第i个人脸的遮挡程度识别结果,取值范围为0≤qi≤p-1,p为人脸的遮挡程度的类别总数;
步骤F),计算输入的合影图像中的合影人数对该合影图像中每张人脸高兴程度的影响权重值,具体计算公式如下:
Figure FDA0002797027870000011
其中,m为训练数据集中图像的平均合影人数,s为输入合影图像中检测出的人脸数,预设的参数α用于控制权重δi的影响大小;
步骤G),计算输入的合影图像中每个人脸的遮挡程度对图像中对应人脸的高兴程度的惩罚值,具体计算公式如下:
λi=||1-βqi||,0≤λi≤1,0≤qi≤p-1
其中,p为人脸的遮挡程度的类别总数,qi为第i个人脸的遮挡程度,预设的参数β用于控制λi的影响大小;
步骤H),计算出输入合影图像中的人群高兴程度,具体计算公式如下:
Figure FDA0002797027870000021
其中,πi=δiλi
2.根据权利要求1所述的一种基于深度学习的人群高兴程度识别方法,其特征在于,所述步骤B)中构建用于识别人脸高兴程度的卷积神经网络的具体步骤如下:
步骤B1.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 1×a1 1维,其中,a1 1×a1 1为构建的此网络中第一层输出数据的大小;
步骤B1.2),构建第二层卷积层,第二层卷积层选用k2 1个a2 1×a2 1维的卷积核对输入数据进行卷积操作,卷积步长为s2 1,不采用像素填补加边,卷积层偏置常数为c2 1,卷积后再经过修正线性单元函数进行非线性映射,得到k2 1个l2 1×l2 1维的特征图,其中,k2 1为第二层中卷积核的个数,a2 1×a2 1为卷积核的大小,l2 1×l2 1为本层输出特征图的大小;
步骤B1.3),构建第三层池化层,第三层池化层用a3 1×a3 1维的窗口、以步长s3 1对上一层的结果进行下采样,得到k2 1个l3 1×l3 1维的特征图,其中,k2 1为要进行下采样操作的特征图数目,即为第二层输出的特征图数目,a3 1×a3 1为下采样操作的窗口大小,l3 1×l3 1为本层输出特征图的大小;
步骤B1.4),构建第四层卷积层,第四层卷积层选用k4 1个a4 1×a4 1维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 1,不采用像素填补加边,卷积层偏置常数为c4 1,卷积结果经过ReLU函数,得到k4 1个l4 1×l4 1维的特征图,其中,k4 1为第四层中卷积核的个数,a4 1×a4 1为卷积核的大小,l4 1×l4 1为本层输出特征图的大小;
步骤B1.5),构建第五层池化层,第五层池化层用a5 1×a5 1维的窗口、以步长s5 1对上一层的结果进行下采样,得到k4 1个l5 1×l5 1维的特征图,其中,k4 1为要进行下采样操作的特征图数目,即为第四层输出的特征图数目,a5 1×a5 1为下采样操作的窗口大小,l5 1×l5 1为本层输出特征图的大小;
步骤B1.6),构建第六层卷积层,第六层卷积层选用k6 1个a6 1×a6 1维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 1,采用像素填补,加边数目为p6 1,卷积层偏置常数为c6 1,同样再经过ReLU函数,得到k6 1个l6 1×l6 1维的特征图,其中,k6 1为第六层中卷积核的个数,a6 1×a6 1为卷积核的大小,l6 1×l6 1为本层输出特征图的大小;
步骤B1.7),构建第七层卷积层,第七层卷积层选用k7 1个a7 1×a7 1维的卷积核对上一卷积层的输出数据进行卷积操作,卷积步长为s7 1,不采用像素填补加边,卷积层偏置常数为c7 1,经过ReLU函数,得到k7 1个l7 1×l7 1维的特征图,其中,k7 1为第七层中卷积核的个数,a7 1×a7 1为卷积核的大小,l7 1×l7 1为本层输出特征图的大小;
步骤B1.8),构建第八层池化层,第八层池化层用a8 1×a8 1维大小的窗口、以步长s8 1对上一层的结果进行下采样,得到k7 1个l8 1×l8 1维的特征图,其中,k7 1为要进行下采样操作的特征图数目,即为第七层输出的特征图数目,a8 1×a8 1为下采样操作的窗口大小,l8 1×l8 1为本层输出特征图的大小;
步骤B1.9),构建第九层、第十层,第九层、第十为全连接层,第九层将上一层的输出全连接至本层的k9 1个输出神经元,构成一个k9 1维的特征向量,将其再经过ReLU函数非线性变换,然后使用dropout方法调整连接权重,作为第十层的输入,第十层将输入再连接至k10 1个输出神经元,k10 1即为人脸高兴程度的类别数,最后再经过Softmax-loss层,通过计算网络实际输出与数据标签之间的差值得到损失值函数J(θ):
Figure FDA0002797027870000041
上式为加入规则项的损失函数,其中k指人脸高兴程度的类别总数,b为设置的网络批处理大小,即整个网络训练迭代完一次所使用的输入数据个数,y(t)为第t个输入数据对应的数据标签,l{·}是指示性函数,即当大括号中的值为真时,该函数的结果为1,否则结果为0;x(t)为Softmax-loss层的第t个输入向量,n为输入向量的维数,γ为预设的权重衰减率,θ为要调整的权重参数矩阵:
Figure FDA0002797027870000042
3.根据权利要求2所述的一种基于深度学习的人群高兴程度识别方法,其特征在于,所述步骤B)中构建用于识别人脸遮挡程度的卷积神经网络的具体步骤如下:
步骤B2.1),构建第一层数据输入层,第一层数据输入层分为训练数据输入层和测试数据输入层,其将输入数据裁剪为a1 2×a1 2维,a1 2×a1 2为本层输出数据的大小;
步骤B2.2),构建第二层卷积层,第二层卷积层选用k2 2个a2 2×a2 2维的卷积核对输入数据进行卷积操作,卷积步长为s2 2,不采用像素填补加边,卷积层偏置常数为c2 2,卷积后再经过ReLU函数进行非线性映射,得到k2 2个l2 2×l2 2维的特征图,其中,k2 2为本层中卷积核的个数,a2 2×a2 2为卷积核的大小,l2 2×l2 2为本层输出特征图的大小;
步骤B2.3),构建第三层池化层,第三层池化层用a3 2×a3 2维大小的窗口、以步长s3 2对上一层的结果进行下采样,得到k2 2个l3 2×l3 2维的特征图,其中,k2 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a3 2×a3 2为下采样操作的窗口大小,l3 2×l3 2为本层输出特征图的大小;
步骤B2.4),构建第四层卷积层,第四层卷积层选用k4 2个a4 2×a4 2维的卷积核对上一层的输出数据进行卷积操作,卷积步长为s4 2,不采用像素填补加边,卷积层偏置常数为c4 2,卷积结果经过ReLU函数,得到k4 2个l4 2×l4 2维的特征图,其中,k4 2为本层中卷积核的个数,a4 2×a4 2为卷积核的大小,l4 2×l4 2为本层输出特征图的大小;
步骤B2.5),构建第五层池化层,第五层池化层用a5 2×a5 2维大小的窗口、以步长s5 2对上一层的结果进行下采样,得到k4 2个l5 2×l5 2维的特征图,其中,k4 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a5 2×a5 2为下采样操作的窗口大小,l5 2×l5 2为本层输出特征图的大小;
步骤B2.6),构建第六层卷积层,第六层卷积层选用k6 2个a6 2×a6 2维的卷积核对上一池化层的输出数据进行卷积操作,卷积步长为s6 2,不采用像素填补加边,卷积层偏置常数为c6 2,经过ReLU函数,得到k6 2个l6 2×l6 2维的特征图,其中,k6 2为本层中卷积核的个数,a6 2×a6 2为卷积核的大小,l6 2×l6 2为本层输出特征图的大小;
步骤B2.7),构建第七层池化层,第七层池化层用a7 2×a7 2维大小的窗口、以步长s7 2对上一层的结果进行下采样,得到k6 2个l7 2×l7 2维的特征图,其中,k6 2为要进行下采样操作的特征图数目,即为本层输出的特征图数目,a7 2×a7 2为下采样操作的窗口大小,l7 2×l7 2为本层输出特征图的大小;
步骤B2.8),构建第八层、第九层,第八层、第九层为全连接层,第八层将上一层的输出全连接至本层的k8 2个输出神经元,构成一个k8 2维的特征向量,将其再经过ReLU函数非线性变换,然后同样使用dropout方法调整连接权重,作为第九层的输入,第九层将输入再连接至k9 2个输出神经元,k9 2即为人脸遮挡程度的类别数,最后再经过Softmax-loss层,计算网络实际输出与数据标签之间的差值得到损失值函数。
CN201611242470.4A 2016-12-29 2016-12-29 基于深度学习的人群高兴程度识别方法 Active CN106803069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611242470.4A CN106803069B (zh) 2016-12-29 2016-12-29 基于深度学习的人群高兴程度识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611242470.4A CN106803069B (zh) 2016-12-29 2016-12-29 基于深度学习的人群高兴程度识别方法

Publications (2)

Publication Number Publication Date
CN106803069A CN106803069A (zh) 2017-06-06
CN106803069B true CN106803069B (zh) 2021-02-09

Family

ID=58985616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611242470.4A Active CN106803069B (zh) 2016-12-29 2016-12-29 基于深度学习的人群高兴程度识别方法

Country Status (1)

Country Link
CN (1) CN106803069B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229298A (zh) * 2017-09-30 2018-06-29 北京市商汤科技开发有限公司 神经网络的训练和人脸识别方法及装置、设备、存储介质
CN107818337A (zh) * 2017-10-09 2018-03-20 中国电子科技集团公司第二十八研究所 基于深度卷积神经网络的突发事件分级分类方法及装置
CN108009581A (zh) * 2017-11-30 2018-05-08 中国地质大学(武汉) 一种基于cnn的裂纹识别方法、设备及存储设备
CN108182389B (zh) * 2017-12-14 2021-07-30 华南师范大学 基于大数据与深度学习的用户数据处理方法、机器人系统
CN108563978A (zh) * 2017-12-18 2018-09-21 深圳英飞拓科技股份有限公司 一种情绪检测方法与装置
CN108154109A (zh) * 2017-12-22 2018-06-12 福州瑞芯微电子股份有限公司 一种智能录播模型的构建方法、装置及教学智能录播方法
CN108197602B (zh) * 2018-01-30 2020-05-19 厦门美图之家科技有限公司 一种卷积神经网络生成方法及表情识别方法
CN108550173A (zh) * 2018-04-03 2018-09-18 西北工业大学 基于语音生成口型视频的方法
CN108537792B (zh) * 2018-04-17 2021-09-17 成都思晗科技股份有限公司 一种基于卷积神经网络的电力缺陷图像识别方法
CN108833779B (zh) * 2018-06-15 2021-05-04 Oppo广东移动通信有限公司 拍摄控制方法及相关产品
CN109344720B (zh) * 2018-09-04 2022-03-15 电子科技大学 一种基于自适应特征选择的情感状态检测方法
CN109508640A (zh) * 2018-10-12 2019-03-22 咪咕文化科技有限公司 一种人群情感分析方法、装置和存储介质
CN109447146A (zh) * 2018-10-24 2019-03-08 厦门美图之家科技有限公司 分类优化方法及装置
CN109522945B (zh) * 2018-10-31 2020-09-25 中国科学院深圳先进技术研究院 一种群体情感识别方法、装置、智能设备及存储介质
CN109558935A (zh) * 2018-11-28 2019-04-02 黄欢 基于深度学习的情感识别与交互方法及系统
CN109889525A (zh) * 2019-02-26 2019-06-14 北京智芯微电子科技有限公司 多通信协议智能感知方法
CN110163098A (zh) * 2019-04-17 2019-08-23 西北大学 基于分层深度网络的人脸表情识别模型构建及识别方法
CN110555379B (zh) * 2019-07-30 2022-03-25 华南理工大学 一种根据性别动态调整特征的人脸愉悦度估计方法
CN110705490B (zh) * 2019-10-09 2022-09-02 中国科学技术大学 视觉情感识别方法
CN111414879B (zh) * 2020-03-26 2023-06-09 抖音视界有限公司 人脸遮挡程度识别方法、装置、电子设备及可读存储介质
CN111722195B (zh) * 2020-06-29 2021-03-16 江苏蛮酷科技有限公司 一种雷达遮挡检测方法及计算机存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180368A1 (zh) * 2014-05-27 2015-12-03 江苏大学 一种半监督语音特征可变因素分解方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123261A (ja) * 2012-12-21 2014-07-03 Sony Corp 情報処理装置及び記録媒体
CN105809178A (zh) * 2014-12-31 2016-07-27 中国科学院深圳先进技术研究院 一种基于人脸属性的人群分析方法及装置
CN105447458B (zh) * 2015-11-17 2018-02-27 深圳市商汤科技有限公司 一种大规模人群视频分析系统和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180368A1 (zh) * 2014-05-27 2015-12-03 江苏大学 一种半监督语音特征可变因素分解方法

Also Published As

Publication number Publication date
CN106803069A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN106803069B (zh) 基于深度学习的人群高兴程度识别方法
US20200285896A1 (en) Method for person re-identification based on deep model with multi-loss fusion training strategy
Jain et al. Hybrid deep neural networks for face emotion recognition
US11783579B2 (en) Hyperspectral remote sensing image classification method based on self-attention context network
Song et al. Hyperspectral image classification with deep feature fusion network
CN110569795B (zh) 一种图像识别方法、装置以及相关设备
Pomazan et al. Development of an application for recognizing emotions using convolutional neural networks
CN110399821B (zh) 基于人脸表情识别的顾客满意度获取方法
CN111582397B (zh) 一种基于注意力机制的cnn-rnn图像情感分析方法
CN110276248B (zh) 一种基于样本权值分配和深度学习的人脸表情识别方法
Do et al. Deep neural network-based fusion model for emotion recognition using visual data
CN112528928B (zh) 一种基于自注意力深度网络的商品识别方法
Ali et al. Facial emotion detection using neural network
CN101714212A (zh) 信息处理设备和方法、程序以及记录介质
CN110472693B (zh) 一种图像处理及分类方法和系统
CN110909672A (zh) 一种基于双流卷积神经网络和svm的抽烟动作识别方法
CN112200176B (zh) 人脸图像的质量检测方法、系统和计算机设备
CN113255557A (zh) 一种基于深度学习的视频人群情绪分析方法及系统
CN110569971A (zh) 一种基于LeakyRelu激活函数的卷积神经网络单目标识别方法
CN114492634B (zh) 一种细粒度装备图片分类识别方法及系统
CN112016592A (zh) 基于交叉领域类别感知的领域适应语义分割方法及装置
Di Mascio et al. Age and gender (face) recognition: A brief survey
CN111612090A (zh) 基于内容颜色交叉相关的图像情感分类方法
Cheng et al. Deep learning based face recognition with sparse representation classification
Vapenik et al. Human face detection in still image using Multilayer perceptron solution based on Neuroph framework

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant