CN106793698B - 风力发电机组密闭式冷却系统 - Google Patents

风力发电机组密闭式冷却系统 Download PDF

Info

Publication number
CN106793698B
CN106793698B CN201611243782.7A CN201611243782A CN106793698B CN 106793698 B CN106793698 B CN 106793698B CN 201611243782 A CN201611243782 A CN 201611243782A CN 106793698 B CN106793698 B CN 106793698B
Authority
CN
China
Prior art keywords
heat exchange
pump
exchange module
cooling system
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611243782.7A
Other languages
English (en)
Other versions
CN106793698A (zh
Inventor
郭海荣
王世欢
付伟
徐晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN201611243782.7A priority Critical patent/CN106793698B/zh
Publication of CN106793698A publication Critical patent/CN106793698A/zh
Application granted granted Critical
Publication of CN106793698B publication Critical patent/CN106793698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供一种风力发电机组密闭式冷却系统,该风力发电机组密闭式冷却系统包括泵站、外部热交换器、待冷却设备的换热模块以及连接管路,所述泵站包括循环泵和三通阀,所述循环泵的出口侧管路连接到所述三通阀的进口,所述三通阀的两个出口分别连接到外部热交换器的进口侧管路和所述外部热交换器的旁路管路,所述外部热交换器的出口侧管路和所述旁路管路的汇合点连接到所述换热模块的进口,所述换热模块的出口侧管路连接到所述循环泵的进口侧管路。根据本发明,可防止高压冷却液直接流入到待冷却设备的换热模块,减少冷却液的冲击,保护换热模块。

Description

风力发电机组密闭式冷却系统
技术领域
本发明涉及风力发电领域,特别涉及一种风力发电机组密闭式冷却系统。
背景技术
风能作为绿色清洁能源,近年来得到快速发展。随着陆上风资源开发日趋饱和,优质的海上风能资源逐渐成为各国开发的重点,且风力发电机组越来越向大型发展。虽然海上风电有风资源优质、不占地、并网条件好等优势,同时也面临着成本高、维护难、环境条件恶劣等挑战。
随着海上风电的发展,风力发电机组离海岸线越来越远,再加上海上环境特别恶劣,其维护难度越来越大,维护成本越来越高,因此要求设备有较高的可靠性、可维护性。
随着机组功率的增长,相应的部件发热量也增大。变流器和主变压器作为机组主要的发热部件,解决其散热是风力发电机组的关键点之一。变流器用于将发电机发出的频率和电压均在变化的交流电转换为符合电网接入规范的电压、频率恒定,波形为正弦波的交流电。主变压器又称箱变、升压变压器,用来将来自变流器的低压电升压后送往集电线路。变流器和主变压器放置在塔筒内部的不同层上,例如主变压器配置在塔筒内部的塔底基础平台,变流器配置在塔筒内部的第一层平台。变流器和主变压器之间有电缆连接。而且,变流器和主变压器分别设置在起保护作用的柜体内。
以往,在塔底基础平台和第一层平台上安装的两个重要部件主变压器和变流器,虽然两者之间的距离很短,但使用了两套独立的冷却系统,这两套冷却系统不仅在硬件上完全独立,而且在软件控制上亦是相互独立的,这样两套冷却系统不仅成本较高,且相对故障也较多,与海上机组降成本、提高可靠性的要求是相悖的。针对此,近来出现了利用一套冷却系统同时完成机组两种主要发热部件变流器和主变压器的散热的方案。
在这些方案中,从泵站流出的冷却液先进入发热部件带走其热量,然后流入设置在塔筒外部的外部热交换器,将热量释放到外部空气中,释放热量后的冷却液回流到泵站,从而完成一个循环。但是,对于这种循环可能存在的问题却缺乏认识。泵站的出口侧是整个冷却系统的压力最高点,因此上述循环导致高压冷却液直接流入到发热部件内的换热模块,换热模块所受到的冲击较大,易发生故障。特别是,当变流器、主变压器等发热部件内的换热模块使用微通道换热器时,因结构较脆弱,更容易损坏。
而且,目前风电机组厂家都是外购冷却系统,缺乏与变流器、主变压器的一体化设计。而且,冷却系统的泵站作为独立产品,设置在单独的柜体内,不仅占用塔筒内较大的空间,而且接口较多,现场吊装、接线、管路连接等工作量较大。
另外,上述的冷却系统中的稳压设备基本为传统的气囊式膨胀罐或隔膜式膨胀罐,利用预冲压气体和隔膜或气囊式的作用,来缓冲调节系统压力不会有巨大的变化,以保证冷却系统的正常工作。然而,气囊由于长期受到的扭力较大易断裂,罐体内部预冲压气体易漏气。这些问题使得密闭式系统的系统压力极不稳定。而且,气囊式膨胀罐或隔膜式膨胀罐会频繁报出系统压力低的故障,影响正常使用。同时,传统气囊式膨胀罐的使用,也使得机组的维护、更换器件的工作非常频繁。
此外,目前的风力发电机组密闭式冷却系统通常使用一台循环泵或者两台循环泵一备一用的方式,来驱动系统中冷却介质的流动。对于使用一台循环泵的冷却系统,因为循环泵的机封为薄弱点,机组经常由于机封不可预见性的损坏导致机组长时间停机。对于采用一备一用循环泵的冷却系统,虽然在一台循环泵损坏的情况下,可切入备用循环泵,以使机组继续正常工作,但是目前的一备一用的切换需要手动进行切换,而且在一台主循环泵长时间运行不损坏的情况下,备用泵就不会启动,这样就导致两台循环泵的寿命不一致。
综上所述,设计一套具有高可靠性、高集成化、高可维护性,同时可满足发热部件散热需求的冷却系统,对整个机组具有非常重大的意义。
发明内容
本发明的目的是提供一种可降低故障率、提高可靠性的风力发电机组密闭式冷却系统。
为了解决上述技术问题,本发明采用的一个技术方案是:提供一种风力发电机组密闭式冷却系统,包括泵站、外部热交换器、待冷却设备的换热模块以及连接管路,泵站包括循环泵和三通阀,循环泵的出口侧管路连接到三通阀的进口,三通阀的两个出口分别连接到外部热交换器的进口侧管路和外部热交换器的旁路管路,所外部热交换器的出口侧管路和旁路管路的汇合点连接到所述换热模块的进口,所述换热模块的出口侧管路连接到所述循环泵的进口侧管路。
所述换热模块可为变流器换热模块和/或主变压器换热模块。
所述变流器换热模块和所述主变压器换热模块可并联。
所述泵站与变流器可设置于同一柜体内。
还可包括水囊式稳压罐,所述水囊式稳压罐的流入口连接所述换热模块的出口侧管路,所述水囊式稳压罐的流出口连接到所述循环泵的进口。
所述水囊式稳压罐可包括水囊和保护壳体,所述水囊为由弹性材质形成的冷却液通道,其一端设有所述流入口,另一端设有所述流出口,而且所述保护壳体的内部形成用于收容所述水囊的非密闭空腔。
所述水囊的两端可形成法兰盘,所述保护壳体的两端可形成与之对应的支撑法兰,所述法兰盘与所述支撑法兰抵接。
在所述循环泵上设置用于检测机封处是否发生泄漏的机封泄漏检漏装置。
所述机封泄漏检漏装置可包括泵头衬里组件和检漏传感器,所述泵头衬里组件包括泵头衬里、位于所述泵头衬里上侧而与泵体轴孔连通的蓄水筒以及位于所述蓄水筒的侧部而与所述蓄水筒内部空间连通的丝头,所述检漏传感器设置于所述丝头中。
所述循环泵的数量为两个,两个循环泵并联运行,且在循环泵的进口和出口分别设有电动球阀。
根据本发明,从泵站流出的冷却液可先进入外部热交换器,因此可防止高压冷却液直接流入到待冷却设备的换热模块,减少冷却液的冲击,保护换热模块,从而降低故障率,提高可靠性。而且,当将泵站和变流器集成到一个柜体内时,上述保护效果更加显著和重要。
而且,通过将泵站和变流器设置于同一柜体内,冷却系统的泵站被集成到变流器柜体内,从而可在满足变流器冷却功能的同时充分利用变流器柜空间,节省了空间和成本,使吊装、接线和管路连接更加简单。
而且,通过使用水囊式稳压罐,能够更好地稳定系统压力,避免了传统气囊式膨胀罐需频繁补气以及频繁报出系统压力低的故障的缺点,延长了稳压设备的寿命,提高了可靠性,提高了冷却系统的整体效率。
而且,在循环泵的机封处增加机封泄漏检漏装置实时检测循环泵机封状态,使得冷却系统更加智能化,故障原因更加明确,系统可靠性和效率变得更高。而且,故障原因的明确,一定程度上会减少维护人员不定期的检修时间,也可减少因故障原因不明确而导致的排查时间,于是机组因上述时间的减少而减少机组停机时间,提高机组发电量,避免了经济损失。
而且,采用双泵并联冗余设计,当检测到循环泵有泄漏时,可通过循环泵进出口电动球阀迅速把故障循环泵从系统中切出,可实现机组1/2功率运行,解决了现有冷却系统单泵损坏导致机组停机的风险,使得机组运行更加持续、稳定,同时也避免了因机组频繁停机所导致的一系列问题。而且,当机组长期处于小风状态时即处于1/2功率及小于1/2功率运行时,循环泵可实现轮值工作,进而可实现循环泵的寿命一致的效果。即,本申请的双泵并联运行方式还结合了机封泄漏检漏装置、循环泵进出口电动球阀,取得了显著优于现有的一备一用方式的效果。
附图说明
图1是风力发电机组的塔筒内外设备布置情况示意图;
图2是根据本发明的实施例的密闭式冷却系统的组成示意图;
图3是根据本发明的实施例的泵站的立体图;
图4是根据本发明的实施例的水囊式稳压罐的立体图;
图5是根据本发明的实施例的水囊式稳压罐的分解状态立体图;
图6是根据本发明的实施例的水囊式稳压罐的剖视图;
图7是根据本发明的实施例的泵头衬里组件的剖视图;
图8是根据本发明的实施例的检漏传感器的安装示意图。
具体实施方式
以下结合附图对本发明的实施例做具体描述。
如图1所示,变流器柜200和主变压器柜400放置在塔筒300内部的不同层上,例如主变压器柜400配置在塔筒300内部的塔底基础平台320,变流器柜200配置在塔筒内部的第一层平台310。主变压器柜400内安装有主变压器,主变压器内部具有用于对其散热的主变压器换热模块。变流器柜200内安装有变流器,变流器内部具有用于对其散热的变流器换热模块。在变流器中,发热主要产生于IGBT功率模块。因此,变流器换热模块主要用来对IGBT功率模块进行散热。冷却液分别流入到主变压器换热模块和变流器换热模块中,带走主变压器和变流器所产生的热量。变流器换热模块120和/或主变压器换热模块130可采用微通道换热器,具体地可以是形成有微通道的散热板,其上可安装有发热器件。变流器柜200和主变压器柜400之间有电缆连接。变流器柜200和主变压器柜400可采用不锈钢材质。
图1中还示出从变流器柜200中伸出连接到外部热交换器110的冷却液管路。这是因为,在本发明的实施例中将泵站集成到了变流器柜200内,这些管路用于使从泵站流出的冷却液流入外部热交换器110并返回变流器柜200内。
下面,结合图2说明根据本发明的实施例的密闭式冷却系统的组成。其中,虚线框内的部分为集成在变流器柜200内部的部分。
如图2所示,密闭式冷却系统主要包括通过管路相连接的循环泵10、三通阀15、外部热交换器110、旁路管路110a、变流器换热模块120、主变压器换热模块130、水囊式稳压罐20。
所述密闭式冷却系统分为内外循环。所述的内循环由循环泵10、三通阀15、旁路管路110a、变流器换热模块120、主变压器换热模块130、水囊式稳压罐20依次连接而成,其中变流器换热模块120与主变压器换热模块130并联于回路中。所述的外循环由循环泵10、三通阀15、外部热交换器110、变流器换热模块120、主变压器换热模块130、水囊式稳压罐20依次连接而成,其中变流器换热模块120与主变压器换热模块130并联于回路中。其中,三通阀15用于切换系统内外循环。
在本实施例中,采用两台循环泵10并联运行。可在循环泵10的进口和出口处分别设置电动球阀11,并在循环泵10上设置检漏传感器12以检测是否发生机封泄漏故障。当机组半功率以上运行时,双泵同时运行,当检漏传感器12检测到其中一台循环泵10发生机封泄漏时,关闭故障循环泵10进出口电动球阀11,同时停止该循环泵10,将故障泵从系统中切出,机组限制半功率运行,同时系统报出“循环泵机封泄漏”警告。当机组长期运行于半功率以下时(例如,处于小风状态时),可只启动一台循环泵10,并且两台循环泵10进行轮值工作,连续运行一定时间进行切换,以实现两台循环泵的寿命一致的效果。
优选地,在循环泵10的出口侧管路设置过滤器13,以过滤冷却液中的杂质。排气阀16可用来排出系统中的空气。为了保证系统安全,还可设置有安全阀14。加热器17则用来对冷却液进行加热。
三通阀15包括一个进口和两个出口,两个出口分别连接到外部热交换器110和旁路管路110a,进口连接到循环泵10的出口。通过控制三通阀15,从循环泵10流出的冷却液选择性地流过外部热交换器110或旁路管路110a,从而实现内外循环的切换。
外部热交换器110设置在塔筒外部,冷却液流经外部热交换器110时与外部空气进行热交换,流出外部热交换器110的冷却液流入变流器换热模块120。外部热交换器110还可包括风机。在冷却液温度处在正常工作温度范围内时,冷却液流经外部热交换器110,即进行外循环。若冷却液温度过低,则切换为内循环,并启动加热器17,提高冷却液温度,以避免损坏变流器等设备中对温度较为敏感的器件(例如,IGBT功率模块)。
在变流器换热模块120的进口侧可设置进口温度传感器18a和进口压力传感器19a,测量流入变流器换热模块120之前的冷却液的温度和压力。
变流器换热模块120与主变压器换热模块130并联,变流器换热模块120与主变压器换热模块130中形成有冷却液通道,冷却液流过这些通道而被加热,从而带走变流器和主变压器的热量。在外循环时,由于从循环泵10排出的较高压的冷却液先流经外部热交换器110,因此压力有所缓和,防止高压冷却液直接流入到换热模块,减少冷却液的冲击,从而可以降低故障率。
而且,由于循环泵10和变流器换热模块120集成到一个柜体内,如果不采用上述流路,则由于循环泵10和变流器换热模块120之间的管路较短,冷却液的冲击影响将变得更大。换言之,对于循环泵10和变流器换热模块120集成到一个柜体内的冷却系统,上述保护效果更加显著和重要。
进一步地,可在变流器换热模块120和主变压器换热模块130的进口和出口处分别设置电动球阀,以对并联的变流器换热模块120和主变压器换热模块130中的冷却液流动情况分别独立控制,例如当主变压器换热模块130的温度适中,无需进一步冷却时,可以切断对主变压器换热模块130的冷却液供应,从而降低消耗。
此外,变流器换热模块120与主变压器换热模块130也可以串联。或者,变流器换热模块120与主变压器换热模块130也可以设置在两个不同的冷却系统中,并在这两个冷却系统中均采用上述的使冷却液先流经外部热交换器之后的构造。
另外,对其他待冷却设备的换热模块也可以采用上述线路构造。
在变流器换热模块120的出口侧可设置出口温度传感器18b和出口压力传感器19b,测量流出变流器换热模块120之后的冷却液的温度和压力。
水囊式稳压罐20连接于循环泵10的进口处,从变流器换热模块120流出的冷却液流经水囊式稳压罐20进入循环泵10。循环泵10的进口处为系统的压力最低点,水囊式稳压罐20在此起到平衡系统压力的作用。水囊式稳压罐在系统相当于一个蓄水池,利用水囊材质本身弹性力来吸收释放系统冷却液因温度变化所引起的体积增减。具体地,当系统中冷却液温度升高,体积增加,相应系统压力会升高,水囊膨胀来吸收掉增加的体积;反之,冷却液温度降低,体积减小,水囊收缩,冷却液补充回到系统,从而达到系统一个新的平衡。
图3是根据本发明的实施例的泵站的立体图。如图3所示,本实施例的密闭式冷却系统的泵站采用紧凑型设计,使得冷却系统的维护更加便捷,产品的管理更加简化。在本发明的实施例中,泵站100位于变流器柜200内。即,泵站100与变流器设置在同一个柜体内。泵站100与变流器布置在变流器柜200内的不同空间,两者之间可设有隔板,隔板上开孔供管线穿过。
泵站100是指用于给冷却液提供动力以及起控制和辅助作用的部件与管路的组合体。属于泵站100的部件可固定安装在泵站的安装底座101上,从而泵站100可被整体移动和安装。本实施例中的泵站100至少包括循环泵10,还可包括水囊式稳压罐20、电动球阀11、检漏传感器12、过滤器13、安全阀14、排气阀16、加热器17、三通阀15、旁路管路110a、进口温度传感器18a、进口压力传感器19、出口温度传感器18b、出口压力传感器19b中的至少一个以及它们之间的连接管路。
与上述的密闭式冷却系统配套的控制系统可包括供配电系统、信号采集系统、控制器。供配电系统用于给循环泵、三通阀、电动球阀、加热器、风机、油泵等用电器件提供380V±10%的动力电源,动力电源可采用三相五线制设计。信号采集系统可由温度、压力等测量仪表组成。信号采集系统对冷却液温度、压力等在线参数实时采集,并将参数转化为4-20mA标准模拟信号或开关量信号实时传送至控制器。
控制器采用可编程控制器(PLC)。控制器可接收信号采集系统发来的信号,并产生相应的控制信号发送给各个设备,包括供配电系统。
控制器可自动控制循环泵的启动、停止,同时根据实际情况输出报警及跳闸信号。控制器根据循环泵的运行状态来控制电动球阀的开关,当检漏传感器检测到其中一台循环泵发生泄漏时,关闭该循环泵进出口的电动球阀,把故障循环泵从系统中切出,机组限功率持续运行。
控制器通过冷却液温度来控制外部热交换器中的风机的启停,当冷却液温度大于工作温度范围下限值时,逐渐开启外部热交换器上的三个风机,并反馈开启信号;反之反馈停止信号。并且,采用轮值工作法,保证风机寿命一致。
在冷却液温度低于设定限制时,控制器控制三通阀将系统循环切换为内循环,并启动加热器,以避免冷却液温度过低导致待冷却设备内的器件(例如,变流器功率模块)损坏。当冷却液温度接近当前环境露点时,加热器被强制启动。而且,加热器的启动与循环泵运行及冷却液超低流量值互锁,循环泵停运或冷却液流量超低时,加热器禁止运行。
而且,控制器控制三通阀的开闭,使冷却液温度稳定在待冷却设备所需的工作温度范围内。当冷却液温度大于工作温度范围下限值且有上升趋势时,逐渐打开三通阀,直到温度上升至工作温度范围上限值时三通阀全部打开,并反馈三通阀全部打开信号;反之,反馈三通阀全关信号。
下面,基于图4至图6说明本实施例的水囊式稳压罐的原理。图4是根据本发明的实施例的水囊式稳压罐的立体图,图5是根据本发明的实施例的水囊式稳压罐的分解状态立体图,图6是根据本发明的实施例的水囊式稳压罐的剖视图。
如图4至图6所示,水囊式稳压罐20可包括水囊21和保护壳体22。水囊21安装于保护壳体22内,可包括主体部210和位于主体部210两端的法兰盘213。主体部210大致呈管状,供流体流过。一侧法兰盘213上形成供流体流入的流入口211,另一侧法兰盘213上形成供流体流出的流出口212。水囊21采用弹性材质,以利用水囊21自身的弹性来吸收释放工作介质(即,流体)因温度变化所引起的体积变化,即水囊21可根据流体的压力膨胀收缩,从而调节系统压力。天然橡胶弹性大,定伸强度高,有较好的耐碱性,故水囊21的材质优选天然橡胶。
保护壳体22包裹水囊21,其内部形成空腔220,水囊21的主体部210位于该空腔220中。保护壳体22内的空腔220为非密闭空腔,与外界空气连通,不需要预充气体。因此,不存在预充气体压力的问题,亦避免气体损失造成系统不能正常工作的问题。保护壳体22的两端形成与法兰盘213对应的支撑法兰223。在将水囊式稳压罐安装到流体管路中时,管路上的法兰与支撑法兰223从两头夹持法兰盘213,从而可以实现牢靠的密闭连接。此时可以采用螺栓连接。支撑法兰223可以为DN80口径法兰,使得水囊承受的扭力较小,同时使水囊式稳压罐与系统的连接可更好地密封。
当该水囊式稳压罐使用于流体循环系统中时相当于一个蓄水池的作用,利用水囊21材质本身弹性力来吸收释放因温度变化等所引起的工作介质增加减小的那部分体积。当流体压力过大,导致水囊21过度膨胀时,保护壳体22对水囊起到保护作用,以免在超过水囊弹性范围的工况下致使水囊损坏。换言之,由于保护壳体22为刚性构件,因此即使在极端情况下,水囊21只能膨胀到与保护壳体22的内表面抵接的位置,而不会进一步膨胀。
优选地,保护壳体22可以由两个半壳体构成。即,保护壳体22包括上半壳体221和下半壳体222。上、下半壳体221和222可通过4个螺栓组件25进行安装,所形成的空腔220用于安装水囊21。
上半壳体221上可焊接固定支架23,以对整个水囊式稳压罐起到支撑固定作用。
保护壳体22可以为钢制构件。为避免腐蚀造成损坏的问题,保护壳体22的内外表面都可以进行表面防腐蚀处理。或者可以仅对保护壳体22的内表面或外表面进行防腐蚀处理。
另外,如图3所示,水囊21的纵截面可以呈椭圆形,椭圆形结构更有利于水囊21的收缩膨胀,且使用大口径的法兰连接方式,水囊21承受的扭力较小,可延长寿命。
水囊21的形状可以是可加工的其他形状,比如其横截面形状可以呈圆形、椭圆形或多边形。
另外,水囊式稳压罐与系统的连接方式,可以是其他方式,比如卡盘、螺纹连接等。
如图3所示的循环泵10为立式离心泵,本发明的实施例中通过改进泵头衬里的结构,提供了用于检测循环泵10的机封处是否发生泄漏的机封泄漏检漏装置。即,在泵头衬里上安装检漏传感器,检漏传感器检测到机封泄漏后,以开关量的形式传送给控制器,以实现实时检测立式离心泵机封的状态。这样解决了机封泄漏不能直接报出的问题,同时维护值班人员可有计划,有针对性对冷却系统进行检修维护,使得冷却系统效率更高,机组可靠性更高。
下面,基于图7和8说明本实施例的机封泄漏检漏装置。图7是根据本发明的实施例的泵头衬里组件的剖视图,图8是根据本发明的实施例的检漏传感器的安装示意图。
如图7和图8所示,泵头衬里组件42包括蓄水筒421、泵头衬里422、丝头423、排气阀连接孔424。蓄水筒421位于泵头衬里422上侧而与泵体轴孔425连通,丝头423位于蓄水筒421的侧部而与蓄水筒421内部空间连通。丝头423与蓄水筒421可通过焊接进行连接。蓄水筒421与泵头衬里422可通过焊接进行连接。或者,蓄水筒421、丝头423、泵头衬里422可通过铸造的方式一体成型。或者,蓄水筒421、泵头衬里422、丝头423、排气阀连接孔424可通过铸造的方式一体成型。
起到动力传输作用的联轴器43连接电动机与泵体轴4。泵体轴4穿过泵体轴孔425,泵体轴孔425处安装有机封46,用来密封泵体轴4,防止泵体运行时其中的输送介质顺着泵体轴4流出。排气阀连接孔424内壁设置有与手动排气阀41相配合的内螺纹,用于使手动排气阀41连接在泵头衬里组件42上。手动排气阀41用于排出泵头衬里22内部的气体。检漏传感器12通过丝头423安装于泵头衬里组件42上,用于检测从机封处泄漏的介质。丝头423可设置内螺纹,检漏传感器12可设置外螺纹,从而通过螺纹连接将检漏传感器12设置到丝头423中。
上文所说的介质为冷却液、防冻液等。当离心泵机封46损坏后,介质会顺着泵体轴4泄漏到蓄水筒421内,当介质泄漏到一定程度,浸没检漏传感器12的感应部分时,检漏传感器12输出机封泄漏信号,传送给控制器。
虽然上面已经详细描述了本发明的示例性实施例,但本领域技术人员应该理解,在不脱离本发明的原理和精神的情况下,可对本发明的实施例做出各种修改和变形。但是应当理解,在本领域技术人员看来,这些修改和变形仍将落入权利要求所限定的本发明的范围内。

Claims (8)

1.一种风力发电机组密闭式冷却系统,其特征在于,所述风力发电机组密闭式冷却系统包括泵站(100)、外部热交换器(110)、待冷却设备的换热模块以及连接管路,所述泵站(100)包括循环泵(10)和三通阀(15),所述循环泵(10)的出口侧管路连接到所述三通阀(15)的进口,所述三通阀(15)的两个出口分别连接到外部热交换器(110)的进口侧管路和所述外部热交换器(110)的旁路管路(110a),所述外部热交换器(110)的出口侧管路和所述旁路管路(110a)的汇合点连接到所述换热模块的进口,所述换热模块的出口侧管路连接到所述循环泵(10)的进口侧管路,
其中,所述换热模块为变流器换热模块(120)和/或主变压器换热模块(130),所述泵站(100)与变流器设置于同一柜体(200)内,
所述变流器、主变压器内的换热模块使用微通道换热器。
2.如权利要求1所述的风力发电机组密闭式冷却系统,其特征在于,所述变流器换热模块(120)和所述主变压器换热模块(130)并联。
3.如权利要求1所述的风力发电机组密闭式冷却系统,其特征在于,所述风力发电机组密闭式冷却系统还包括水囊式稳压罐(20),所述水囊式稳压罐(20)的流入口(211)连接所述换热模块的出口侧管路,所述水囊式稳压罐(20)的流出口(212)连接到所述循环泵(10)的进口。
4.如权利要求3所述的风力发电机组密闭式冷却系统,其特征在于,所述水囊式稳压罐(20)包括水囊(21)和保护壳体(22),所述水囊(21)为由弹性材质形成的冷却液通道,其一端设有所述流入口(211),另一端设有所述流出口(212),而且所述保护壳体(22)的内部形成用于收容所述水囊(21)的非密闭空腔(220)。
5.如权利要求4所述的风力发电机组密闭式冷却系统,其特征在于,所述水囊(21)的两端形成法兰盘(213),所述保护壳体(22)的两端形成与之对应的支撑法兰(223),所述法兰盘(213)与所述支撑法兰(223)抵接。
6.如权利要求1所述的风力发电机组密闭式冷却系统,其特征在于,在所述循环泵(10)上设置用于检测机封处是否发生泄漏的机封泄漏检漏装置。
7.如权利要求6所述的风力发电机组密闭式冷却系统,其特征在于,所述机封泄漏检漏装置包括泵头衬里组件(42)和检漏传感器(12),所述泵头衬里组件包括泵头衬里(422)、位于所述泵头衬里(422)上侧而与泵体轴孔(425)连通的蓄水筒(421)以及位于所述蓄水筒(421)的侧部而与所述蓄水筒(421)内部空间连通的丝头(423),所述检漏传感器(12)设置于所述丝头(423)中。
8.如权利要求6所述的风力发电机组密闭式冷却系统,其特征在于,所述循环泵(10)的数量为两个,两个循环泵(10)并联运行,且在所述循环泵(10)的进口和出口分别设有电动球阀(11)。
CN201611243782.7A 2016-12-29 2016-12-29 风力发电机组密闭式冷却系统 Active CN106793698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611243782.7A CN106793698B (zh) 2016-12-29 2016-12-29 风力发电机组密闭式冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611243782.7A CN106793698B (zh) 2016-12-29 2016-12-29 风力发电机组密闭式冷却系统

Publications (2)

Publication Number Publication Date
CN106793698A CN106793698A (zh) 2017-05-31
CN106793698B true CN106793698B (zh) 2023-10-13

Family

ID=58927919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611243782.7A Active CN106793698B (zh) 2016-12-29 2016-12-29 风力发电机组密闭式冷却系统

Country Status (1)

Country Link
CN (1) CN106793698B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448367A (zh) * 2019-09-02 2021-03-05 北京国电思达科技有限公司 一种用于变流器的检测控制装置及控制方法
CN211525107U (zh) * 2019-12-10 2020-09-18 广州高澜节能技术股份有限公司 一种应用于海上风电的液冷泵站
CN113027700A (zh) * 2020-12-01 2021-06-25 景能科技有限公司 一种塔筒快速冷却方法
CN113660835A (zh) * 2021-08-17 2021-11-16 远景能源有限公司 一种用于储能交流侧的一体化冷却系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352745Y (zh) * 2009-02-09 2009-11-25 广州市高澜水技术有限公司 一种应用于风力发电的密闭式循环水冷却装置
CN102220946A (zh) * 2011-05-06 2011-10-19 中国科学院广州能源研究所 海上风力发电机组的冷却系统
CN202364102U (zh) * 2011-12-06 2012-08-01 湘电风能有限公司 一种风力发电机组变流器/变压器冷却系统
WO2012159395A1 (zh) * 2011-05-20 2012-11-29 Zhou Zheming 一种用于冷却电子设备的密封水冷方法和设备
WO2014180505A1 (en) * 2013-05-08 2014-11-13 Arcelik Anonim Sirketi Apparatus for detecting leakage in a cooling system and method of detecting leakage
CN204887852U (zh) * 2015-08-19 2015-12-16 北京天诚同创电气有限公司 冷却系统及风力发电机组
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法
CN105471178A (zh) * 2015-12-07 2016-04-06 新疆金风科技股份有限公司 水冷系统的泄漏保护装置及方法、风力发电机组水冷系统
WO2016058683A1 (de) * 2014-10-14 2016-04-21 Grundfos Holding A/S Verfahren zum betrieb eines kühlsystems und kühlsystem
CN205407562U (zh) * 2016-02-26 2016-07-27 北京天诚同创电气有限公司 变流器冷却系统及风力发电机组
CN105927484A (zh) * 2016-07-07 2016-09-07 远景能源(江苏)有限公司 封闭式海上型风力发电机组机舱环境系统及控制方法
CN205744605U (zh) * 2016-05-17 2016-11-30 福州远见通达供水设备有限公司 一种带液位检测的离心泵排气装置
CN205823559U (zh) * 2016-07-07 2016-12-21 远景能源(江苏)有限公司 封闭式海上型风力发电机组机舱环境系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352745Y (zh) * 2009-02-09 2009-11-25 广州市高澜水技术有限公司 一种应用于风力发电的密闭式循环水冷却装置
CN102220946A (zh) * 2011-05-06 2011-10-19 中国科学院广州能源研究所 海上风力发电机组的冷却系统
WO2012159395A1 (zh) * 2011-05-20 2012-11-29 Zhou Zheming 一种用于冷却电子设备的密封水冷方法和设备
CN202364102U (zh) * 2011-12-06 2012-08-01 湘电风能有限公司 一种风力发电机组变流器/变压器冷却系统
WO2014180505A1 (en) * 2013-05-08 2014-11-13 Arcelik Anonim Sirketi Apparatus for detecting leakage in a cooling system and method of detecting leakage
WO2016058683A1 (de) * 2014-10-14 2016-04-21 Grundfos Holding A/S Verfahren zum betrieb eines kühlsystems und kühlsystem
CN204887852U (zh) * 2015-08-19 2015-12-16 北京天诚同创电气有限公司 冷却系统及风力发电机组
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法
CN105471178A (zh) * 2015-12-07 2016-04-06 新疆金风科技股份有限公司 水冷系统的泄漏保护装置及方法、风力发电机组水冷系统
CN205407562U (zh) * 2016-02-26 2016-07-27 北京天诚同创电气有限公司 变流器冷却系统及风力发电机组
CN205744605U (zh) * 2016-05-17 2016-11-30 福州远见通达供水设备有限公司 一种带液位检测的离心泵排气装置
CN105927484A (zh) * 2016-07-07 2016-09-07 远景能源(江苏)有限公司 封闭式海上型风力发电机组机舱环境系统及控制方法
CN205823559U (zh) * 2016-07-07 2016-12-21 远景能源(江苏)有限公司 封闭式海上型风力发电机组机舱环境系统

Also Published As

Publication number Publication date
CN106793698A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106793698B (zh) 风力发电机组密闭式冷却系统
CN206274708U (zh) 风力发电机组密闭式冷却系统
CN108777925B (zh) 一种负压液冷系统
CN102477978A (zh) 一种核级泵鉴定试验回路系统
CN108678911B (zh) 一种风力发电机的冷却装置
CN201332354Y (zh) 静止变频器的水冷却装置
CN205378469U (zh) 一种大功率水冷系统
CN110808145A (zh) 一种防漏油的方便安装固定的油浸式电力变压器
CN208618498U (zh) 一种无塔供水设备
CN110121249A (zh) 防漏液装置及散热系统
CN215526468U (zh) 一种风电水冷系统高位补液装置
CN214476824U (zh) 一种风力发电机组用分体冷却变压器
CN204887852U (zh) 冷却系统及风力发电机组
CN207039434U (zh) 一种风电变流器的冷却装置以及风电变流器
CN212564465U (zh) 一种燃油泵的调压阀
CN201660929U (zh) 一种管中型智能、静音管网叠压给水设备
CN213711244U (zh) 一种水冷系统用自动补水稳压装置
CN113775487A (zh) 冷却系统及风力发电机组
CN215638906U (zh) 具有余压发电功能的冷却塔循环系统
CN102168868B (zh) 水能循环加热器
CN201650591U (zh) 垂直轴风力发电机液压控制设备用集成式压力油源装置
CN113035519A (zh) 风力发电机组的冷却系统和风力发电机组
CN220134116U (zh) 一种海上风机塔下集成式水冷系统
CN220855115U (zh) 一种核电厂主泵电机空载试验系统
CN221258583U (zh) 一种天然气低压管道检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant