CN106793032A - 一种网络mpr投递率半盲自适应优化方法 - Google Patents

一种网络mpr投递率半盲自适应优化方法 Download PDF

Info

Publication number
CN106793032A
CN106793032A CN201611141747.4A CN201611141747A CN106793032A CN 106793032 A CN106793032 A CN 106793032A CN 201611141747 A CN201611141747 A CN 201611141747A CN 106793032 A CN106793032 A CN 106793032A
Authority
CN
China
Prior art keywords
network
maximum
cca
mpr
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611141747.4A
Other languages
English (en)
Inventor
张晋
张一晋
周远达
房玉轩
邹爱洁
汪云
关凤瑜
桂林卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201611141747.4A priority Critical patent/CN106793032A/zh
Publication of CN106793032A publication Critical patent/CN106793032A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明提供了一种网络MPR 投递率半盲自适应优化方法,网络中的节点同时向目的节点发送固定包长的数据包,目的节点可以基于MPR 机制同时成功接收若干个数据分组,各个节点仅通过侦听CCA 结果即可估计出所发送数据分组的传输成功率,并根据该成功率动态的调整最小退避指数和最大退避次数两项指标,在达到系统目标可靠性的前提下,改善网络的能量效率。

Description

一种网络MPR投递率半盲自适应优化方法
技术领域
本发明涉及无线传感网及无线个域网领域,特别涉及一种IEEE802.15.4网络MPR投递率半盲自适应优化方法。
背景技术
进入21世纪,人们对无线通信的技术要求随着网络技术的提高越来越高。特别是近两年,随着各式各样的无线终端设备层出不穷,人们对短距离通信也有了更高层次的要求,而IEEE802.15.4标准因为其低成本、低速率、低能耗以及部署简单的众多特点受到了众多厂家和消费者的青睐。提供系统所需可靠性的同时降低能量消耗成为基于IEEE802.15.4网络的军事,工业及医疗应用的主要设计指标。
IEEE 802.15.4是CSMA/CA机制接入信道,在一定程度上可以减少来自不同网络节点的数据分组碰撞,但随着网络负载的逐渐增大,IEEE 802.15.4采用的固定网络参数所造成的自适应能力差将表现的更为明显,从而使得网络可靠性恶化。针对这一问题并基于传统的单包接收机制物理层,Francesco等人提出了一种依赖于应答机制的动态自适应算法ADAPT;Park等人基于节点行为的马尔科夫模型推导最优退避参数,但需要各节点已知网络条件并局限于特定的数据通信类型;Brienza等人基于ADAPT算法并结合历史记录情况设计了一种更加快速准确的退避参数自适应算法,但需要额外的节点存储及计算能力。
综上所述,目前已知的针对IEEE 802.15.4协议可靠性的自适应优化方法存在以下缺陷:各节点需要了解准确的网络参数;依赖于应答机制,因此引起额外的等待时间及能量消耗,而且不适用于信标不使能网络和无确认机制网络;仅局限于单包接收机制,没有考虑基于MIMO,SIC等技术的多包接收机制。
因此,需要一种基于多包接收机制物理层的自适应优化方法来满足无确认机制的无线传感网应用层的要求。
发明内容
本发明旨在提供了一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,包括IEEE802.15.4CSMA/CA在多包机制下动态估计并调整接入参数中的最小退避指数、最大退避指数和最大退避次数,以及信道接入成功概率和数据包传输成功概率,所述信道接入成功概率和所述数据包传输成功概率的乘积为数据分组投递率,其特征在于:网络允许目的节点同时成功接收r个数据分组,通信节点设置CCA检测阈值rc(rc小于等于r),在CCA期间统计并更新的五个变量,包括进入退避的数据包数NCCA,CCA失败的次数NCCAB,CCA成功时通信节点数超过CCA检测阈值rc的累计数NCCAI2B1,CCA成功时通信节点数不超过CCA检测阈值rc的累计数NCCAI2B2,CCA成功的次数NCCA2I。网络内节点不需要应答机制也无需重传,仅凭CCA侦听结果即可估计出数据分组传输成功率,并根据所估计的成功率动态的调整最小退避指数和最大退避次数,当正在通信的节点数不大于CCA检测阈值时,具体的参数调整过程包括:
S1.判断所估计的发包成功率的值是否小于target,target为网络用户对网络所设定的发包成功率的期望值,若所估计发包成功率小于target,执行S11,否则,执行S12;
S11.判断最小退避指数是否小于MinBEMax,MinBEMax为最小退避指数的最大值,若最小退避指数小于MinBEMax则最小退避指数加1,否则执行S111;
S111.判断最大退避次数是否小于MaxBackoffsmax,MaxBackoffsmax为最大退避次数的最大值,若最大退避次数小于MaxBackoffsmax,则最大退避次数加1;
S12.判断最大退避次数是否大于最大退避次数的最小值,若是,则最大退避次数减1,否则,执行S121;
S121.判断最小退避指数是否大于最小退避指数的最小值,若是,最小退避指数减1。
进一步地,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:网络中的节点能实现同步多包接收,节点无法知道发包是否成功,但可以通过自身CCA侦听来估计发包成功的概率,所述数据包发送成功的概率为1-NCCAI2B1/(NCCA2I+NCCAI2B1+NCCAI2B2)。
进一步地,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述信道接入概率的估计值为1-NCCAB/NCCA
进一步地,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述参数调整过程在超帧结束后执行。
进一步地,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:MaxBackoffsmin的值为1,MaxBackoffsmax的值为10,MinBEmin的值为1,MinBEmax的值为7。
进一步地,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述最小退避指数的初始值为3,所述最大退避次数的初始值4,所述最大退避指数值为10。
通过本发明的方法,满足了支持多包传输的无线个域网对通信可靠性的要求,并改善网络的能量效率。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1示出了本发明的实现流程图。
图2示出了默认参数设置的IEEE 802.15.4MAC协议(DPS)和本发明方法各(MBADAPT)多包能力的投递成功率比较。
图3示出了默认参数设置的IEEE 802.15.4MAC协议(DPS)和本发明方法(MBADAPT)各多包能力的数据分组平均能耗比较。
图4示出了本发明方法(MBADAPT)将CCA检测阈值设置为3时动态网络参数(在100和200个BI时分别加入15个节点,在300和400个BI时分别关闭15个节点)下采用本发明方法的投递率的估计值和实际值的比较。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
本发明旨在提供了一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,包括IEEE802.15.4CSMA/CA在多包机制下动态估计并调整接入参数中的最小退避指数、最大退避指数和最大退避次数,以及信道接入成功概率和数据包传输成功概率,所述信道接入成功概率和所述数据包传输成功概率的乘积为数据分组投递率,其特征在于:网络允许目的节点同时成功接收r个数据分组,通信节点设置CCA检测阈值rc(rc小于等于r),在CCA期间统计并更新的五个变量,包括进入退避的数据包数NCCA,CCA失败的次数NCCAB,CCA成功时通信节点数超过CCA检测阈值rc的累计数NCCAI2B1,CCA成功时通信节点数不超过CCA检测阈值rc的累计数NCCAI2B2,CCA成功的次数NCCA2I。网络内节点不需要应答机制也无需重传,仅凭CCA侦听结果即可估计出数据分组传输成功率,并根据所估计的成功率动态的调整最小退避指数和最大退避次数,当正在通信的节点数不大于CCA检测阈值时,具体的参数调整过程包括:
S1.判断所估计的发包成功率的值是否小于target,target为网络用户对网络所设定的发包成功率的期望值,若所估计发包成功率小于target,执行S11,否则,执行S12;
S11.判断最小退避指数是否小于MinBEMax,MinBEMax为最小退避指数的最大值,若最小退避指数小于MinBEMax,则最小退避指数加1,否则执行S111;
S111.判断最大退避次数是否小于MaxBackoffsmax,MaxBackoffsmax为最大退避次数的最大值,若最大退避次数小于MaxBackoffsmax,则最大退避次数加1;
S12.判断最大退避次数是否大于最大退避次数的最小值,若是,则最大退避次数减1,否则,执行S121;
S121.判断最小退避指数是否大于最小退避指数的最小值,若是,最小退避指数减1。
作为优选方案,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:网络中的节点能实现同步多包接收,节点无法知道发包是否成功,但可以通过自身CCA侦听来估计发包成功的概率,所述数据包发送成功的概率为1-NCCAI2B1/(NCCA2I+NCCAI2B1+NCCAI2B2)。
作为优选方案,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述信道接入概率的估计值为1-NCCAB/NCCA
作为优选方案,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述参数调整过程在超帧结束后执行。
作为优选方案,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:MaxBackoffsmin的值为1,MaxBackoffsmax的值为10,MinBEmin的值为1,MinBEmax的值为7。
作为优选方案,根据权利要求1所述的一种IEEE802.15.4网络MPR投递率半盲自适应优化方法,其特征在于:所述最小退避指数的初始值为3,所述最大退避次数的初始值4,所述最大退避指数值为10。
本发明采用了Matlab仿真软件对默认参数设置的IEEE 802.15.4MAC协议(DPS)和本发明方法进行实施比较。实施比较基于星型单跳网络拓扑结构,设置超帧参数BO=13,SO=10,假设所有源节点每个超帧开始时刻均产生20个数据分组,并设定每个数据分组的长度为120个字节。每次仿真时长为500个超帧
图2显示了默认参数设置的IEEE 802.15.4MAC协议(DPS)和本发明方法多包能力设置为5,CCA检测阈值rc分别设置为1、2、3、4(rc=1、2、3、4)时的投递成功率比较。从图中可以看出,对于本发明方法,当目标数据包发包成功率设置为80%时,可以自适应调整退避参数,能将数据包发包成功率稳定在目标值以上,因此改善了网络通信的可靠性。
图3显示了默认参数设置的IEEE 802.15.4MAC协议(DPS)和本发明方法多包接收能力r设置为5,CCA检测阈值rc分别设置为1-4时数据包平均能耗。从图中可以看出,本发明方法在CCA检测阈值下数据包平均能量消耗相较于默认参数设置的IEEE 802.15.4MAC协议(DPS)而言,有明显的降低,特别是当节点数目逐渐变多时节能的效果更加显著。
图4示出了本发明方法CCA检测阀值rc设置为3时在动态网络参数(在100和200个BI时分别加入15个节点,在300和400个BI时分别关闭15个节点)下网络中节点的分组投递率的实际值(actual)和估计值(estimate),可以看出每个BI结束后根据投递率估计值和实际值的比较调整退避参数使节点投递率保持稳定,并且在网络拓扑变化时能迅速的自适应调整,网络波动很小。
结合图2至图4的结果可知,本发明方法在多包通信的基础上不仅改善了网络通信的可靠性,并且降低了能耗,能快速适应拓扑变化。

Claims (6)

1.一种网络MPR投递率半盲自适应优化方法,包括IEEE 802.15.4CSMA/CA在多包机制下动态估计并调整接入参数中的最小退避指数、最大退避指数和最大退避次数,以及信道接入成功概率和数据包传输成功概率,所述信道接入成功概率和所述数据包传输成功概率的乘积为数据分组投递率,其特征在于:网络允许目的节点同时成功接收r个数据分组,通信节点设置CCA检测阈值rc(rc小于等于r),在CCA期间统计并更新的五个变量,包括进入退避的数据包数NCCA,CCA失败的次数NCCAB,CCA成功时通信节点数超过CCA检测阈值rc的累计数NCCAI2B1,CCA成功时通信节点数不超过CCA检测阈值rc的累计数NCCAI2B2,CCA成功的次数NCCA2I。网络内节点不需要应答机制也无需重传,仅凭CCA侦听结果即可估计出数据分组传输成功率,并根据所估计的成功率动态的调整最小退避指数和最大退避次数,当正在通信的节点数不大于CCA检测阈值时,具体的参数调整过程包括:
S1.判断所估计的发包成功率的值是否小于target,target为网络用户对网络所设定的发包成功率的期望值,若所估计发包成功率小于target,执行S11,否则,执行S12;
S11.判断最小退避指数是否小于MinBEMax,MinBEMax为最小退避指数的最大值,若最小退避指数小于MinBEMax则最小退避指数加1,否则执行S111;
S111.判断最大退避次数是否小于MaxBackoffsmax,MaxBackoffsmax为最大退避次数的最大值,若最大退避次数小于MaxBackoffsmax,则最大退避次数加1;
S12.判断最大退避次数是否大于最大退避次数的最小值,若是,则最大退避次数减1,否则,执行S121;
S121.判断最小退避指数是否大于最小退避指数的最小值,若是,最小退避指数减1。
2.根据权利要求1所述的一种网络MPR投递率半盲自适应优化方法,其特征在于:网络中的节点能实现同步多包接收,节点无法知道发包是否成功,但可以通过自身CCA侦听来估计发包成功的概率,所述数据包发送成功的概率为1-NCCAI2B1/(NCCA2I+NCCAI2B1+NCCAI2B2)。
3.根据权利要求1所述的一种网络MPR投递率半盲自适应优化方法,其特征在于:所述信道接入概率的估计值为1-NCCAB/NCCA
4.根据权利要求1所述的一种网络MPR投递率半盲自适应优化方法,其特征在于:所述参数调整过程在超帧结束后执行。
5.根据权利要求1所述的一种网络MPR投递率半盲自适应优化方法,其特征在于:MaxBackoffsmin的值为1,MaxBackoffsmax的值为10,MinBEmin的值为1,MinBEmax的值为7。
6.根据权利要求1所述的一种网络MPR投递率半盲自适应优化方法,其特征在于:所述最小退避指数的初始值为3,所述最大退避次数的初始值4,所述最大退避指数值为10。
CN201611141747.4A 2016-12-12 2016-12-12 一种网络mpr投递率半盲自适应优化方法 Pending CN106793032A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611141747.4A CN106793032A (zh) 2016-12-12 2016-12-12 一种网络mpr投递率半盲自适应优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611141747.4A CN106793032A (zh) 2016-12-12 2016-12-12 一种网络mpr投递率半盲自适应优化方法

Publications (1)

Publication Number Publication Date
CN106793032A true CN106793032A (zh) 2017-05-31

Family

ID=58880458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611141747.4A Pending CN106793032A (zh) 2016-12-12 2016-12-12 一种网络mpr投递率半盲自适应优化方法

Country Status (1)

Country Link
CN (1) CN106793032A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442551A (zh) * 2008-11-13 2009-05-27 上海交通大学 基于ieee802.15.4协议的传感器节点占空比独立自适应调节方法
CN101815323A (zh) * 2010-02-04 2010-08-25 东南大学 无线传感器网络簇内自适应通信方法
CN102595648A (zh) * 2011-12-31 2012-07-18 重庆邮电大学 一种基于ieee802.15.4的自适应csma/ca接入方法
EP2552168A1 (en) * 2011-07-27 2013-01-30 Alcatel Lucent Clustering and resource allocation in ad hoc networks
CN104185298A (zh) * 2014-08-29 2014-12-03 华侨大学 基于优先级的网络负载动态自适应参数调整方法
CN105704800A (zh) * 2016-02-02 2016-06-22 南京理工大学 一种协议投递率半盲自适应优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442551A (zh) * 2008-11-13 2009-05-27 上海交通大学 基于ieee802.15.4协议的传感器节点占空比独立自适应调节方法
CN101815323A (zh) * 2010-02-04 2010-08-25 东南大学 无线传感器网络簇内自适应通信方法
EP2552168A1 (en) * 2011-07-27 2013-01-30 Alcatel Lucent Clustering and resource allocation in ad hoc networks
CN102595648A (zh) * 2011-12-31 2012-07-18 重庆邮电大学 一种基于ieee802.15.4的自适应csma/ca接入方法
CN104185298A (zh) * 2014-08-29 2014-12-03 华侨大学 基于优先级的网络负载动态自适应参数调整方法
CN105704800A (zh) * 2016-02-02 2016-06-22 南京理工大学 一种协议投递率半盲自适应优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高乐: "《无线传感网MAC协议自适应优化策略研究》", 《中国优秀硕士学位论文全文数据库》 *

Similar Documents

Publication Publication Date Title
US7965738B2 (en) System and method for adaptive frame size management in a wireless multihop network
KR100885628B1 (ko) 무선 통신 네트워크에서 데이터 레이트를 선택하기 위한 방법
TWI248731B (en) Adaptive radio resource management for wireless local area networks
US8797907B2 (en) Increasing throughput by adaptively changing PDU size in wireless networks under low SNR conditions
Michopoulos et al. DCCC6: Duty Cycle-aware congestion control for 6LoWPAN networks
CN103442392A (zh) 一种802.11e无线网络中竞争窗口自适应调整方法
KR102091138B1 (ko) 무선 네트워크 환경에서 데이터를 전송하는 방법 및 데이터 전송 장치
WO2006073817A2 (en) System and method for managing communication links between nodes in a wireless communication network
Yu et al. Dynamic contention window adjustment scheme for improving throughput and fairness in IEEE 802.11 wireless LANs
CN106792805A (zh) 一种网络异步mpr吞吐率优化方法
KR20050036997A (ko) Mac 재시도 한도 조정 방법, 무선 로컬 에이리어 네트워크, 무선 인터페이스 및 노드
CN106793032A (zh) 一种网络mpr投递率半盲自适应优化方法
Tsiknas et al. Performance evaluation of TCP in IEEE 802.16 networks
CN106714208A (zh) 一种网络固定分组传输投递率半盲自适应优化方法
CN105704800A (zh) 一种协议投递率半盲自适应优化方法
Boudour et al. Improving performance and fairness in IEEE 802.15. 4 networks with capture effect
Chang et al. Adaptive cross-layer-based TCP congestion control for 4G wireless mobile cloud access
Abhimanyu et al. Improve qos performance with energy efficiency for ieee 802.11 wlan by the algorithm named contention window adaptation
CN109362104B (zh) 一种无线通信速率自适应控制方法及装置
KR101500242B1 (ko) Ieee 802.11 무선랜에서의 업링크와 다운링크의 공정성을 위한 컨텐션 윈도우 분배 시스템
Xie et al. A novel cross layer TCP pacing protocol for multi-hop wireless networks
Zhou et al. Full-feedback backoff algorithm for distributed wireless networks
Kammoun et al. Improving end-to-end multicast rate control in wireless networks
Kliazovich et al. Cognitive link layer for wireless local area networks
Shi et al. A MAC layer congestion control mechanism in IEEE 802.11 WLANs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication