CN106791822A - 一种基于单双目特征学习的无参考立体图像质量评价方法 - Google Patents

一种基于单双目特征学习的无参考立体图像质量评价方法 Download PDF

Info

Publication number
CN106791822A
CN106791822A CN201710023671.3A CN201710023671A CN106791822A CN 106791822 A CN106791822 A CN 106791822A CN 201710023671 A CN201710023671 A CN 201710023671A CN 106791822 A CN106791822 A CN 106791822A
Authority
CN
China
Prior art keywords
dis
binocular
org
picture
stereo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710023671.3A
Other languages
English (en)
Other versions
CN106791822B (zh
Inventor
周武杰
蔡星宇
潘婷
周扬
邱薇薇
赵颖
何成
吴茗蔚
陈芳妮
郑卫红
葛丁飞
吴洁雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Zhixu Information Technology Co ltd
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN201710023671.3A priority Critical patent/CN106791822B/zh
Publication of CN106791822A publication Critical patent/CN106791822A/zh
Application granted granted Critical
Publication of CN106791822B publication Critical patent/CN106791822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于单双目特征学习的无参考立体图像质量评价方法,其包括两个阶段,第一个阶段为构造无失真立体图像的单目codebook和双目codebook;第二个阶段为构造待评价的失真立体图像的左视点codebook、右视点codebook和双目codebook,然后根据所有原始的无失真立体图像的单目codebook和双目codebook,及待评价的失真立体图像的左视点codebook、右视点codebook和双目codebook,并利用支持向量回归,获取待评价的失真立体图像的客观质量评价预测值;优点是能充分考虑到立体视觉感知特性,并采用特征学习方法,从而能有效地提高客观评价结果与主观感知之间的相关性。

Description

一种基于单双目特征学习的无参考立体图像质量评价方法
技术领域
本发明涉及一种立体图像质量评价方法,尤其是涉及一种基于单双目特征学习的无参考立体图像质量评价方法。
背景技术
进入二十一世纪以来,随着立体图像/视频系统处理技术的日趋成熟,以及计算机网络与通信技术的快速发展,已引起人们对立体图像/视频系统的强烈需求。相比传统的单视点图像/视频系统,立体图像/视频系统由于能够提供深度信息来增强视觉的真实感,给用户以身临其境的全新视觉体验而越来越受到人们的欢迎,已被认为是下一代媒体主要的发展方向,已引发了学术界、产业界的广泛关注。然而,人们为了获得更好的立体临场感和视觉体验,对立体视觉主观感知质量提出了更高的要求。在立体图像/视频系统中,采集、编码、传输、解码及显示等处理环节都会引入一定失真,这些失真将对立体视觉主观感知质量产生不同程度的影响,由于在大多数的应用系统中原始无失真参考图像是不可得的,因此如何有效地进行无参考质量评价是亟需解决的难点问题。综上,评价立体图像质量,并建立与主观质量评价相一致的客观评价模型显得尤为重要。
由于影响立体图像质量的因素较多,如左视点和右视点质量失真情况、立体感知情况、观察者视觉疲劳等,因此如何有效地进行立体图像质量评价是亟需解决的难点问题。现有的方法主要是通过机器学习来预测评价模型的,但针对立体图像,现有的立体图像评价方法还是平面图像评价方法的简单扩展,并没有考虑双目视觉特性,因此,如何在评价过程中进行左右视点的双目结合,如何在评价过程中有效地提取图像特征信息,如何在预测的过程中使用更有效的机器学习方法,使得客观评价结果更加感觉符合人类视觉系统,是在对立体图像进行客观质量评价过程中需要研究解决的问题。
发明内容
本发明所要解决的技术问题是提供一种基于单双目特征学习的无参考立体图像质量评价方法,其能够充分考虑到立体视觉感知特性,并采用特征学习方法,从而能够有效地提高客观评价结果与主观感知之间的相关性。
本发明解决上述技术问题所采用的技术方案为:一种基于单双目特征学习的无参考立体图像质量评价方法,其特征在于包括两个阶段,第一个阶段为构造每幅无失真立体图像的单目codebook和双目codebook;第二个阶段为先构造待评价的失真立体图像的左视点codebook、右视点codebook和双目codebook,然后根据所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的左视点codebook、所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的右视点codebook、所有原始的无失真立体图像的双目codebook和待评价的失真立体图像的双目codebook,并利用支持向量回归,获取待评价的失真立体图像的客观质量评价预测值;
其中,所述的第一个阶段的具体步骤如下:
①_1、选取K幅宽度为W且高度为H的原始的无失真立体图像,将第k幅原始的无失真立体图像记为Sorg,k,将Sorg,k的左视点图像和右视点图像对应记为{Lorg,k(x,y)}和{Rorg,k(x,y)},其中,K≥1,1≤k≤K,1≤x≤W,1≤y≤H,Lorg,k(x,y)表示{Lorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值,Rorg,k(x,y)表示{Rorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_2、对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合,得到每幅原始的无失真立体图像的双目融合图像,将Sorg,k的双目融合图像记为{LRorg,k(x,y)},其中,LRorg,k(x,y)表示{LRorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_3、根据每幅原始的无失真立体图像的左视点图像或右视点图像,并先后采用分裂归一化操作和相成分分析,获得每幅原始的无失真立体图像的单目归一化特征图,将Sorg,k的单目归一化特征图记为{Morg,k(x,y)},其中,Morg,k(x,y)表示{Morg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
并根据每幅原始的无失真立体图像的双目融合图像,并先后采用分裂归一化操作和相成分分析,获得每幅原始的无失真立体图像的双目融合图像的双目归一化特征图,将{LRorg,k(x,y)}的双目归一化特征图记为{Borg,k(x,y)},其中,Borg,k(x,y)表示{Borg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_4、对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图,将{Morg,k(x,y)}的聚类后单目特征图记为{Morg,k,c(x,y)},其中,Morg,k,c(x,y)表示{Morg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值;
并对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图,将{Borg,k(x,y)}的聚类后双目特征图记为{Borg,k,c(x,y)},其中,Borg,k,c(x,y)表示{Borg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_5、计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的单目一阶特征值,将Sorg,k的单目一阶特征值记为μm,org,k;并计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的单目二阶特征值,将Sorg,k的单目二阶特征值记为计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的单目三阶特征值,将Sorg,k的单目三阶特征值记为γm,org,k;然后将每幅原始的无失真立体图像的单目一阶特征值、单目二阶特征值和单目三阶特征值的组合作为每幅原始的无失真立体图像的单目codebook,将Sorg,k的单目codebook记为
同样,计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的双目一阶特征值,将Sorg,k的双目一阶特征值记为μb,org,k;并计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的双目二阶特征值,将Sorg,k的双目二阶特征值记为计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的双目三阶特征值,将Sorg,k的双目三阶特征值记为γb,org,k;然后将每幅原始的无失真立体图像的双目一阶特征值、双目二阶特征值和双目三阶特征值的组合作为每幅原始的无失真立体图像的双目codebook,将Sorg,k的双目codebook记为
所述的第二个阶段的具体步骤如下:
②_1、将宽度为W且高度为H的待评价的失真立体图像记为Sdis,将Sdis的左视点图像和右视点图像对应记为{Ldis(x,y)}和{Rdis(x,y)},其中,1≤x≤W,1≤y≤H,Ldis(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的像素值,Rdis(x,y)表示{Rdis(x,y)}中坐标位置为(x,y)的像素点的像素值;
②_2、对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合,得到Sdis的双目融合图像,记为{LRdis(x,y)},其中,LRdis(x,y)表示{LRdis(x,y)}中坐标位置为(x,y)的像素点的像素值,其中,对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合所采用的方法与步骤①_2中对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合所采用的方法一致;
②_3、根据{Ldis(x,y)},并先后采用分裂归一化操作和相成分分析,获得Sdis的左视点归一化特征图,记为{ML,dis(x,y)},其中,ML,dis(x,y)表示{ML,dis(x,y)}中坐标位置为(x,y)的像素点的像素值;
并根据{Rdis(x,y)},并先后采用分裂归一化操作和相成分分析,获得Sdis的右视点归一化特征图,记为{MR,dis(x,y)},其中,MR,dis(x,y)表示{MR,dis(x,y)}中坐标位置为(x,y)的像素点的像素值;
根据{LRdis(x,y)},并先后采用分裂归一化操作和相成分分析,获得{LRdis(x,y)}的双目归一化特征图,记为{Bdis(x,y)},其中,Bdis(x,y)表示{Bdis(x,y)}中坐标位置为(x,y)的像素点的像素值;
②_4、计算{ML,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的左视点一阶特征值,记为μm,L,dis;并计算{ML,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的左视点二阶特征值,记为计算{ML,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的左视点三阶特征值,记为γm,L,dis;然后将μm,L,dis和γm,L,dis的组合作为Sdis的左视点codebook,记为
同样,计算{MR,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的右视点一阶特征值,记为μm,R,dis;并计算{MR,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的右视点二阶特征值,记为计算{MR,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的右视点三阶特征值,记为γm,R,dis;然后将μm,R,dis和γm,R,dis的组合作为Sdis的右视点codebook,记为
计算{Bdis(x,y)}中的所有像素点的像素值的均值,作为Sdis的双目一阶特征值,记为μb,dis;并计算{Bdis(x,y)}中的所有像素点的像素值的方差,作为Sdis的双目二阶特征值,记为计算{Bdis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的双目三阶特征值,记为γb,dis;然后将μb,dis和γb,dis的组合作为Sdis的双目codebook,记为
②_5、根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的左视点一阶统计特征值、左视点二阶统计特征值和左视点三阶统计特征值,对应记为μm,org,L,dis和γm,org,L,dis
并根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的右视点一阶统计特征值、右视点二阶统计特征值和右视点三阶统计特征值,对应记为μm,org,R,dis和γm,org,R,dis
根据所有原始的无失真立体图像的双目codebook,以及获取Sdis的双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,对应记为μb,org,dis和γb,org,dis
②_6、对μm,org,L,dis和μm,org,R,dis进行融合,得到Sdis的融合一阶统计特征值,记为μm,org,LR,dis;并对进行融合,得到Sdis的融合二阶统计特征值,记为对γm,org,L,dis和γm,org,R,dis进行融合,得到Sdis的融合三阶统计特征值,记为γm,org,LR,dis
②_7、采用n”幅原始的无失真立体图像,建立其在不同失真类型不同失真程度下的失真立体图像集合,该失真立体图像集合包括多幅失真立体图像,将该失真立体图像集合作为训练集;然后利用主观质量评价方法分别评价出训练集中的每幅失真立体图像的主观评分,将训练集中的第j幅失真立体图像的主观评分记为DMOSj;再按照步骤②_1至步骤②_6的操作,以相同的方式获取训练集中的每幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,将训练集中的第j幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值对应记为μm,LR,jγm,LR,j、μb,j和γb,j;其中,n”>1,1≤j≤N',N'表示训练集中包含的失真立体图像的总幅数,0≤DMOSj≤100;
②_8、利用支持向量回归对训练集中的所有失真立体图像的主观评分及融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值进行训练,使得经过训练得到的回归函数值与主观评分之间的误差最小,拟合得到最优的权值矢量Wopt和最优的偏置项bopt;接着利用Wopt和bopt构造得到支持向量回归训练模型;再根据支持向量回归训练模型,对μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis进行测试,预测得到Sdis的客观质量评价预测值,记为Q,Q=f(x),其中,Q是x的函数,f()为函数表示形式,x为输入,x表示μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis,(Wopt)T为Wopt的转置矢量,为x的线性函数。
所述的步骤①_2中采用对比度增益控制理论模型对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合。
所述的步骤①_4中采用K均值聚类方法对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,同样采用K均值聚类方法对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作。
所述的步骤②_6中采用视觉权重模型对μm,org,L,dis和μm,org,R,dis进行融合,同样采用视觉权重模型对进行融合,采用视觉权重模型对γm,org,L,dis和γm,org,R,dis进行融合。
与现有技术相比,本发明的优点在于:
1)本发明方法利用特征学习方法得到融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,再利用这些特征值来获得待评价的失真立体图像的客观质量评价预测值,由于这些统计特征能很好地反应视觉质量变化情况,因此能够有效地提高客观质量评价预测值与主观感知之间的相关性。
2)本发明方法在训练阶段,采用了高效的机器学习方法即支持向量回归,很好地模拟了人眼视觉特性,因此能够有效地提高客观质量评价预测值与主观感知之间的相关性。
3)本发明方法采用对比度增益控制理论模型对失真立体图像的左视点图像和右视点图像进行融合得到失真立体图像的双目融合图像,很好地模拟了双目视觉融合特性,能有效地提高客观评价结果与主观感知之间的相关性。
4)本发明方法采用了视觉权重模型对左视点一阶统计特征值和右视点一阶统计特征值进行融合、对左视点二阶统计特征值和右视点二阶统计特征值进行融合、对左视点三阶统计特征值和右视点三阶统计特征值进行融合,能进一步有效地提高客观评价结果与主观感知之间的相关性。
附图说明
图1为本发明方法的总体实现框图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明提出的一种基于单双目特征学习的无参考立体图像质量评价方法,其总体实现框图如图1所示,其特征在于包括两个阶段,第一个阶段为构造每幅无失真立体图像的单目codebook和双目codebook;第二个阶段为先构造待评价的失真立体图像的左视点codebook、右视点codebook和双目codebook,然后根据所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的左视点codebook、所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的右视点codebook、所有原始的无失真立体图像的双目codebook和待评价的失真立体图像的双目codebook,并利用支持向量回归,获取待评价的失真立体图像的客观质量评价预测值。
其中,所述的第一个阶段的具体步骤如下:
①_1、选取K幅宽度为W且高度为H的原始的无失真立体图像,将第k幅原始的无失真立体图像记为Sorg,k,将Sorg,k的左视点图像和右视点图像对应记为{Lorg,k(x,y)}和{Rorg,k(x,y)},其中,K≥1,在本实施例中取K=100,1≤k≤K,1≤x≤W,1≤y≤H,Lorg,k(x,y)表示{Lorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值,Rorg,k(x,y)表示{Rorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值。
①_2、对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合,得到每幅原始的无失真立体图像的双目融合图像,将Sorg,k的双目融合图像记为{LRorg,k(x,y)},{LRorg,k(x,y)}即为对{Lorg,k(x,y)}和{Rorg,k(x,y)}进行双目融合得到,其中,LRorg,k(x,y)表示{LRorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值。
在此具体实施例中,步骤①_2中采用现有的对比度增益控制理论模型(Contrastgain-control model)对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合。
①_3、根据每幅原始的无失真立体图像的左视点图像或右视点图像,并先后采用现有的分裂归一化操作(Divisive Normalization Transform,DNT)和现有的相成分分析(Phase Component Analysis,PCA),获得每幅原始的无失真立体图像的单目归一化特征图,将Sorg,k的单目归一化特征图记为{Morg,k(x,y)},其中,Morg,k(x,y)表示{Morg,k(x,y)}中坐标位置为(x,y)的像素点的像素值。
并根据每幅原始的无失真立体图像的双目融合图像,并先后采用现有的分裂归一化操作和现有的相成分分析,获得每幅原始的无失真立体图像的双目融合图像的双目归一化特征图,将{LRorg,k(x,y)}的双目归一化特征图记为{Borg,k(x,y)},其中,Borg,k(x,y)表示{Borg,k(x,y)}中坐标位置为(x,y)的像素点的像素值。
①_4、对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图,将{Morg,k(x,y)}的聚类后单目特征图记为{Morg,k,c(x,y)},其中,Morg,k,c(x,y)表示{Morg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值。
并对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图,将{Borg,k(x,y)}的聚类后双目特征图记为{Borg,k,c(x,y)},其中,Borg,k,c(x,y)表示{Borg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值。
在此具体实施例中,步骤①_4中采用现有的K均值聚类方法(K-meaningclustering)对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,同样采用现有的K均值聚类方法对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作。
①_5、计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的单目一阶特征值,将Sorg,k的单目一阶特征值记为μm,org,k,μm,org,k的值为{Morg,k,c(x,y)}中的所有像素点的像素值的均值;并计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的单目二阶特征值,将Sorg,k的单目二阶特征值记为 的值为{Morg,k,c(x,y)}中的所有像素点的像素值的方差;计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的单目三阶特征值,将Sorg,k的单目三阶特征值记为γm,org,k,γm,org,k的值为{Morg,k,c(x,y)}中的所有像素点的像素值的偏斜度;然后将每幅原始的无失真立体图像的单目一阶特征值、单目二阶特征值和单目三阶特征值的组合作为每幅原始的无失真立体图像的单目codebook,将Sorg,k的单目codebook记为
同样,计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的双目一阶特征值,将Sorg,k的双目一阶特征值记为μb,org,k,μb,org,k的值为{Borg,k,c(x,y)}中的所有像素点的像素值的均值;并计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的双目二阶特征值,将Sorg,k的双目二阶特征值记为 的值为{Borg,k,c(x,y)}中的所有像素点的像素值的方差;计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的双目三阶特征值,将Sorg,k的双目三阶特征值记为γb,org,k,γb,org,k的值为{Borg,k,c(x,y)}中的所有像素点的像素值的偏斜度;然后将每幅原始的无失真立体图像的双目一阶特征值、双目二阶特征值和双目三阶特征值的组合作为每幅原始的无失真立体图像的双目codebook,将Sorg,k的双目codebook记为
所述的第二个阶段的具体步骤如下:
②_1、将宽度为W且高度为H的待评价的失真立体图像记为Sdis,将Sdis的左视点图像和右视点图像对应记为{Ldis(x,y)}和{Rdis(x,y)},其中,1≤x≤W,1≤y≤H,Ldis(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的像素值,Rdis(x,y)表示{Rdis(x,y)}中坐标位置为(x,y)的像素点的像素值。
②_2、对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合,得到Sdis的双目融合图像,记为{LRdis(x,y)},其中,LRdis(x,y)表示{LRdis(x,y)}中坐标位置为(x,y)的像素点的像素值,其中,对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合所采用的方法与步骤①_2中对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合所采用的方法一致。
②_3、根据{Ldis(x,y)},并先后采用现有的分裂归一化操作和现有的相成分分析,获得Sdis的左视点归一化特征图,记为{ML,dis(x,y)},其中,ML,dis(x,y)表示{ML,dis(x,y)}中坐标位置为(x,y)的像素点的像素值。
并根据{Rdis(x,y)},并先后采用现有的分裂归一化操作和现有的相成分分析,获得Sdis的右视点归一化特征图,记为{MR,dis(x,y)},其中,MR,dis(x,y)表示{MR,dis(x,y)}中坐标位置为(x,y)的像素点的像素值。
根据{LRdis(x,y)},并先后采用现有的分裂归一化操作和现有的相成分分析,获得{LRdis(x,y)}的双目归一化特征图,记为{Bdis(x,y)},其中,Bdis(x,y)表示{Bdis(x,y)}中坐标位置为(x,y)的像素点的像素值。
②_4、计算{ML,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的左视点一阶特征值,记为μm,L,dis;并计算{ML,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的左视点二阶特征值,记为计算{ML,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的左视点三阶特征值,记为γm,L,dis;然后将μm,L,dis和γm,L,dis的组合作为Sdis的左视点codebook,记为
同样,计算{MR,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的右视点一阶特征值,记为μm,R,dis;并计算{MR,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的右视点二阶特征值,记为计算{MR,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的右视点三阶特征值,记为γm,R,dis;然后将μm,R,dis和γm,R,dis的组合作为Sdis的右视点codebook,记为
计算{Bdis(x,y)}中的所有像素点的像素值的均值,作为Sdis的双目一阶特征值,记为μb,dis;并计算{Bdis(x,y)}中的所有像素点的像素值的方差,作为Sdis的双目二阶特征值,记为计算{Bdis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的双目三阶特征值,记为γb,dis;然后将μb,dis和γb,dis的组合作为Sdis的双目codebook,记为
②_5、根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的左视点一阶统计特征值、左视点二阶统计特征值和左视点三阶统计特征值,对应记为μm,org,L,dis和γm,org,L,dis
并根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的右视点一阶统计特征值、右视点二阶统计特征值和右视点三阶统计特征值,对应记为μm,org,R,dis和γm,org,R,dis
根据所有原始的无失真立体图像的双目codebook,以及获取Sdis的双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,对应记为μb,org,dis和γb,org,dis
②_6、对μm,org,L,dis和μm,org,R,dis进行融合,得到Sdis的融合一阶统计特征值,记为μm,org,LR,dis;并对进行融合,得到Sdis的融合二阶统计特征值,记为对γm,org,L,dis和γm,org,R,dis进行融合,得到Sdis的融合三阶统计特征值,记为γm,org,LR,dis
在此具体实施例中,步骤②_6中采用现有的视觉权重模型(Eye-weightingmodel)对μm,org,L,dis和μm,org,R,dis进行融合,同样采用现有的视觉权重模型对进行融合,采用现有的视觉权重模型对γm,org,L,dis和γm,org,R,dis进行融合。
②_7、采用n”幅原始的无失真立体图像,建立其在不同失真类型不同失真程度下的失真立体图像集合,该失真立体图像集合包括多幅失真立体图像,将该失真立体图像集合作为训练集;然后利用现有的主观质量评价方法分别评价出训练集中的每幅失真立体图像的主观评分,将训练集中的第j幅失真立体图像的主观评分记为DMOSj;再按照步骤②_1至步骤②_6的操作,以相同的方式获取训练集中的每幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,将训练集中的第j幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值对应记为μm,LR,jγm,LR,j、μb,j和γb,j;其中,n”>1,如取n”=10,1≤j≤N',N'表示训练集中包含的失真立体图像的总幅数,0≤DMOSj≤100。
②_8、支持向量回归(Support Vector Regression,SVR)是基于结构风险最小化准则的新型机器学习方法和统计学理论,其可以有效地抑制过拟合问题,因此本发明利用支持向量回归对训练集中的所有失真立体图像的主观评分及融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值进行训练,使得经过训练得到的回归函数值与主观评分之间的误差最小,拟合得到最优的权值矢量Wopt和最优的偏置项bopt;接着利用Wopt和bopt构造得到支持向量回归训练模型;再根据支持向量回归训练模型,对μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis进行测试,预测得到Sdis的客观质量评价预测值,记为Q,Q=f(x),其中,Q是x的函数,f()为函数表示形式,x为输入,x表示μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis,(Wopt)T为Wopt的转置矢量,为x的线性函数。
为了进一步验证本发明方法的可行性和有效性,进行实验。
在此,采用LIVE立体图像失真库来分析利用本发明方法得到的失真立体图像的客观质量评价预测值与主观评分之间的相关性。这里,利用评估图像质量评价方法的3个常用客观参量作为评价指标,即非线性回归条件下的Pearson相关系数(Pearson linearcorrelation coefficient,PLCC)、Spearman相关系数(Spearman rank ordercorrelation coefficient,SROCC)、均方误差(root mean squared error,RMSE),PLCC和RMSE反映失真立体图像的客观质量评价预测值的准确性,SROCC反映其单调性。
利用本发明方法计算LIVE立体图像失真库中的每幅失真立体图像的客观质量评价预测值,再利用现有的主观质量评价方法获得LIVE立体图像失真库中的每幅失真立体图像的主观评分。将按本发明方法计算得到的失真立体图像的客观质量评价预测值做五参数Logistic函数非线性拟合,PLCC和SROCC值越高,RMSE值越低说明客观评价方法的客观评价结果与主观评分之间的相关性越好。反映本发明方法的质量评价性能的PLCC、SROCC和RMSE相关系数如表1所列。从表1所列的数据可知,按本发明方法得到的失真立体图像的客观质量评价预测值与主观评分之间的相关性是很好的,表明客观评价结果与人眼主观感知的结果较为一致,足以说明本发明方法的可行性和有效性。
表1利用本发明方法得到的失真立体图像的客观质量评价预测值与主观评分之间的相关性

Claims (4)

1.一种基于单双目特征学习的无参考立体图像质量评价方法,其特征在于包括两个阶段,第一个阶段为构造每幅无失真立体图像的单目codebook和双目codebook;第二个阶段为先构造待评价的失真立体图像的左视点codebook、右视点codebook和双目codebook,然后根据所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的左视点codebook、所有原始的无失真立体图像的单目codebook和待评价的失真立体图像的右视点codebook、所有原始的无失真立体图像的双目codebook和待评价的失真立体图像的双目codebook,并利用支持向量回归,获取待评价的失真立体图像的客观质量评价预测值;
其中,所述的第一个阶段的具体步骤如下:
①_1、选取K幅宽度为W且高度为H的原始的无失真立体图像,将第k幅原始的无失真立体图像记为Sorg,k,将Sorg,k的左视点图像和右视点图像对应记为{Lorg,k(x,y)}和{Rorg,k(x,y)},其中,K≥1,1≤k≤K,1≤x≤W,1≤y≤H,Lorg,k(x,y)表示{Lorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值,Rorg,k(x,y)表示{Rorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_2、对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合,得到每幅原始的无失真立体图像的双目融合图像,将Sorg,k的双目融合图像记为{LRorg,k(x,y)},其中,LRorg,k(x,y)表示{LRorg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_3、根据每幅原始的无失真立体图像的左视点图像或右视点图像,并先后采用分裂归一化操作和相成分分析,获得每幅原始的无失真立体图像的单目归一化特征图,将Sorg,k的单目归一化特征图记为{Morg,k(x,y)},其中,Morg,k(x,y)表示{Morg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
并根据每幅原始的无失真立体图像的双目融合图像,并先后采用分裂归一化操作和相成分分析,获得每幅原始的无失真立体图像的双目融合图像的双目归一化特征图,将{LRorg,k(x,y)}的双目归一化特征图记为{Borg,k(x,y)},其中,Borg,k(x,y)表示{Borg,k(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_4、对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图,将{Morg,k(x,y)}的聚类后单目特征图记为{Morg,k,c(x,y)},其中,Morg,k,c(x,y)表示{Morg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值;
并对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作,得到每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图,将{Borg,k(x,y)}的聚类后双目特征图记为{Borg,k,c(x,y)},其中,Borg,k,c(x,y)表示{Borg,k,c(x,y)}中坐标位置为(x,y)的像素点的像素值;
①_5、计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的单目一阶特征值,将Sorg,k的单目一阶特征值记为μm,org,k;并计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的单目二阶特征值,将Sorg,k的单目二阶特征值记为计算每幅原始的无失真立体图像的单目归一化特征图的聚类后单目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的单目三阶特征值,将Sorg,k的单目三阶特征值记为γm,org,k;然后将每幅原始的无失真立体图像的单目一阶特征值、单目二阶特征值和单目三阶特征值的组合作为每幅原始的无失真立体图像的单目codebook,将Sorg,k的单目codebook记为
同样,计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的均值,作为每幅原始的无失真立体图像的双目一阶特征值,将Sorg,k的双目一阶特征值记为μb,org,k;并计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的方差,作为每幅原始的无失真立体图像的双目二阶特征值,将Sorg,k的双目二阶特征值记为计算每幅原始的无失真立体图像的双目融合图像的双目归一化特征图的聚类后双目特征图中的所有像素点的像素值的偏斜度,作为每幅原始的无失真立体图像的双目三阶特征值,将Sorg,k的双目三阶特征值记为γb,org,k;然后将每幅原始的无失真立体图像的双目一阶特征值、双目二阶特征值和双目三阶特征值的组合作为每幅原始的无失真立体图像的双目codebook,将Sorg,k的双目codebook记为
所述的第二个阶段的具体步骤如下:
②_1、将宽度为W且高度为H的待评价的失真立体图像记为Sdis,将Sdis的左视点图像和右视点图像对应记为{Ldis(x,y)}和{Rdis(x,y)},其中,1≤x≤W,1≤y≤H,Ldis(x,y)表示{Ldis(x,y)}中坐标位置为(x,y)的像素点的像素值,Rdis(x,y)表示{Rdis(x,y)}中坐标位置为(x,y)的像素点的像素值;
②_2、对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合,得到Sdis的双目融合图像,记为{LRdis(x,y)},其中,LRdis(x,y)表示{LRdis(x,y)}中坐标位置为(x,y)的像素点的像素值,其中,对{Ldis(x,y)}和{Rdis(x,y)}进行双目融合所采用的方法与步骤①_2中对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合所采用的方法一致;
②_3、根据{Ldis(x,y)},并先后采用分裂归一化操作和相成分分析,获得Sdis的左视点归一化特征图,记为{ML,dis(x,y)},其中,ML,dis(x,y)表示{ML,dis(x,y)}中坐标位置为(x,y)的像素点的像素值;
并根据{Rdis(x,y)},并先后采用分裂归一化操作和相成分分析,获得Sdis的右视点归一化特征图,记为{MR,dis(x,y)},其中,MR,dis(x,y)表示{MR,dis(x,y)}中坐标位置为(x,y)的像素点的像素值;
根据{LRdis(x,y)},并先后采用分裂归一化操作和相成分分析,获得{LRdis(x,y)}的双目归一化特征图,记为{Bdis(x,y)},其中,Bdis(x,y)表示{Bdis(x,y)}中坐标位置为(x,y)的像素点的像素值;
②_4、计算{ML,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的左视点一阶特征值,记为μm,L,dis;并计算{ML,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的左视点二阶特征值,记为计算{ML,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的左视点三阶特征值,记为γm,L,dis;然后将μm,L,dis和γm,L,dis的组合作为Sdis的左视点codebook,记为
同样,计算{MR,dis(x,y)}中的所有像素点的像素值的均值,作为Sdis的右视点一阶特征值,记为μm,R,dis;并计算{MR,dis(x,y)}中的所有像素点的像素值的方差,作为Sdis的右视点二阶特征值,记为计算{MR,dis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的右视点三阶特征值,记为γm,R,dis;然后将μm,R,dis和γm,R,dis的组合作为Sdis的右视点codebook,记为
计算{Bdis(x,y)}中的所有像素点的像素值的均值,作为Sdis的双目一阶特征值,记为μb,dis;并计算{Bdis(x,y)}中的所有像素点的像素值的方差,作为Sdis的双目二阶特征值,记为计算{Bdis(x,y)}中的所有像素点的像素值的偏斜度,作为Sdis的双目三阶特征值,记为γb,dis;然后将μb,dis和γb,dis的组合作为Sdis的双目codebook,记为
②_5、根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的左视点一阶统计特征值、左视点二阶统计特征值和左视点三阶统计特征值,对应记为μm,org,L,dis和γm,org,L,dis
并根据所有原始的无失真立体图像的单目codebook,以及获取Sdis的右视点一阶统计特征值、右视点二阶统计特征值和右视点三阶统计特征值,对应记为μm,org,R,dis和γm,org,R,dis
根据所有原始的无失真立体图像的双目codebook,以及获取Sdis的双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,对应记为μb,org,dis和γb,org,dis
②_6、对μm,org,L,dis和μm,org,R,dis进行融合,得到Sdis的融合一阶统计特征值,记为μm,org,LR,dis;并对进行融合,得到Sdis的融合二阶统计特征值,记为对γm,org,L,dis和γm,org,R,dis进行融合,得到Sdis的融合三阶统计特征值,记为γm,org,LR,dis
②_7、采用n”幅原始的无失真立体图像,建立其在不同失真类型不同失真程度下的失真立体图像集合,该失真立体图像集合包括多幅失真立体图像,将该失真立体图像集合作为训练集;然后利用主观质量评价方法分别评价出训练集中的每幅失真立体图像的主观评分,将训练集中的第j幅失真立体图像的主观评分记为DMOSj;再按照步骤②_1至步骤②_6的操作,以相同的方式获取训练集中的每幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值,将训练集中的第j幅失真立体图像的融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值对应记为μm,LR,jγm,LR,j、μb,j和γb,j;其中,n”>1,1≤j≤N',N'表示训练集中包含的失真立体图像的总幅数,0≤DMOSj≤100;
②_8、利用支持向量回归对训练集中的所有失真立体图像的主观评分及融合一阶统计特征值、融合二阶统计特征值、融合三阶统计特征值、双目一阶统计特征值、双目二阶统计特征值和双目三阶统计特征值进行训练,使得经过训练得到的回归函数值与主观评分之间的误差最小,拟合得到最优的权值矢量Wopt和最优的偏置项bopt;接着利用Wopt和bopt构造得到支持向量回归训练模型;再根据支持向量回归训练模型,对μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis进行测试,预测得到Sdis的客观质量评价预测值,记为Q,Q=f(x),其中,Q是x的函数,f()为函数表示形式,x为输入,x表示μm,org,LR,disγm,org,LR,dis、μb,org,dis和γb,org,dis,(Wopt)T为Wopt的转置矢量,为x的线性函数。
2.根据权利要求1所述的一种基于单双目特征学习的无参考立体图像质量评价方法,其特征在于所述的步骤①_2中采用对比度增益控制理论模型对每幅原始的无失真立体图像的左视点图像和右视点图像进行双目融合。
3.根据权利要求1或2所述的一种基于单双目特征学习的无参考立体图像质量评价方法,其特征在于所述的步骤①_4中采用K均值聚类方法对每幅原始的无失真立体图像的单目归一化特征图进行聚类操作,同样采用K均值聚类方法对每幅原始的无失真立体图像的双目融合图像的双目归一化特征图进行聚类操作。
4.根据权利要求3所述的一种基于单双目特征学习的无参考立体图像质量评价方法,其特征在于所述的步骤②_6中采用视觉权重模型对μm,org,L,dis和μm,org,R,dis进行融合,同样采用视觉权重模型对进行融合,采用视觉权重模型对γm,org,L,dis和γm,org,R,dis进行融合。
CN201710023671.3A 2017-01-13 2017-01-13 一种基于单双目特征学习的无参考立体图像质量评价方法 Active CN106791822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710023671.3A CN106791822B (zh) 2017-01-13 2017-01-13 一种基于单双目特征学习的无参考立体图像质量评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710023671.3A CN106791822B (zh) 2017-01-13 2017-01-13 一种基于单双目特征学习的无参考立体图像质量评价方法

Publications (2)

Publication Number Publication Date
CN106791822A true CN106791822A (zh) 2017-05-31
CN106791822B CN106791822B (zh) 2018-11-30

Family

ID=58948126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710023671.3A Active CN106791822B (zh) 2017-01-13 2017-01-13 一种基于单双目特征学习的无参考立体图像质量评价方法

Country Status (1)

Country Link
CN (1) CN106791822B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259891A (zh) * 2018-03-02 2018-07-06 上海大学 基于双目时空内在推理机制的3d视频质量盲评估方法
CN108492275A (zh) * 2018-01-24 2018-09-04 浙江科技学院 基于深度神经网络的无参考立体图像质量评价方法
CN109167996A (zh) * 2018-09-21 2019-01-08 浙江科技学院 一种基于卷积神经网络的无参考立体图像质量评价方法
CN110517308A (zh) * 2019-07-12 2019-11-29 重庆邮电大学 一种无参考非对称失真立体图像质量评价方法
CN112329498A (zh) * 2019-08-05 2021-02-05 四川大学 一种基于机器学习的街道空间品质量化方法
CN114424493A (zh) * 2019-09-30 2022-04-29 夏普株式会社 终端装置、基站装置以及通信方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295309A (zh) * 2008-05-22 2008-10-29 江苏大学 一种医学图像识别的方法
CN102740119A (zh) * 2011-04-15 2012-10-17 特克特朗尼克公司 用于预测三维视频的主观质量的全参考系统
JP2015121846A (ja) * 2013-12-20 2015-07-02 日本放送協会 意見種別推定装置及びそのプログラム
CN105282543A (zh) * 2015-10-26 2016-01-27 浙江科技学院 一种基于立体视觉感知的全盲立体图像质量客观评价方法
CN105357519A (zh) * 2015-12-02 2016-02-24 浙江科技学院 基于自相似度特征的无参考立体图像质量客观评价方法
CN105376563A (zh) * 2015-11-17 2016-03-02 浙江科技学院 基于双目融合特征相似度的无参考立体图像质量评价方法
CN105488792A (zh) * 2015-11-26 2016-04-13 浙江科技学院 基于字典学习和机器学习的无参考立体图像质量评价方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295309A (zh) * 2008-05-22 2008-10-29 江苏大学 一种医学图像识别的方法
CN102740119A (zh) * 2011-04-15 2012-10-17 特克特朗尼克公司 用于预测三维视频的主观质量的全参考系统
JP2015121846A (ja) * 2013-12-20 2015-07-02 日本放送協会 意見種別推定装置及びそのプログラム
CN105282543A (zh) * 2015-10-26 2016-01-27 浙江科技学院 一种基于立体视觉感知的全盲立体图像质量客观评价方法
CN105376563A (zh) * 2015-11-17 2016-03-02 浙江科技学院 基于双目融合特征相似度的无参考立体图像质量评价方法
CN105488792A (zh) * 2015-11-26 2016-04-13 浙江科技学院 基于字典学习和机器学习的无参考立体图像质量评价方法
CN105357519A (zh) * 2015-12-02 2016-02-24 浙江科技学院 基于自相似度特征的无参考立体图像质量客观评价方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492275A (zh) * 2018-01-24 2018-09-04 浙江科技学院 基于深度神经网络的无参考立体图像质量评价方法
CN108492275B (zh) * 2018-01-24 2020-08-18 浙江科技学院 基于深度神经网络的无参考立体图像质量评价方法
CN108259891A (zh) * 2018-03-02 2018-07-06 上海大学 基于双目时空内在推理机制的3d视频质量盲评估方法
CN109167996A (zh) * 2018-09-21 2019-01-08 浙江科技学院 一种基于卷积神经网络的无参考立体图像质量评价方法
CN109167996B (zh) * 2018-09-21 2019-10-29 浙江科技学院 一种基于卷积神经网络的无参考立体图像质量评价方法
CN110517308A (zh) * 2019-07-12 2019-11-29 重庆邮电大学 一种无参考非对称失真立体图像质量评价方法
CN112329498A (zh) * 2019-08-05 2021-02-05 四川大学 一种基于机器学习的街道空间品质量化方法
CN112329498B (zh) * 2019-08-05 2022-06-07 四川大学 一种基于机器学习的街道空间品质量化方法
CN114424493A (zh) * 2019-09-30 2022-04-29 夏普株式会社 终端装置、基站装置以及通信方法
CN114424493B (zh) * 2019-09-30 2024-03-29 夏普株式会社 终端装置、基站装置以及通信方法

Also Published As

Publication number Publication date
CN106791822B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN106791822B (zh) 一种基于单双目特征学习的无参考立体图像质量评价方法
CN105979253B (zh) 基于广义回归神经网络的无参考立体图像质量评价方法
CN104658001B (zh) 一种无参考非对称失真立体图像客观质量评价方法
CN105357519B (zh) 基于自相似度特征的无参考立体图像质量客观评价方法
CN102333233B (zh) 一种基于视觉感知的立体图像质量客观评价方法
CN105282543B (zh) 一种基于立体视觉感知的全盲立体图像质量客观评价方法
CN105376563B (zh) 基于双目融合特征相似度的无参考立体图像质量评价方法
CN104902267A (zh) 一种基于梯度信息的无参考图像质量评价方法
CN105407349A (zh) 基于双目视觉感知的无参考立体图像质量客观评价方法
CN104811691B (zh) 一种基于小波变换的立体视频质量客观评价方法
CN102209257A (zh) 一种立体图像质量客观评价方法
CN104902268B (zh) 基于局部三元模式的无参考立体图像客观质量评价方法
CN104811693B (zh) 一种立体图像视觉舒适度客观评价方法
CN102708567B (zh) 一种基于视觉感知的立体图像质量客观评价方法
CN104658002A (zh) 一种无参考图像客观质量评价方法
CN102663747A (zh) 一种基于视觉感知的立体图像客观质量评价方法
CN104954778A (zh) 一种基于感知特征集的立体图像质量客观评价方法
CN102903107B (zh) 一种基于特征融合的立体图像质量客观评价方法
CN104361583A (zh) 一种非对称失真立体图像客观质量评价方法
CN105574901A (zh) 一种基于局部对比度模式的通用无参考图像质量评价方法
CN105488792B (zh) 基于字典学习和机器学习的无参考立体图像质量评价方法
CN114598864A (zh) 一种基于深度学习的全参考超高清视频质量客观评价方法
CN106023152B (zh) 一种无参考立体图像质量客观评价方法
CN105069794B (zh) 一种基于双目竞争的全盲立体图像质量评价方法
CN105898279B (zh) 一种立体图像质量客观评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210924

Address after: 510670 room 517, No. 91 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou Fangwei Intellectual Property Operation Co.,Ltd.

Address before: 310023 No. 318 stay Road, Xihu District, Zhejiang, Hangzhou

Patentee before: ZHEJIANG University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220915

Address after: 314500 02, No. 4, South Zaoqiang street, No. 1, Nanmen Gongnong Road, Chongfu Town, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee after: Jiaxing Zhixu Information Technology Co.,Ltd.

Address before: 510670 room 517, No. 91 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee before: Guangzhou Fangwei Intellectual Property Operation Co.,Ltd.