CN106788642B - Hybrid precoding design method for actual broadband large-scale MIMO system - Google Patents

Hybrid precoding design method for actual broadband large-scale MIMO system Download PDF

Info

Publication number
CN106788642B
CN106788642B CN201611239321.2A CN201611239321A CN106788642B CN 106788642 B CN106788642 B CN 106788642B CN 201611239321 A CN201611239321 A CN 201611239321A CN 106788642 B CN106788642 B CN 106788642B
Authority
CN
China
Prior art keywords
matrix
precoding
analog precoding
precoding matrix
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611239321.2A
Other languages
Chinese (zh)
Other versions
CN106788642A (en
Inventor
李国兵
赵怀龙
张国梅
吕刚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201611239321.2A priority Critical patent/CN106788642B/en
Priority to PCT/CN2017/071526 priority patent/WO2018120339A1/en
Publication of CN106788642A publication Critical patent/CN106788642A/en
Application granted granted Critical
Publication of CN106788642B publication Critical patent/CN106788642B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

The invention provides a hybrid precoding design method for an actual broadband large-scale MIMO system, which comprises the following steps: at a radio frequency end, firstly, assuming that analog precoding on all carriers is the same, and calculating an ideal analog precoding matrix by using complete channel state information by taking the maximum system spectrum efficiency as a criterion; then according to the characteristics of a phase shifter in an actual system, determining a simulated precoding matrix on each carrier in practice, designing a phase correction matrix in a digital domain, correcting the phase deviation of the simulated precoding on different carriers in practice to approximate to ideal simulated precoding, and multiplying the phase correction matrix and the simulated precoding matrix with the phase deviation on each carrier to obtain the designed simulated precoding matrix; and finally, designing a digital precoding matrix by using equivalent low-dimensional channel state information at a baseband, and multiplying the digital precoding matrix by the obtained analog precoding to obtain a mixed precoding design scheme.

Description

一种用于实际宽带大规模MIMO系统的混合预编码设计方法A Hybrid Precoding Design Method for Practical Wideband Massive MIMO Systems

技术领域:Technical field:

本发明属于无线通信技术领域,具体涉及一种用于实际宽带大规模MIMO系统的混合预编码设计方法。The invention belongs to the technical field of wireless communication, and in particular relates to a hybrid precoding design method for an actual wideband massive MIMO system.

背景技术:Background technique:

混合预编码是大规模MIMO的一个研究热点,当天线数目很大(成百上千)时,由于功耗和成本的问题,不可能为每根天线配备特定的射频链路(RF),那么研究在使用少量RF的情况下部署大规模MIMO就变得非常的有意义。混合预编码在射频端利用低成本的移相器控制发射天线上信号的相位,实现模拟预编码,既降低了硬件成本,又减少系统所需的射频数量;在基带处利用等效低维度的信道状态信息(CSI)控制信号的幅度和相位,实现数字预编码。因此混合预编码可以在RF数远小于天线数目的情况下,实现大规模MIMO。目前,对混合预编码的研究主要集中在单载波系统,针对宽带系统混合预编码的研究工作相对较少,而且当前宽带混合预编码的设计是在假定每个子载波上的模拟预编码是相同条件下进行研究的,这只适合带宽与中心载频比相对较小的情况下。但是考虑到未来毫米波(30~300GHz)的应用,上述假设在实际中往往是不现实的。这是因为在宽带波束形成网络中的移相器通常是利用延迟线来实现,因而导致同样的延迟在不同载波上产生不同的相位,也就是说尽管我们只设置了一个模拟预编码矩阵,但是它在不同载波上会产生相位偏移。因此实际中不同载波上的模拟预编码是不同的,这会带来不可忽视的性能损失。Hybrid precoding is a research hotspot for massive MIMO. When the number of antennas is large (hundreds or thousands), it is impossible to equip each antenna with a specific radio frequency link (RF) due to power consumption and cost. It becomes very interesting to investigate the deployment of massive MIMO with a small amount of RF. Hybrid precoding uses a low-cost phase shifter on the radio side to control the phase of the signal on the transmit antenna to realize analog precoding, which not only reduces the hardware cost, but also reduces the number of radio frequencies required by the system; at the baseband, it uses an equivalent low-dimensional Channel State Information (CSI) controls the amplitude and phase of the signal, enabling digital precoding. Therefore, hybrid precoding can realize massive MIMO when the number of RFs is much smaller than the number of antennas. At present, the research on hybrid precoding mainly focuses on single-carrier systems, and there are relatively few researches on hybrid precoding in wideband systems, and the current design of wideband hybrid precoding assumes that the analog precoding on each subcarrier is the same condition. This is only suitable when the ratio of bandwidth to center carrier frequency is relatively small. However, considering the application of millimeter waves (30-300 GHz) in the future, the above assumptions are often unrealistic in practice. This is because the phase shifter in the broadband beamforming network is usually implemented with a delay line, which causes the same delay to produce different phases on different carriers. That is to say, although we only set an analog precoding matrix, but It produces phase offsets on different carriers. Therefore, in practice, the analog precoding on different carriers is different, which will bring about a non-negligible performance loss.

在当前的宽带系统混合预编码设计的研究中,很少考虑实际系统中的硬件实现的非理想特性;在过去带宽较窄的情况下,移相器的相位随频率的变化不算太大,其影响可忽略。而当前的毫米波技术的是超宽带的,例如在60GHz频段,带宽一般为2G。另一方面,在如此高频段,为了保证系统的性能,对硬件的加工精度要求非常精细,导致毫米波器件价格很高,因此需要中频链路。而常见的中频为2.75GHz,这会导致带宽与载频比接近0.5~1.5,因此相位偏移对模拟预编码的影响就变得不可忽略了。In the current research on hybrid precoding design of wideband systems, the non-ideal characteristics of hardware implementation in practical systems are rarely considered; in the case of narrow bandwidths in the past, the phase shifter's phase change with frequency is not too large, Its effect can be ignored. The current millimeter wave technology is ultra-wideband. For example, in the 60GHz frequency band, the bandwidth is generally 2G. On the other hand, in such a high frequency band, in order to ensure the performance of the system, the processing accuracy of the hardware is very fine, resulting in the high price of millimeter wave devices, so an intermediate frequency link is required. The common intermediate frequency is 2.75GHz, which will lead to a ratio of bandwidth to carrier frequency close to 0.5 to 1.5, so the influence of phase offset on analog precoding cannot be ignored.

综上所述,研究适用于实际宽带大规模MIMO系统的混合预编码设计方法是很有必要的。In summary, it is necessary to study the hybrid precoding design method suitable for practical wideband massive MIMO systems.

发明内容:Invention content:

本发明的目的在于针对以上问题,提出了一种用于实际宽带大规模MIMO系统的混合预编码设计方法,该方法可以提高实际宽带系统的混合预编码性能。The purpose of the present invention is to solve the above problems, and propose a hybrid precoding design method for practical wideband massive MIMO systems, which can improve the hybrid precoding performance of practical wideband systems.

为达到上述目的,本发明采用如下技术方案来实现:To achieve the above object, the present invention adopts the following technical solutions to realize:

一种用于实际宽带大规模MIMO系统的混合预编码设计方法,包括以下步骤:A hybrid precoding design method for a practical wideband massive MIMO system, comprising the following steps:

1)在射频端,首先假定所有载波上的模拟预编码相同,以最大化系统频谱效率为准则,利用完整的信道状态信息设计理想的模拟预编码矩阵;1) At the radio frequency side, first assume that the analog precoding on all carriers is the same, and use the complete channel state information to design an ideal analog precoding matrix with the criterion of maximizing the system spectral efficiency;

2)根据实际中移相器的特性,确定每个载波上发生相位偏移的模拟预编码矩阵,在数字域设计相位修正矩阵,修正实际中不同载波上的模拟预编码发生的相位偏移,以逼近步骤1)中得到的理想模拟预编码矩阵,将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵;2) According to the characteristics of the phase shifter in practice, determine the analog precoding matrix with phase offset on each carrier, design the phase correction matrix in the digital domain, and correct the phase offset generated by analog precoding on different carriers in practice, With the ideal analog precoding matrix obtained in approximation step 1), the phase correction matrix is multiplied by the analog precoding matrix that phase offset occurs on each carrier to be the designed analog precoding matrix;

3)在基带处,利用等效低维度的信道状态信息设计数字预编码矩阵;3) At the baseband, use the equivalent low-dimensional channel state information to design a digital precoding matrix;

4)将步骤2)中得到的模拟预编码和步骤3)中得到的数字预编码相乘,即得混合预编码设计方案。4) Multiply the analog precoding obtained in step 2) and the digital precoding obtained in step 3) to obtain a hybrid precoding design scheme.

本发明进一步的改进在于,步骤1)的具体实现方法如下:A further improvement of the present invention is that the concrete realization method of step 1) is as follows:

考虑一个下行宽带大规模MIMO系统,基站通过NRF根射频,Nt根天线,发送Ns个数据流,用户配置Nr根天线,其射频数与天线数相同,共有K个子载波;FBB[k]表示第k个载波上数字基带预编码矩阵,FRF是表示所有载波上的模拟预编码矩阵,在接收端,W[k]表示接收合并矩阵,其中,Nt>>NRFConsider a downlink broadband massive MIMO system, the base station transmits N s data streams through N RF radio frequencies and N t antennas, the user configures N r antennas, the number of radio frequencies is the same as the number of antennas, and there are K sub-carriers in total; F BB [k] represents the digital baseband precoding matrix on the kth carrier, F RF represents the analog precoding matrix on all carriers, and at the receiving end, W[k] represents the receiving combining matrix, where N t >>N RF ;

101)第k个载波上的接收信号:101) Received signal on the kth carrier:

y[k]=WH[k]H[k]FRFFBB[k]s[k]+WH[k]n[k] (1)y[k]=W H [k]H[k]F RF F BB [k]s[k]+W H [k]n[k] (1)

其中,H[k]表示第k个载波上的信道,

Figure BDA0001195947270000034
表示第k个载波上的噪声;where H[k] represents the channel on the kth carrier,
Figure BDA0001195947270000034
represents the noise on the kth carrier;

102)根据上一步中的接收信号,基站端以最大化互信息为目标设计模拟预编码和数字预编码描述如下:102) According to the received signal in the previous step, the base station side designs analog precoding and digital precoding with the goal of maximizing mutual information and is described as follows:

Figure BDA0001195947270000031
Figure BDA0001195947270000031

Figure BDA0001195947270000032
Figure BDA0001195947270000032

Figure BDA0001195947270000036
Figure BDA0001195947270000036

其中,

Figure BDA0001195947270000035
是模拟预编码的可行集,即一组所有元素幅度都相同的Nt×NRF矩阵集;in,
Figure BDA0001195947270000035
is a feasible set of analog precoding, that is, a set of N t ×N RF matrices with the same magnitude of all elements;

103)求解上述优化问题,获得理想的模拟预编码矩阵:103) Solve the above optimization problem to obtain an ideal analog precoding matrix:

Figure BDA0001195947270000033
Figure BDA0001195947270000033

其中R为信道相关矩阵。where R is the channel correlation matrix.

本发明进一步的改进在于,步骤2)的具体实现方法如下:The further improvement of the present invention is, the concrete realization method of step 2) is as follows:

201)根据实际中移相器的特性,确定每个载波上发生相位偏移的模拟预编码矩阵:将步骤1)中得到模拟预编码矩阵作为中心载频上的模拟预编码矩阵,则实际中第k个载波上的模拟预编码矩阵可表示为:201) According to the characteristics of the phase shifter in practice, determine the analog precoding matrix with phase offset on each carrier: take the analog precoding matrix obtained in step 1) as the analog precoding matrix on the center carrier frequency, then in practice The analog precoding matrix on the kth carrier can be expressed as:

Figure BDA0001195947270000047
Figure BDA0001195947270000047

其中,表示,FRF是中心载频上的模拟预编码矩阵,

Figure BDA0001195947270000041
表示第k个载波上的相位偏差矩阵,
Figure BDA0001195947270000048
表示矩阵A与矩阵B的Hadamard积;where, denotes, F RF is the analog precoding matrix on the center carrier frequency,
Figure BDA0001195947270000041
represents the phase deviation matrix on the kth carrier,
Figure BDA0001195947270000048
Represents the Hadamard product of matrix A and matrix B;

202)在数字域对相位偏移做修正:修正方案可描述为:202) Correct the phase offset in the digital domain: the correction scheme can be described as:

Figure BDA0001195947270000042
Figure BDA0001195947270000042

其中

Figure BDA0001195947270000043
可在步骤1)求得,当第k个载波的频率给定后,由公式(6)计算得FRF[k],因此,求解P2,得到一个众所周知最小均方解:in
Figure BDA0001195947270000043
It can be obtained in step 1). When the frequency of the kth carrier is given, F RF [k] is calculated by formula (6). Therefore, solving P2, a well-known least mean square solution is obtained:

Figure BDA0001195947270000044
Figure BDA0001195947270000044

其中

Figure BDA0001195947270000045
表示矩阵A的伪逆;in
Figure BDA0001195947270000045
represents the pseudo-inverse of matrix A;

203)将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵,即FRF[k]Fc[k]。203) Multiplying the phase correction matrix by the analog precoding matrix with phase offset on each carrier is the designed analog precoding matrix, that is, F RF [k]F c [k].

本发明进一步的改进在于,步骤3)的具体实现方法如下:A further improvement of the present invention is that the concrete realization method of step 3) is as follows:

经过步骤2)确定所有载波上的模拟预编码和相位修正矩阵后,基带处的等效低维度的信道状态信息表示为:After determining the analog precoding and phase correction matrices on all carriers in step 2), the equivalent low-dimensional channel state information at the baseband is expressed as:

Figure BDA0001195947270000046
Figure BDA0001195947270000046

在基带处,对等效低维度的信道状态信息进行SVD分解可得数字预编码

Figure BDA0001195947270000049
,其中Veff[k]为等效信道Heff[k]的SVD分解的右奇异矩阵。At baseband, digital precoding can be obtained by SVD decomposition of the equivalent low-dimensional channel state information
Figure BDA0001195947270000049
, where V eff [k] is the right singular matrix of the SVD decomposition of the equivalent channel He eff [k].

本发明进一步的改进在于,步骤4)的具体实现方法如下:A further improvement of the present invention is that the concrete realization method of step 4) is as follows:

将步骤2)中得到的模拟预编码和步骤3)中得到的数字预编码相乘,即得混合预编码设计方案:Multiply the analog precoding obtained in step 2) and the digital precoding obtained in step 3) to obtain the hybrid precoding design scheme:

F=FRF[k]Fc[k]FBB[k] (10)。F=F RF [k] F c [k] F BB [k] (10).

与现有技术相比,本发明具有如下的优点:Compared with the prior art, the present invention has the following advantages:

本发明首次考虑了宽带波束形成网络中移相器对频率变化较为敏感的性能,设计出了更符合实际系统的混合预编码方案。与传统混合预编码方案相比,本发明在设计理想模拟预编码的基础上,针对不同载波上由于移相器产生相位偏移而导致其上的模拟预编码不同的实际情况,提出了一种数字域设置相位修正矩阵来修正相位偏移的有效方案,从而提升了系统整体的频谱效率,极大地改善了边缘载波的频率效率。For the first time, the present invention considers the performance that the phase shifter in the broadband beamforming network is more sensitive to frequency changes, and designs a hybrid precoding scheme that is more in line with the actual system. Compared with the traditional hybrid precoding scheme, on the basis of designing an ideal analog precoding, the present invention proposes a method for the actual situation that the analog precoding on different carriers is different due to the phase offset generated by the phase shifter. It is an effective solution to set the phase correction matrix in the digital domain to correct the phase offset, thereby improving the overall spectral efficiency of the system and greatly improving the frequency efficiency of the edge carrier.

附图说明:Description of drawings:

图1为不同方案对应的每个载波上的频谱效率对比图;Fig. 1 is the spectral efficiency comparison diagram on each carrier corresponding to different schemes;

图2为不同方案对应的所有载波上的平均频谱效率对比图。FIG. 2 is a comparison diagram of the average spectral efficiency on all carriers corresponding to different schemes.

具体实施方式:Detailed ways:

下面结合附图对本发明作进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:

本发明提供的用于实际宽带大规模MIMO系统的混合预编码设计方法,其主要思路是:第一步,在射频端,首先假定所有载波上的模拟预编码相同,利用完整的信道状态信息设计理想的模拟预编码矩阵;第二步,根据实际中移相器的特性,确定每个载波上发生相位偏移的模拟预编码矩阵,在数字域设计相位修正矩阵,修正实际中不同载波上的模拟预编码发生的相位偏移,以逼近第一步中得到的理想模拟预编码矩阵,将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵;第三步,在基带处,利用等效低维度的信道状态信息设计数字预编码矩阵;第四步,将第二步中得到的模拟预编码和第三步中得到的数字预编码相乘,即得混合预编码设计方案。The main idea of the hybrid precoding design method for an actual wideband massive MIMO system provided by the present invention is as follows: the first step, at the radio frequency side, assumes that the analog precoding on all carriers is the same, and uses the complete channel state information to design The ideal analog precoding matrix; in the second step, according to the characteristics of the phase shifter in practice, determine the analog precoding matrix with phase offset on each carrier, design the phase correction matrix in the digital domain, and correct the actual phase offset on different carriers. To approximate the ideal analog precoding matrix obtained in the first step, multiply the phase correction matrix by the analog precoding matrix with phase offset on each carrier to obtain the designed analog precoding. coding matrix; the third step, at the baseband, use the equivalent low-dimensional channel state information to design a digital precoding matrix; the fourth step, the analog precoding obtained in the second step and the digital precoding obtained in the third step Multiplying, that is, the hybrid precoding design scheme.

具体实施方案如下:The specific implementation is as follows:

考虑一个下行宽带大规模MIMO系统,基站通过NRF根射频,Nt(Nt>>NRF)根天线,发送Ns个数据流,用户配置Nr根天线,其射频数与天线数相同,共有K个子载波。FBB[k]表示第k个载波上数字基带预编码矩阵,FRF是表示所有载波上的模拟预编码矩阵,在接收端,W[k]表示接收合并矩阵;Consider a downlink wideband massive MIMO system, the base station transmits N s data streams through N RF radio frequencies and N t (N t >> N RF ) antennas, the user configures N r antennas, and the number of radio frequencies is the same as the number of antennas , with a total of K subcarriers. FBB [k] represents the digital baseband precoding matrix on the kth carrier, FRF represents the analog precoding matrix on all carriers, and at the receiving end, W[k] represents the receiving combining matrix;

在上述基础上,第k个载波上的接收信号可以表示为On the basis of the above, the received signal on the kth carrier can be expressed as

y[k]=WH[k]H[k]FRFFBB[k]s[k]+WH[k]n[k] (1)y[k]=W H [k]H[k]F RF F BB [k]s[k]+W H [k]n[k] (1)

其中,H[k]表示第k个载波上的信道,

Figure BDA0001195947270000065
表示第k个载波上的噪声。where H[k] represents the channel on the kth carrier,
Figure BDA0001195947270000065
represents the noise on the kth carrier.

每个载波上的频谱效率和系统总频谱效率分别为公式(2)和公式(3)所示:The spectral efficiency on each carrier and the total system spectral efficiency are shown in equation (2) and equation (3), respectively:

Figure BDA0001195947270000061
Figure BDA0001195947270000061

Figure BDA0001195947270000062
Figure BDA0001195947270000062

本发明提出的适用于实际宽带大规模MIMO系统的混合预编码设计方法的技术手段如下:The technical means of the hybrid precoding design method suitable for the actual wideband massive MIMO system proposed by the present invention are as follows:

首先假定所有载波上的模拟预编码相同,基站端以最大化互信息为目标设计模拟预编码和数字预编码可描述如下:First, assuming that the analog precoding on all carriers is the same, the base station designs analog precoding and digital precoding with the goal of maximizing mutual information, which can be described as follows:

Figure BDA0001195947270000063
Figure BDA0001195947270000063

Figure BDA0001195947270000064
Figure BDA0001195947270000064

Figure BDA0001195947270000067
Figure BDA0001195947270000067

其中,

Figure BDA0001195947270000066
是模拟预编码的可行集,即一组所有元素幅度都相同的Nt×NRF矩阵集。in,
Figure BDA0001195947270000066
is the feasible set of analog precoding, that is, a set of N t ×N RF matrices with the same magnitude of all elements.

求解上述优化问题,可获得理想的模拟预编码:Solving the above optimization problem yields an ideal analog precoding:

Figure BDA0001195947270000071
Figure BDA0001195947270000071

其中R为信道相关矩阵;where R is the channel correlation matrix;

然后将得到理想模拟预编码矩阵作为中心载频上的模拟预编码矩阵,根据实际中移相器的特性,则实际中第k个载波上的模拟预编码矩阵可表示为:Then, the obtained ideal analog precoding matrix is used as the analog precoding matrix on the center carrier frequency. According to the characteristics of the phase shifter in practice, the analog precoding matrix on the kth carrier in practice can be expressed as:

Figure BDA0001195947270000079
Figure BDA0001195947270000079

其中,表示,FRF是中心载频上的模拟预编码矩阵,

Figure BDA0001195947270000072
表示第k个载波上的相位偏差矩阵,
Figure BDA0001195947270000078
表示矩阵A与矩阵B的Hadamard积。where, denotes, F RF is the analog precoding matrix on the center carrier frequency,
Figure BDA0001195947270000072
represents the phase deviation matrix on the kth carrier,
Figure BDA0001195947270000078
Represents the Hadamard product of matrix A and matrix B.

为了提升系统的性能,需要在数字域对相位偏移做修正,修正方案可描述为In order to improve the performance of the system, the phase offset needs to be corrected in the digital domain. The correction scheme can be described as

Figure BDA0001195947270000073
Figure BDA0001195947270000073

其中

Figure BDA0001195947270000074
为上述理想的模拟预编码矩阵,当第k个载波的频率给定后,可由公式(6)计算得FRF[k]。因此,求解P2,我们可以得到一个众所周知最小均方解:in
Figure BDA0001195947270000074
For the above-mentioned ideal analog precoding matrix, when the frequency of the kth carrier is given, F RF [k] can be calculated by formula (6). Therefore, solving for P2, we can obtain a well-known least-mean-square solution:

Figure BDA0001195947270000075
Figure BDA0001195947270000075

其中

Figure BDA0001195947270000076
表示矩阵A的伪逆,将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵,即FRF[k]Fc[k];in
Figure BDA0001195947270000076
Represents the pseudo-inverse of matrix A, and multiplying the phase correction matrix by the analog precoding matrix with phase offset on each carrier is the designed analog precoding matrix, namely F RF [k]F c [k];

在此基础上,利用等效信道状态信息,设计数字预编码矩阵。经过上述步骤,确定了所有载波上的模拟预编码和相位修正矩阵,基带处的等效低维度的信道状态信息可表示为:On this basis, using the equivalent channel state information, the digital precoding matrix is designed. After the above steps, the analog precoding and phase correction matrices on all carriers are determined, and the equivalent low-dimensional channel state information at the baseband can be expressed as:

Figure BDA0001195947270000077
Figure BDA0001195947270000077

在基带处,对等效低维度的信道状态信息进行SVD分解可得数字预编码

Figure BDA0001195947270000081
,其中Veff[k]为等效信道Heff[k]的SVD分解的右奇异矩阵;At baseband, digital precoding is obtained by SVD decomposition of the equivalent low-dimensional channel state information
Figure BDA0001195947270000081
, where V eff [k] is the right singular matrix of the SVD decomposition of the equivalent channel H eff [k];

最后,将上述步骤中得到的模拟预编码和数字预编码相乘,即得混合预编码设计方案:Finally, multiply the analog precoding and digital precoding obtained in the above steps to obtain the hybrid precoding design scheme:

F=FRF[k]Fc[k]FBB[k] (10)F=F RF [k] F c [k] F BB [k] (10)

本发明的仿真效果如下:The simulation effect of the present invention is as follows:

基站天线数Nt=64,射频数NRF=8,数据流数Ns=4,用户天线数Nr=4,子载波数K=4096,宽带与中心载频比为0.5~1.5。本发明与全数字预编码、理想混合预编码以及实际未作相位修正混合预编码三种方案进行比较,对比结果如图1、图2所示。The number of base station antennas N t =64, the number of radio frequencies N RF =8, the number of data streams N s =4, the number of user antennas N r =4, the number of subcarriers K = 4096, and the ratio of broadband to center carrier frequency is 0.5-1.5. The present invention is compared with three schemes of all-digital precoding, ideal hybrid precoding and actual hybrid precoding without phase correction, and the comparison results are shown in FIG. 1 and FIG. 2 .

图1给出了信噪比SNR=10dB时,不同方案的对应的每个载波上的频谱效率。可以看出,未修正相位方案的边缘载波的频谱效率比理想方案低2.2dB,而本发明中提出的相位修正方案比未修正相位的方案高1.2dB,并在一定程度上接近理想的混合预编码方案。Figure 1 shows the spectral efficiency on each carrier corresponding to different schemes when the signal-to-noise ratio SNR=10dB. It can be seen that the spectral efficiency of the edge carrier of the uncorrected phase scheme is 2.2dB lower than that of the ideal scheme, while the phase correction scheme proposed in the present invention is 1.2dB higher than the uncorrected phase scheme, and is close to the ideal hybrid pre-processing to a certain extent. encoding scheme.

图2给出了不同方案对应的所有载波上的平均频谱效率随信噪比的变化情况。从图中可以看出,未修正相位方案系统的整体性能比理想情况下低0.5dB,而本发明中提出的相位修正算法可以在一定程度上消除相位偏移带来的性能损失,系统的整体性能比未修正相位方案高0.3dB左右。Figure 2 shows the variation of the average spectral efficiency on all carriers corresponding to different schemes with the signal-to-noise ratio. It can be seen from the figure that the overall performance of the uncorrected phase scheme system is 0.5dB lower than the ideal case, and the phase correction algorithm proposed in the present invention can eliminate the performance loss caused by the phase offset to a certain extent. The performance is about 0.3dB higher than the uncorrected phase scheme.

Claims (2)

1.一种用于实际宽带大规模MIMO系统的混合预编码设计方法,其特征在于,包括以下步骤:1. a hybrid precoding design method for an actual wideband massive MIMO system, is characterized in that, comprises the following steps: 1)在射频端,首先假定所有载波上的模拟预编码相同,以最大化系统频谱效率为准则,利用完整的信道状态信息设计理想的模拟预编码矩阵;具体实现方法如下:1) On the radio side, first assume that the analog precoding on all carriers is the same, and use the complete channel state information to design an ideal analog precoding matrix based on maximizing the system spectral efficiency. The specific implementation method is as follows: 考虑一个下行宽带大规模MIMO系统,基站通过NRF根射频,Nt根天线,发送Ns个数据流,用户配置Nr根天线,其射频数与天线数相同,共有K个子载波;FBB[k]表示第k个载波上数字基带预编码矩阵,FRF是表示所有载波上的模拟预编码矩阵,在接收端,W[k]表示接收合并矩阵,其中,Nt>>NRFConsider a downlink broadband massive MIMO system, the base station transmits N s data streams through N RF radio frequencies and N t antennas, the user configures N r antennas, the number of radio frequencies is the same as the number of antennas, and there are K sub-carriers in total; F BB [k] represents the digital baseband precoding matrix on the kth carrier, F RF represents the analog precoding matrix on all carriers, and at the receiving end, W[k] represents the receiving combining matrix, where N t >>N RF ; 101)第k个载波上的接收信号:101) Received signal on the kth carrier: y[k]=WH[k]H[k]FRFFBB[k]s[k]+WH[k]n[k] (1)y[k]=W H [k]H[k]F RF F BB [k]s[k]+W H [k]n[k] (1) 其中,H[k]表示第k个载波上的信道,
Figure FDA0002473928260000014
表示第k个载波上的噪声;
where H[k] represents the channel on the kth carrier,
Figure FDA0002473928260000014
represents the noise on the kth carrier;
102)根据上一步中的接收信号,基站端以最大化互信息为目标设计模拟预编码和数字预编码描述如下:102) According to the received signal in the previous step, the base station side designs analog precoding and digital precoding with the goal of maximizing mutual information and is described as follows:
Figure FDA0002473928260000011
Figure FDA0002473928260000011
其中,
Figure FDA0002473928260000012
是模拟预编码的可行集,是一组所有元素幅度都相同的Nt×NRF矩阵集;
in,
Figure FDA0002473928260000012
is a feasible set of analog precoding, a set of N t ×N RF matrices with the same magnitude of all elements;
103)求解上述优化问题,获得理想的模拟预编码矩阵:103) Solve the above optimization problem to obtain an ideal analog precoding matrix:
Figure FDA0002473928260000013
Figure FDA0002473928260000013
其中R为信道相关矩阵;where R is the channel correlation matrix; 2)根据实际中移相器的特性,确定每个载波上发生相位偏移的模拟预编码矩阵,在数字域设计相位修正矩阵,修正实际中不同载波上的模拟预编码发生的相位偏移,以逼近步骤1)中得到的理想模拟预编码矩阵,将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵;具体实现方法如下:2) According to the characteristics of the phase shifter in practice, determine the analog precoding matrix with phase offset on each carrier, design the phase correction matrix in the digital domain, and correct the phase offset generated by analog precoding on different carriers in practice, By approximating the ideal analog precoding matrix obtained in step 1), multiplying the phase correction matrix and the analog precoding matrix with phase offset on each carrier is the designed analog precoding matrix; The specific implementation method is as follows: 201)根据实际中移相器的特性,确定每个载波上发生相位偏移的模拟预编码矩阵:将步骤1)中得到模拟预编码矩阵作为中心载频上的模拟预编码矩阵,则实际中第k个载波上的模拟预编码矩阵表示为:201) According to the characteristics of the phase shifter in practice, determine the analog precoding matrix with phase offset on each carrier: take the analog precoding matrix obtained in step 1) as the analog precoding matrix on the center carrier frequency, then in practice The analog precoding matrix on the kth carrier is expressed as:
Figure FDA0002473928260000021
Figure FDA0002473928260000021
其中,FRF是中心载频上的模拟预编码矩阵,
Figure FDA0002473928260000022
表示第k个载波上的相位偏差矩阵,
Figure FDA0002473928260000023
表示矩阵A与矩阵B的Hadamard积;
where F RF is the analog precoding matrix on the center carrier frequency,
Figure FDA0002473928260000022
represents the phase deviation matrix on the kth carrier,
Figure FDA0002473928260000023
Represents the Hadamard product of matrix A and matrix B;
202)在数字域对相位偏移做修正:修正方案可描述为:202) Correct the phase offset in the digital domain: the correction scheme can be described as:
Figure FDA0002473928260000028
Figure FDA0002473928260000028
其中
Figure FDA0002473928260000025
在步骤1)求得,当第k个载波的频率给定后,由公式(6)计算得FRF[k],因此,求解P2,得到一个最小均方解:
in
Figure FDA0002473928260000025
Obtained in step 1), when the frequency of the kth carrier is given, F RF [k] is calculated by formula (6). Therefore, solve P2 to obtain a least mean square solution:
Figure FDA0002473928260000026
Figure FDA0002473928260000026
其中
Figure FDA0002473928260000027
表示矩阵A的伪逆;
in
Figure FDA0002473928260000027
represents the pseudo-inverse of matrix A;
203)将相位修正矩阵与每个载波上发生相位偏移的模拟预编码矩阵相乘即为所设计的模拟预编码矩阵,即FRF[k]Fc[k];203) multiplying the phase correction matrix by the analog precoding matrix with phase offset on each carrier is the designed analog precoding matrix, namely F RF [k]F c [k]; 3)在基带处,利用等效低维度的信道状态信息设计数字预编码矩阵;具体实现方法如下:3) At the baseband, use the equivalent low-dimensional channel state information to design a digital precoding matrix; the specific implementation method is as follows: 经过步骤2)确定所有载波上的模拟预编码和相位修正矩阵后,基带处的等效低维度的信道状态信息表示为:After determining the analog precoding and phase correction matrices on all carriers in step 2), the equivalent low-dimensional channel state information at the baseband is expressed as:
Figure FDA0002473928260000031
Figure FDA0002473928260000031
在基带处,对等效低维度的信道状态信息进行SVD分解得到数字预编码
Figure FDA0002473928260000032
其中Veff[k]为等效信道Heff[k]的SVD分解的右奇异矩阵;
At baseband, digital precoding is obtained by SVD decomposition of the equivalent low-dimensional channel state information
Figure FDA0002473928260000032
where V eff [k] is the right singular matrix of the SVD decomposition of the equivalent channel H eff [k];
4)将步骤2)中得到的模拟预编码和步骤3)中得到的数字预编码相乘,即得混合预编码设计方案。4) Multiply the analog precoding obtained in step 2) and the digital precoding obtained in step 3) to obtain a hybrid precoding design scheme.
2.根据权利要求1所述的一种用于实际宽带大规模MIMO系统的混合预编码设计方法,其特征在于,步骤4)的具体实现方法如下:2. a kind of hybrid precoding design method for actual wideband massive MIMO system according to claim 1, is characterized in that, the concrete realization method of step 4) is as follows: 将步骤2)中得到的模拟预编码和步骤3)中得到的数字预编码相乘,即得混合预编码设计方案:Multiply the analog precoding obtained in step 2) and the digital precoding obtained in step 3) to obtain the hybrid precoding design scheme: F=FRF[k]Fc[k]FBB[k] (10)。F=F RF [k] F c [k] F BB [k] (10).
CN201611239321.2A 2016-12-28 2016-12-28 Hybrid precoding design method for actual broadband large-scale MIMO system Expired - Fee Related CN106788642B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611239321.2A CN106788642B (en) 2016-12-28 2016-12-28 Hybrid precoding design method for actual broadband large-scale MIMO system
PCT/CN2017/071526 WO2018120339A1 (en) 2016-12-28 2017-01-18 Hybrid precoding design method for actual broadband large-scale mimo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611239321.2A CN106788642B (en) 2016-12-28 2016-12-28 Hybrid precoding design method for actual broadband large-scale MIMO system

Publications (2)

Publication Number Publication Date
CN106788642A CN106788642A (en) 2017-05-31
CN106788642B true CN106788642B (en) 2020-08-18

Family

ID=58923240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611239321.2A Expired - Fee Related CN106788642B (en) 2016-12-28 2016-12-28 Hybrid precoding design method for actual broadband large-scale MIMO system

Country Status (2)

Country Link
CN (1) CN106788642B (en)
WO (1) WO2018120339A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359921B (en) * 2017-08-04 2020-07-28 西安科技大学 A Hybrid Precoding Method Based on Standard Orthogonalization for Massive MIMO Systems
CN107809274B (en) * 2017-10-18 2021-03-23 东南大学 Hybrid precoding method based on novel phase-shifting switch network
CN108199753B (en) * 2017-12-07 2021-09-07 南京邮电大学 An Iterative Minimal Precoding Method in Millimeter-Wave Communication
CN108736943B (en) * 2018-05-22 2021-04-06 湘潭大学 Hybrid precoding method suitable for large-scale MIMO system
CN109756254B (en) * 2019-01-17 2020-06-02 河南省信息咨询设计研究有限公司 Hybrid precoding processing method and related equipment
CN110661555B (en) * 2019-10-14 2021-06-22 复旦大学 A Hybrid Precoding Algorithm for Partially Connected Phase Shifter Networks for Massive MIMO
CN113242067B (en) * 2021-04-12 2022-07-26 华南理工大学 Spectral efficiency optimization method of wireless energy-carrying communication system based on hybrid precoding
CN113691291B (en) * 2021-07-14 2022-05-24 清华大学 MIMO transmitter hybrid precoder design method and device based on Hungary algorithm
CN113794658A (en) * 2021-08-06 2021-12-14 清华大学 Real-time calibration method and device for joint time-varying channel tracking and phase shifter network
CN113783592A (en) * 2021-08-27 2021-12-10 华中科技大学 A hybrid precoding method and system for beam offset compensation
CN114095062B (en) * 2021-12-08 2023-03-14 重庆航天火箭电子技术有限公司 Broadband correction analog beam forming method of millimeter wave large-scale phased array system
CN114172550A (en) * 2021-12-14 2022-03-11 重庆邮电大学 GMD Hybrid Precoding Based on Phase Extraction in Millimeter-Wave Massive MIMO Systems
CN114978264B (en) * 2022-06-29 2023-07-25 内蒙古大学 Hybrid precoding method based on terahertz MIMO system
CN115102589B (en) * 2022-06-29 2023-07-25 内蒙古大学 Deep learning hybrid precoding method of terahertz large-scale MIMO system
CN115276728B (en) * 2022-07-16 2023-12-05 西安邮电大学 A hybrid precoding method and system in millimeter wave systems
CN115459819B (en) * 2022-07-29 2025-06-03 中山大学 A hybrid precoding fully connected structure and beamforming method thereof
CN116112044A (en) * 2022-08-09 2023-05-12 西安电子科技大学 Energy Efficient Hybrid Precoding Method Based on Neural Network
CN115426012A (en) * 2022-08-30 2022-12-02 Oppo广东移动通信有限公司 Baseband chip, hybrid precoding method and terminal equipment
CN115514397B (en) * 2022-09-19 2023-10-31 天津师范大学 Method for improving energy efficiency of millimeter wave MIMO system based on dynamic radio frequency chain
CN116388814B (en) * 2023-03-27 2024-03-12 成都大学 Large-scale MIMO (multiple input multiple output) multi-connection structure-based simulation and hybrid precoding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140334564A1 (en) * 2013-05-09 2014-11-13 Samsung Electronics Co., Ltd Method and system for providing low-complexity hybrid precoding in wireless communication systems
CN104486044A (en) * 2014-12-30 2015-04-01 北京航空航天大学 Broadband module mixing pretreatment method for large-scale MIMO system
US20160020933A1 (en) * 2014-07-18 2016-01-21 Samsung Electronics Co., Ltd. Method and apparatus for peak to average power reduction in wireless communication systems using spectral mask filling
CN105959048A (en) * 2016-06-23 2016-09-21 北京科技大学 Massive Multiple-Input Multiple-Output (Massive MIMO) pre-coding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839812B1 (en) * 2011-08-11 2018-03-19 삼성전자주식회사 Method and apparatus for mixed analog and digital beam forming
WO2015188385A1 (en) * 2014-06-13 2015-12-17 上海贝尔股份有限公司 Method for hybrid analog and digital precoding for use in large-scale mimo system
CN106160809B (en) * 2015-04-10 2020-03-13 上海诺基亚贝尔股份有限公司 Mixed precoding method and device for multi-user multi-antenna system
CN105933046B (en) * 2016-06-24 2019-01-22 北京科技大学 A Baseband and Radio Frequency Hybrid Precoding Method for Large Scale Antenna Systems
CN106253956B (en) * 2016-08-24 2019-06-21 东南大学 Modulo-digital hybrid precoding method based on codebook

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140334564A1 (en) * 2013-05-09 2014-11-13 Samsung Electronics Co., Ltd Method and system for providing low-complexity hybrid precoding in wireless communication systems
US20160020933A1 (en) * 2014-07-18 2016-01-21 Samsung Electronics Co., Ltd. Method and apparatus for peak to average power reduction in wireless communication systems using spectral mask filling
CN104486044A (en) * 2014-12-30 2015-04-01 北京航空航天大学 Broadband module mixing pretreatment method for large-scale MIMO system
CN105959048A (en) * 2016-06-23 2016-09-21 北京科技大学 Massive Multiple-Input Multiple-Output (Massive MIMO) pre-coding method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Dynamic subarray architecture for wideband hybrid precoding in millimeter wave massive MIMO systems;Sungwoo Park et al;《2016 IEEE Global Conference on Signal and Information Processing》;20161209;第600-604页 *
Frequency Selective Hybrid Precoding in Millimeter Wave OFDMA Systems;Sungwoo Park and Robert W. Heath Jr.;《2015 IEEE Global Communications Conference》;20151210;第1-6页 *
Low rank approximation based hybrid precoding schemes for multi-carrier single-user massive MIMO systems;Jianshu Zhang et al;《2016 IEEE International Conference on Acoustics, Speech and Signal Processing》;20160325;第3281-3285页 *
Wideband hybrid precoder for massive MIMO systems;Lingxiao Kong et al;《2015 IEEE Global Conference on Signal and Information Processing》;20151216;第305-309页 *
一种TDD-MIMO系统混合预编码传输机制;刘帅 等;《四川大学学报(工程科学版)》;20150131;第47卷(第1期);第162-166页 *
毫米波大规模MIMO系统中低复杂度混合预编码方法;向建伟 等;《电信科学》;20160930(第9期);第10-15页 *

Also Published As

Publication number Publication date
WO2018120339A1 (en) 2018-07-05
CN106788642A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106788642B (en) Hybrid precoding design method for actual broadband large-scale MIMO system
CN105959048B (en) A Precoding Method for Large Scale Antennas
US9008222B2 (en) Multi-user and single user MIMO for communication systems using hybrid beam forming
CN107135024B (en) A low-complexity iterative design method for hybrid beamforming
US9118111B2 (en) Antenna array calibration for wireless communication systems
US8036299B2 (en) Wireless communication apparatus, antenna calibration method, and computer program
US11206713B2 (en) Sub-band compression domain processing for uplink MIMO systems
US20170126459A1 (en) Exploitation of frequency twisted waves in wireless communication systems to increase transmission capacity thereof
US12149327B2 (en) Phase noise removal in a network of radio frequency (RF) repeaters
CN108599821B (en) Precoding method based on QR decomposition
CN108463952B (en) Method, system and device
CN109347529B (en) A Channel Estimation and Hybrid Beamforming Method Against Phase Shifter Imperfections
CN108712198B (en) A Hybrid Precoding Method Based on Subband Equivalent Channel Matrix Condition Number
US20060284725A1 (en) Antenna array calibration for wireless communication systems
CN108881074A (en) Broadband millimeter-wave channel estimation methods under a kind of low precision mixed architecture
CN113824477B (en) Multi-user large-scale MIMO optimization method assisted by discrete lens antenna array
JP5570724B2 (en) Antenna array calibration for wireless communication systems
LaCaille et al. Design and demonstration of a scalable massive MIMO uplink at E-band
EP1875632A1 (en) Antenna array calibration for wireless communication systems
CN113783592A (en) A hybrid precoding method and system for beam offset compensation
EP3465952B1 (en) Method and apparatus for antenna array calibration using on-board receiver
KR20240008845A (en) Digital preprocessing chip for mmWAVE transceiver architecture
Xu et al. Review of 5g mimo enhancement technologies
Wang et al. Low complexity equalization algorithms for frequency selective millimeter wave channel
US20230067500A1 (en) System and method for user equipment assisted over-the-air calibration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200818

CF01 Termination of patent right due to non-payment of annual fee