CN106786612A - 一种自适应调节电压与频率的电力弹簧控制方法 - Google Patents

一种自适应调节电压与频率的电力弹簧控制方法 Download PDF

Info

Publication number
CN106786612A
CN106786612A CN201611152099.2A CN201611152099A CN106786612A CN 106786612 A CN106786612 A CN 106786612A CN 201611152099 A CN201611152099 A CN 201611152099A CN 106786612 A CN106786612 A CN 106786612A
Authority
CN
China
Prior art keywords
electric power
voltage
power spring
frequency
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611152099.2A
Other languages
English (en)
Other versions
CN106786612B (zh
Inventor
马刚
陈祎熙
陈怀毅
徐谷超
李枫
蒋林洳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Qifeng Power Technology Co ltd
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201611152099.2A priority Critical patent/CN106786612B/zh
Publication of CN106786612A publication Critical patent/CN106786612A/zh
Application granted granted Critical
Publication of CN106786612B publication Critical patent/CN106786612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks

Abstract

本发明公开了一种自适应调节电压与频率的电力弹簧控制方法,首先获取电力弹簧的输出电压/电流的实时值;然后根据输出电流的实时值和延时值得到输出电流实时变比倒数,根据输出电压比输出电流的实时值和延时值得到非关键负载等效阻抗模实时变比;最后将预设的调压PI后置增益累乘输出电流实时变比倒数,作为实时的调压PI后置增益,将预设的调频PI后置增益累乘非关键负载等效阻抗模实时变比,作为实时的调频PI后置增益。本发明通过输出反馈使控制回路参数跟随非关键负载动态变化,达到电力弹簧自适应调压/调频的目的。

Description

一种自适应调节电压与频率的电力弹簧控制方法
技术领域
本发明涉及新能源发电并网及变换技术领域,尤其涉及一种自适应调节电压与频率的电力弹簧控制方法。
背景技术
能源和环境问题是如今社会面临的主要问题之一,用清洁新能源代替传统能源将是必然发展趋势。风能和太阳能作为众多新能源中潜力最大、最有开发价值的能源,由于其资源丰富、污染小等优点,其开发与利用正受到人们高度重视。近年来,利用风能或太阳能作为一次能源进行发电的分布式发电技术逐渐开始被引入到电力系统中,但由于太阳能与风能都存在着随机性、间歇性、能量波动大等特点,含有分布式发电的电力系统电压和频率都将受到较大影响。
为解决上述问题,一种用以稳定电网电压和频率的新的电力电子装置,即电力弹簧被提出。然而,现有的电力弹簧在实际应用时都是与非关键负载一对一串联构成智能负载投入使用,这种应用方式调节能力有限且成本较高。为了能够与非关键负载一对多串联构成智能负载,需要电力弹簧具备自适应调节能力,以达到在部分非关键负载接入或退出后仍然能有效调节电压和频率,满足稳定性的要求。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种自适应调节电压与频率的电力弹簧控制方法,能够使电力弹簧有能力同时与多个非关键负载串联,提高调节能力的同时减小投资成本。
本发明为解决上述技术问题采用以下技术方案:
一种自适应调节电压与频率的电力弹簧控制方法,包括如下步骤:
步骤1),测取实时母线电压,将其和预设的电压参考值作差;
步骤2),将实时母线电压和预设的电压参考值之间的电压差值送入调压PI;
步骤3),对经过调压PI后的电压差值进行自适应调压增益;
步骤3.1),获取电力弹簧输出电流的实时值;
步骤3.2),将电力弹簧输出电流的实时值送入延时元件,得到电力弹簧输出电流的延时值;
步骤3.3),根据电力弹簧输出电流的实时值和延时值得到输出电流实时变比倒数;
步骤3.4),将预设的调压PI后置增益累乘输出电流实时变比倒数,得到实时的调压PI后置增益;
步骤3.5),将经过调压PI后的电压差值乘以实时的调压PI后置增益;
步骤4),对经过自适应调压增益的电压差值取绝对值、限幅,得到调制参数mv
步骤5),将mv与电力弹簧逆变器直流侧电压Vdc/2相乘得到调压调制波的幅值;
步骤6),将经过调压PI后的电压差值输入符号函数后乘以π/2,然后加上电力弹簧输出电流的相位值得到调压调制波的相位值;
步骤7),测取实时系统频率,将其与预设的频率参考值作差;
步骤8),将实时系统频率和预设的频率参考值之间的频率差值送入调频PI;
步骤9),对经过调频PI后的频率差值进行自适应调频增益;
步骤9.1),获取电力弹簧输出电流和输出电压的实时值,将电力弹簧的输出电压除以其输出电流得到非关键负载等效阻抗模的实时值;
步骤9.2),将非关键负载等效阻抗模的实时值送入延时元件,得到非关键负载等效阻抗模的延时值;
步骤9.3),根据非关键负载等效阻抗模的实时值和延时值得到非关键负载等效阻抗模实时变比;
步骤9.4),将预设的调频PI后置增益累乘非关键负载等效阻抗模实时变比,得到实时的调频PI后置增益;
步骤9.5),将经过调频PI后的频率差值乘以实时的调频PI后置增益;
步骤10),对经过自适应调频增益的频率差值取绝对值、限幅,得到调制参数mf
步骤11),将mf与电力弹簧逆变器直流侧电压Vdc/2相乘得到调频调制波的幅值;
步骤12),将经过调频PI的频率差值输入符号函数后乘以π/2,然后加上π/2,接着再加上电力弹簧输出电流的相位值,得到调频调制波的相位值;
步骤13),将上述得到的调压调制波加上上述得到的调频调制波得到综合调制波;
步骤14),利用综合调制波控制电力弹簧中的PWM逆变器,使之产生相应的等幅脉冲。
作为本发明一种自适应调节电压与频率的电力弹簧控制方法进一步的优化方案,所述步骤3)采用以下数学模型进行自适应调压增益:
其中,kv(t-)为t时刻前的瞬时调压PI后置增益;kv(t)为t时刻的瞬时调压PI后置增益;为t时刻前的电力弹簧瞬时输出电流;为t时刻的电力弹簧瞬时输出电流。
作为本发明一种自适应调节电压与频率的电力弹簧控制方法进一步的优化方案,所述步骤9)采用以下数学模型进行自适应调频增益:
其中,kf(t-)为t时刻前的瞬时调频PI后置增益;kf(t)为t时刻的瞬时调频PI后置增益;为t时刻前的瞬时非关键负载等效阻抗模;为t时刻的瞬时非关键负载等效阻抗模。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
为了使电力弹簧能够与多个非关键负载同时串联,本发明通过输出电压反馈和输出电流反馈动态调节控制回路中的PI后置增益,使在部分非关键负载投入或退出后电力弹簧仍能有效调节电压和频率。通过仿真实例验证,该方法能够使电力弹簧具备自适应能力。
附图说明
图1为本发明一种实施例的结构示意图;
图2为图1中自适应调压控制回路示意图;
图3为图1中自适应调频控制回路示意图;
图4为图2与图3中自适应调压/调频增益示意图;
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明公开了一种自适应调节电压与频率的电力弹簧控制方法,包括如下步骤:
步骤1),测取实时母线电压,将其和预设的电压参考值作差;
步骤2),将实时母线电压和预设的电压参考值之间的电压差值送入调压PI;
步骤3),对经过调压PI后的电压差值进行自适应调压增益;
步骤3.1),获取电力弹簧输出电流的实时值;
步骤3.2),将电力弹簧输出电流的实时值送入延时元件,得到电力弹簧输出电流的延时值;
步骤3.3),根据电力弹簧输出电流的实时值和延时值得到输出电流实时变比倒数;
步骤3.4),将预设的调压PI后置增益累乘输出电流实时变比倒数,得到实时的调压PI后置增益;
步骤3.5),将经过调压PI后的电压差值乘以实时的调压PI后置增益;
步骤4),对经过自适应调压增益的电压差值取绝对值、限幅,得到调制参数mv
步骤5),将mv与电力弹簧逆变器直流侧电压Vdc/2相乘得到调压调制波的幅值;
步骤6),将经过调压PI后的电压差值输入符号函数后乘以π/2,然后加上电力弹簧输出电流的相位值得到调压调制波的相位值;
步骤7),测取实时系统频率,将其与预设的频率参考值作差;
步骤8),将实时系统频率和预设的频率参考值之间的频率差值送入调频PI;
步骤9),对经过调频PI后的频率差值进行自适应调频增益;
步骤9.1),获取电力弹簧输出电流和输出电压的实时值,将电力弹簧的输出电压除以其输出电流得到非关键负载等效阻抗模的实时值;
步骤9.2),将非关键负载等效阻抗模的实时值送入延时元件,得到非关键负载等效阻抗模的延时值;
步骤9.3),根据非关键负载等效阻抗模的实时值和延时值得到非关键负载等效阻抗模实时变比;
步骤9.4),将预设的调频PI后置增益累乘非关键负载等效阻抗模实时变比,得到实时的调频PI后置增益;
步骤9.5),将经过调频PI后的频率差值乘以实时的调频PI后置增益;
步骤10),对经过自适应调频增益的频率差值取绝对值、限幅,得到调制参数mf
步骤11),将mf与电力弹簧逆变器直流侧电压Vdc/2相乘得到调频调制波的幅值;
步骤12),将经过调频PI的频率差值输入符号函数后乘以π/2,然后加上π/2,接着再加上电力弹簧输出电流的相位值,得到调频调制波的相位值;
步骤13),将上述得到的调压调制波加上上述得到的调频调制波得到综合调制波;
步骤14),利用综合调制波控制电力弹簧中的PWM逆变器,使之产生相应的等幅脉冲。
等幅脉冲经过低通滤波器滤波后得到与综合调制波相符的电力弹簧电压。电力弹簧与对电压波动有较宽承受范围的非关键负载串联,通过牺牲非关键负载的电压质量达到稳定母线电压和系统频率的作用,自适应能力使在非关键负载变动的情况下电力弹簧仍能稳定运行。
所述步骤3)采用以下数学模型进行自适应调压增益:
其中,kv(t-)为t时刻前的瞬时调压PI后置增益;kv(t)为t时刻的瞬时调压PI后置增益;为t时刻前的电力弹簧瞬时输出电流;为t时刻的电力弹簧瞬时输出电流。
所述步骤9)采用以下数学模型进行自适应调频增益:
其中,kf(t-)为t时刻前的瞬时调频PI后置增益;kf(t)为t时刻的瞬时调频PI后置增益;为t时刻前的瞬时非关键负载等效阻抗模;为t时刻的瞬时非关键负载等效阻抗模。
如图1所示,本发明公开了一种自适应调节电压与频率的电力弹簧控制方法的具体实施例,将电力弹簧与非关键负载组串联构成智能负载支路,自适应调压控制回路根据实时母线电压偏差值计算得到调压调制波自适应调频控制回路根据实时系统频率偏差值计算得到调频调制波调压调制波和调频调制波的矢量和作为PWM逆变器的综合调制波,PWM逆变器的输出电压经过滤波电容和滤波电感组成的低通滤波电路后得到频率近似工频的电力弹簧电压这种实施例主要应用于含有分布式电源的供电回路中。
如图2所示,自适应调压控制回路中,实时母线电压均方根值VS与参考值VS-REF相减得到的偏差量先后经过调压PI控制器、自适应调压增益、取绝对值(abs)、限幅得到调制参数mv,mv与逆变器直流侧电压Vdc/2相乘后得到调压调制波的幅值。调压PI控制器的输出量经过符号函数后乘以π/2,加上电力弹簧输出电流的相位值得到调压调制波的相位。
如图3所示,自适应调频控制回路中,实时系统频率f与参考值fREF相减得到的偏差量先后经过调频PI控制器、自适应调频增益、取绝对值(abs)、限幅得到调制参数mf,mf与逆变器直流侧电压Vdc/2相乘后得到调频调制波的幅值。调频PI控制器的输出量经过符号函数后乘以π/2并加上π/2,再加上电力弹簧输出电流的相位值得到调频调制波的相位。
如图4所示,自适应调压增益求取过程中,电力弹簧输出电流的大小作为反馈,经过延时元件1,将的延时值除以实时值,得到输出电流实时变比倒数。调压PI的后置增益经过延时元件2,乘以输出电流实时变比倒数得到实时的调压PI后置增益。
延时元件1的初始输出值设为初始状态下的智能负载支路电流大小,延时时间越短电力弹簧的自适应调压响应速度越快。
延时元件2的初始输出值设为初始状态下试取得到的调压PI后置增益最优值,延时时间越短电力弹簧的自适应调压响应速度越快。
如图4所示,自适应调频增益求取过程中,电力弹簧的输出电压大小和输出电流大小作为反馈,的比值经过延时元件3,将比值的实时值除以延时值,得到非关键负载等效阻抗模实时变比。调频PI的后置增益经过延时元件4,乘以非关键负载等效阻抗模实时变比得到实时的调频PI后置增益。
延时元件3的初始输出值设为初始状态下的非关键负载等效阻抗模值,延时时间越短电力弹簧的自适应调频响应速度越快。
延时元件4的初始输出值设为初始状态下试取得到的调频PI后置增益最优值,延时时间越短电力弹簧的自适应调频响应速度越快。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种自适应调节电压与频率的电力弹簧控制方法,其特征在于,包括如下步骤:
步骤1),测取实时母线电压,将其和预设的电压参考值作差;
步骤2),将实时母线电压和预设的电压参考值之间的电压差值送入调压PI;
步骤3),对经过调压PI后的电压差值进行自适应调压增益;
步骤3.1),获取电力弹簧输出电流的实时值;
步骤3.2),将电力弹簧输出电流的实时值送入延时元件,得到电力弹簧输出电流的延时值;
步骤3.3),根据电力弹簧输出电流的实时值和延时值得到输出电流实时变比倒数;
步骤3.4),将预设的调压PI后置增益累乘输出电流实时变比倒数,得到实时的调压PI后置增益;
步骤3.5),将经过调压PI后的电压差值乘以实时的调压PI后置增益;
步骤4),对经过自适应调压增益的电压差值取绝对值、限幅,得到调制参数mv
步骤5),将mv与电力弹簧逆变器直流侧电压Vdc/2相乘得到调压调制波的幅值;
步骤6),将经过调压PI后的电压差值输入符号函数后乘以π/2,然后加上电力弹簧输出电流的相位值得到调压调制波的相位值;
步骤7),测取实时系统频率,将其与预设的频率参考值作差;
步骤8),将实时系统频率和预设的频率参考值之间的频率差值送入调频PI;
步骤9),对经过调频PI后的频率差值进行自适应调频增益;
步骤9.1),获取电力弹簧输出电流和输出电压的实时值,将电力弹簧的输出电压除以其输出电流得到非关键负载等效阻抗模的实时值;
步骤9.2),将非关键负载等效阻抗模的实时值送入延时元件,得到非关键负载等效阻抗模的延时值;
步骤9.3),根据非关键负载等效阻抗模的实时值和延时值得到非关键负载等效阻抗模实时变比;
步骤9.4),将预设的调频PI后置增益累乘非关键负载等效阻抗模实时变比,得到实时的调频PI后置增益;
步骤9.5),将经过调频PI后的频率差值乘以实时的调频PI后置增益;
步骤10),对经过自适应调频增益的频率差值取绝对值、限幅,得到调制参数mf
步骤11),将mf与电力弹簧逆变器直流侧电压Vdc/2相乘得到调频调制波的幅值;
步骤12),将经过调频PI的频率差值输入符号函数后乘以π/2,然后加上π/2,接着再加上电力弹簧输出电流的相位值,得到调频调制波的相位值;
步骤13),将上述得到的调压调制波加上上述得到的调频调制波得到综合调制波;
步骤14),利用综合调制波控制电力弹簧中的PWM逆变器,使之产生相应的等幅脉冲。
2.根据权利要求1所述的自适应调节电压与频率的电力弹簧控制方法,其特征在于,所述步骤3)采用以下数学模型进行自适应调压增益:
k v ( t ) = k v ( t - ) × | I · E S | ( t - ) / | I · E S | ( t )
其中,kv(t-)为t时刻前的瞬时调压PI后置增益;kv(t)为t时刻的瞬时调压PI后置增益;为t时刻前的电力弹簧瞬时输出电流;为t时刻的电力弹簧瞬时输出电流。
3.根据权利要求1所述的自适应调节电压与频率的电力弹簧控制方法,其特征在于,所述步骤9)采用以下数学模型进行自适应调频增益:
k f ( t ) = k f ( t - ) × ( | V · N C | / | I · E S | ) ( t ) / ( | V · N C | / | I · E S | ) ( t - )
其中,kf(t-)为t时刻前的瞬时调频PI后置增益;kf(t)为t时刻的瞬时调频PI后置增益;为t时刻前的瞬时非关键负载等效阻抗模;为t时刻的瞬时非关键负载等效阻抗模。
CN201611152099.2A 2016-12-14 2016-12-14 一种自适应调节电压与频率的电力弹簧控制方法 Active CN106786612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611152099.2A CN106786612B (zh) 2016-12-14 2016-12-14 一种自适应调节电压与频率的电力弹簧控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611152099.2A CN106786612B (zh) 2016-12-14 2016-12-14 一种自适应调节电压与频率的电力弹簧控制方法

Publications (2)

Publication Number Publication Date
CN106786612A true CN106786612A (zh) 2017-05-31
CN106786612B CN106786612B (zh) 2019-03-29

Family

ID=58888454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611152099.2A Active CN106786612B (zh) 2016-12-14 2016-12-14 一种自适应调节电压与频率的电力弹簧控制方法

Country Status (1)

Country Link
CN (1) CN106786612B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230983A (zh) * 2017-08-01 2017-10-03 东南大学 一种基于功率控制的电力弹簧应用系统及其控制方法
CN107546751A (zh) * 2017-09-26 2018-01-05 国网湖南省电力公司 基于电力弹簧的电压控制电路系统、控制方法及装置
CN107968411A (zh) * 2017-11-10 2018-04-27 中国电力科学研究院有限公司 一种微电网中关键负载的电压控制方法和装置
CN108599193A (zh) * 2018-04-26 2018-09-28 华北电力大学 一种具有移相调频能力的电力弹簧
CN108879783A (zh) * 2018-08-02 2018-11-23 广东电网有限责任公司 一种电力弹簧能源消纳系统
CN110098623A (zh) * 2019-04-29 2019-08-06 南京师范大学 一种基于智能负载的Prosumer单元控制方法
CN111555306A (zh) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 一种风电机组参与区域电网快速调频的系统和方法
CN111682549A (zh) * 2020-05-28 2020-09-18 东南大学 一种三相电力弹簧的有限集模型预测控制策略
CN116914781A (zh) * 2023-09-12 2023-10-20 中国三峡新能源(集团)股份有限公司辽宁分公司 一种新能源快速频率响应系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207193A (zh) * 2015-09-17 2015-12-30 东南大学 一种直流电力弹簧拓扑及其控制方法
KR20160106335A (ko) * 2015-03-02 2016-09-12 군산대학교산학협력단 풍력발전단지 안정화 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160106335A (ko) * 2015-03-02 2016-09-12 군산대학교산학협력단 풍력발전단지 안정화 시스템
CN105207193A (zh) * 2015-09-17 2015-12-30 东南大学 一种直流电力弹簧拓扑及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔺小林等: "基于参数自适应模糊PI的三级倒立摆控制", 《控制工程》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230983B (zh) * 2017-08-01 2020-06-09 东南大学 一种基于功率控制的电力弹簧应用系统及其控制方法
CN107230983A (zh) * 2017-08-01 2017-10-03 东南大学 一种基于功率控制的电力弹簧应用系统及其控制方法
CN107546751A (zh) * 2017-09-26 2018-01-05 国网湖南省电力公司 基于电力弹簧的电压控制电路系统、控制方法及装置
CN107546751B (zh) * 2017-09-26 2019-07-19 国网湖南省电力公司 基于电力弹簧的电压控制电路系统、控制方法及装置
CN107968411A (zh) * 2017-11-10 2018-04-27 中国电力科学研究院有限公司 一种微电网中关键负载的电压控制方法和装置
CN107968411B (zh) * 2017-11-10 2023-09-22 中国电力科学研究院有限公司 一种微电网中关键负载的电压控制方法和装置
CN108599193A (zh) * 2018-04-26 2018-09-28 华北电力大学 一种具有移相调频能力的电力弹簧
CN108599193B (zh) * 2018-04-26 2020-09-08 华北电力大学 一种具有移相调频能力的电力弹簧
CN108879783B (zh) * 2018-08-02 2021-01-26 广东电网有限责任公司 一种电力弹簧能源消纳系统
CN108879783A (zh) * 2018-08-02 2018-11-23 广东电网有限责任公司 一种电力弹簧能源消纳系统
CN110098623A (zh) * 2019-04-29 2019-08-06 南京师范大学 一种基于智能负载的Prosumer单元控制方法
CN111555306A (zh) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 一种风电机组参与区域电网快速调频的系统和方法
CN111555306B (zh) * 2020-04-29 2023-09-01 云南电网有限责任公司电力科学研究院 一种风电机组参与区域电网快速调频的系统和方法
CN111682549B (zh) * 2020-05-28 2022-04-22 东南大学 一种三相电力弹簧的有限集模型预测控制策略
CN111682549A (zh) * 2020-05-28 2020-09-18 东南大学 一种三相电力弹簧的有限集模型预测控制策略
CN116914781A (zh) * 2023-09-12 2023-10-20 中国三峡新能源(集团)股份有限公司辽宁分公司 一种新能源快速频率响应系统及方法
CN116914781B (zh) * 2023-09-12 2023-12-01 中国三峡新能源(集团)股份有限公司辽宁分公司 一种新能源快速频率响应系统及方法

Also Published As

Publication number Publication date
CN106786612B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106786612A (zh) 一种自适应调节电压与频率的电力弹簧控制方法
CN104810857B (zh) 一种单相光伏并网发电系统输出功率平滑控制装置及控制方法
Saxena et al. A spontaneous control for grid integrated solar photovoltaic energy conversion systems with voltage profile considerations
CN103929054A (zh) 一种用于光伏并网逆变器的软启动方法
Rasul et al. Harmonic mitigation of a grid-connected photovoltaic system using shunt active filter
CN101483345A (zh) 一种宽输入范围光伏并网逆变器的控制方法
CN105305505A (zh) 具有电压控制功能的光伏并网逆变器
CN108777497A (zh) 一种双级式光伏发电主动参与电网频率调节控制策略
Debdouche et al. Robust integral backstepping control microgrid connected photovoltaic System with battery energy storage through multi-functional voltage source inverter using direct power control SVM strategies
Kumar et al. Power quality improved grid-interfaced PV assisted onboard EV charging infrastructure for smart households consumers
CN105119314B (zh) 一种用于功率单元直流电压平衡控制的动态切换方法
Swathi et al. ANN Based Shunt Active Power Filter for Harmonic Mitigation in Grid Connected PV System
CN108565867A (zh) V-i-q自动调节电压及无功功率协同控制系统及方法
CN103916008A (zh) 三电平直流变换器输出电容均压控制系统及其控制方法
Daniel et al. Hybrid filter for distorted voltage source in microgrids
CN107069820B (zh) 分布式可再生能源发电并网功率波动控制系统及控制方法
Patil Fuzzy based MPPT technique for PV system
Jha et al. A power saving approach to self-sustained microgrid
KS et al. The Role of IOT & AI in Battery Management of Electric Vehicles
Prakash et al. Fuzzy logic controller for low voltage ride through capability improvement of grid connected photovoltaic power plants
Ambikapathy et al. Adaptive backstepping fuzzy logic controller for the pv battery system
CN113113936B (zh) 一种直流电站异步发电系统功率均衡控制方法
CN113014105B (zh) 一种电力电子变压器的控制装置和方法
CN109725267A (zh) 一种固态变压器的测试电路及其测试方法
CN116979608B (zh) 一种光伏并网逆变器过压限功率控制方法及其系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221221

Address after: Floor 5, Building B4, No. 118, Software Avenue, Yuhuatai District, Nanjing, Jiangsu Province, 210000

Patentee after: JIANGSU QIFENG POWER TECHNOLOGY Co.,Ltd.

Address before: 210024, No. 122, Ning Hai Road, Gulou District, Jiangsu, Nanjing

Patentee before: NANJING NORMAL University