CN106777761A - 一种液力自动重型车动力传动一体化匹配方法 - Google Patents

一种液力自动重型车动力传动一体化匹配方法 Download PDF

Info

Publication number
CN106777761A
CN106777761A CN201611267219.3A CN201611267219A CN106777761A CN 106777761 A CN106777761 A CN 106777761A CN 201611267219 A CN201611267219 A CN 201611267219A CN 106777761 A CN106777761 A CN 106777761A
Authority
CN
China
Prior art keywords
speed
engine
max
torque
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611267219.3A
Other languages
English (en)
Inventor
张文
周亚伟
韩贵远
刘春颖
苏夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiben Trucks Group Co Ltd
Original Assignee
Beiben Trucks Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiben Trucks Group Co Ltd filed Critical Beiben Trucks Group Co Ltd
Priority to CN201611267219.3A priority Critical patent/CN106777761A/zh
Publication of CN106777761A publication Critical patent/CN106777761A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本发明公开了一种液力自动重型车动力传动一体化匹配方法,考虑车辆最高车速与0~60km/h加速时间这两个汽车动力性评价指标,将这两个评价指标同时作为目标函数,提出了一种基于最高车速和加速性能相结合的多目标优化设计方法,可得到不同性能偏好下的动力传动参数优化结果。本发明在提高优化精度的同时,有效缩短汽车研发时间,以及针对汽车动力传动系统这种不可微、不连续、非线性的复杂问题,采用带精英策略的非梯度算法,消除设计人员经验因素对优化匹配结果的影响。

Description

一种液力自动重型车动力传动一体化匹配方法
技术领域
本发明属于重型商用车动力传动系统技术领域,具体涉及一种液力自动重型车动力传动一体化匹配方法。
背景技术
针对汽车动力传动系统优化匹配的研究中,传统方法有穷举法、试验法等,采用穷举的方式或者正交试验法,对动力系统或者传统系统参数进行优化选择。传统方法的优点在于简单可行,但优化时间很长,效率较低,优化精度不高。
发明内容
本发明的目的是提供一种液力自动重型车动力传动一体化匹配方法,解决现有方法中存在的优化时间较长,效率较低,优化精度不高的问题。
本发明的技术方案为:。
有益效果:本发明能够在汽车设计初始阶段预测汽车动力性能的优劣及其可优化空间,根据车辆的设计要求及使用环境,选择动力传动系统参数匹配,可快速、高效的提供优化设计方案,缩短汽车研发周期及降低成本,提高车辆性能。在样车试验阶段,根据台架试验数据,结合样车试验状态,通过微调变速器换挡规律和换档品质,如微调变速器换挡转速,获取更佳的车辆动力性和燃油经济性。在提高优化精度的同时,有效缩短汽车研发时间,以及针对汽车动力传动系统这种不可微、不连续、非线性的复杂问题,采用带精英策略的非梯度算法,消除设计人员经验因素对优化匹配结果的影响。
附图说明
图1为本发明的工作流程图;
图2为发动机与液力变矩器共同工作输入特性图;
图3为发动机与液力变矩器共同工作输出特性图;
图4为NSGA-II算法的实现。
具体实施方式
为使本发明的目的、内容和优点更加清楚,对本发明的具体实施方式作进一步详细描述。
本发明提供一种液力自动重型车动力传动一体化匹配方法,考虑车辆最高车速与0~60km/h加速时间这两个汽车动力性评价指标,将这两个评价指标同时作为目标函数,提出了一种基于最高车速和加速性能相结合的多目标优化设计方法,可得到不同性能偏好下的动力传动参数优化结果。具体步骤如下:
步骤1:建立汽车动力性仿真模型,得到整车的最高车速、0~60km/h加速时间以及最大爬坡度。在MATLAB环境下建立动力性仿真模型,程序流程如图1所示。
步骤2:根据发动机与液力变矩器共同工作特性,得出发动机与液力变矩器共同工作数学模型,根据汽车的驱动力与行驶阻力的平衡关系建立汽车行驶方程:发动机与液力变矩器共同工作特性是指发动机与液力变矩器共同工作输入、输出特性的变化规律,确定发动机与液力变矩器共同工作特性就是根据发动机的特性和液力变矩器的原始特性,通过台架测试确定共同工作输入特性、共同工作区间及其共同工作输出特性;发动机与液力变矩器共同工作输入特性见图2,发动机与液力变矩器共同工作输出特性见图3。
根据测试得到的发动机转速参数
发动机转矩Te与转速ne的关系常采用多项式描述:
式中:Te为发动机转矩,单位为N·m;ne为发动机转速,单位为r/min;a0、a1、a2…ak为多项式系数,由最小二乘法确定;拟合阶数k随特性曲线而异,一般取3、4、5。发动机转矩和发动机转速从发动机外特性获得。
液力变矩器施加于发动机的负载特性为:
式中:Tp为泵轮转矩,单位为N·m;γ为工作油液重度,单位为N/m3;D为变矩器有效直径,单位为m;np为泵轮转速,单位为r/min;λp为泵轮转矩系数,单位为min2/(m·r2),各数据从液力变矩器原始特性获得。
发动机和液力变矩器共同工作的必要条件是
Te=Tp;ne=np
由上述公式可计算出发动机与变矩器共同工作的一组参数点。对该组参数点按以下关系式求解可得发动机与变矩器共同工作的输出特性离散点。
通过使用最小二乘法,发动机与变矩器共同工作的输出特性数学模型为:
式中:Tt为涡轮轴输出转矩,单位为N·m,nt为涡轮轴转速,单位为r/min,a0、a1、a2…ak为多项式系数,由最小二乘法确定;拟合阶数k随特性曲线而异,一般取3、4、5。
建立的汽车行驶方程为:
Ft=Ff+Fw+Fi+Fj
式中:Ft,Ff,Fw,Fi,Fj分别为汽车驱动力,滚动阻力,空气阻力,坡度阻力,加速阻力,单位为N;ig,ib,i0分别为变速器速比,分动器速比,主减速器速比;ηT为传动系机械效率;r为车轮滚动半径,单位为m;m为汽车整备质量,单位为kg;f为滚动阻力系数,α为道路坡度,单位为度(°);CD为空气阻力系数;A为迎风面积,单位为m2;ua为车速,单位为km/h;δ为汽车旋转质量换算系数。上述参数均可从整车和部件固有参数中获得。
步骤3:求解步骤2中所得的车辆行驶方程,建立最高车速、0~60km/h加速时间的目标函数,这里分别以车辆最高车速计算值的最大值和0~60km/h加速时间计算值的最小值作为目标值。
最高车速指汽车在水平良好路面上所能达到的最高行驶速度,此时汽车的加速度和道路坡度均为0,其计算公式如下:
加速时间通常用汽车在水平良好路面行驶时的加速时间t来表示,此时道路坡度为0,其计算公式为:
在车辆最高车速计算值中选取最大的值作为第一个优化目标,0~60km/h加速时间的计算值中选取最短时间作为第二个优化目标,建立如下目标函数:
式中:X为优化设计向量,f1(X)、f2(X)分别为建立的两个目标函数,uamax为最高车速,单位为km/h,tmin为0~60km/h最短加速时间,单位为s。
步骤4:选取发动机最大功率Pemax、液力变矩器有效直径D以及主减速器速比i0作为优化设计变量,以车辆动力性设计指标作为约束,建立一个多目标优化模型:
X=[Pemax,D,i0]
约束条件有:ua≥100km/h,t≤24s,imax≥60%,umin≤5km/h。其中,ua表示最高车速,t表示0~60km/h加速时间,imax表示最大爬坡度,umin表示最低稳定车速。
综合步骤2、步骤3所述,建立优化模型如下:
F(X)={f1(X),f2(X)}
X=[Pemax,D,i0]
ua≥100km/h
t≤24s
imax≥60%
umin≤5km/h
式中:F(X)为目标函数向量。
步骤5:根据步骤4得到的多目标优化模型,采用带精英策略的非支配排序遗传算法NSGA-II进行优化,得出一个pareto前沿面,根据车辆追求的动力性还是追求的经济性不同偏好选取最优妥协解,通过最优妥协解选取优化后的发动机最大功率Pemax、液力变矩器有效直径D以及主减速器速比i0,指导设计人员选取最佳的发动机、变速器、主减速器型号。
NSGA-II算法的实现步骤如图4所示。
步骤6:通过发动机变速器台架联调试验,分析变速器换挡规律和换档品质,通过微调变速器换挡转速,进一步提升车辆动力性和燃油经济性。

Claims (5)

1.一种液力自动重型车动力传动一体化匹配方法,其特征在于:具体步骤如下:
步骤1:建立汽车动力性仿真模型,得到整车的最高车速、0~60km/h加速时间以及最大爬坡度;
步骤2:根据发动机与液力变矩器共同工作特性,得出发动机与液力变矩器共同工作数学模型,根据汽车的驱动力与行驶阻力的平衡关系建立汽车行驶方程;
步骤3:根据步骤2的车辆行驶方程,建立最高车速、0~60km/h加速时间的目标函数;
步骤4:选取发动机最大功率Pemax、液力变矩器有效直径D以及主减速器速比i0作为优化设计变量,以车辆动力性设计指标作为约束,建立一个多目标优化模型:
X=[Pemax,D,i0]
约束条件有:ua≥100km/h,t≤24s,imax≥60%,umin≤5km/h。其中,ua表示最高车速,t表示0~60km/h加速时间,imax表示最大爬坡度,umin表示最低稳定车速;
步骤5:根据步骤4得到的多目标优化模型,进行优化,得出一个pareto前沿面,根据车辆追求的动力性还是追求的经济性不同偏好选取最优妥协解,通过最优妥协解选取优化后的发动机最大功率Pemax、液力变矩器有效直径D以及主减速器速比i0;根据上述参数选取最佳的发动机、变速器、主减速器型号;
步骤6:通过发动机变速器台架联调试验,分析变速器换挡规律和换档品质,微调变速器换挡转速。
2.根据权利要求1所述的一种液力自动重型车动力传动一体化匹配方法,其特征在于:发动机与液力变矩器共同工作特性是指发动机与液力变矩器共同工作输入、输出特性的变化规律,确定发动机与液力变矩器共同工作特性就是根据发动机的特性和液力变矩器的原始特性,通过台架测试确定共同工作输入特性、共同工作区间及其共同工作输出特性;发动机与液力变矩器共同工作输入特性见图2,发动机与液力变矩器共同工作输出特性见图3。
根据测试得到的发动机转速参数
发动机转矩Te与转速ne的关系常采用多项式描述:
T e = a 0 + a 1 n e + a 2 n e 2 + ... + a k n e k
式中:Te为发动机转矩,单位为N·m;ne为发动机转速,单位为r/min;a0、a1、a2…ak为多项式系数,由最小二乘法确定;拟合阶数k随特性曲线而异,一般取3、4、5。发动机转矩和发动机转速从发动机外特性获得。
液力变矩器施加于发动机的负载特性为:
T p = λ p γD 5 n p 2
式中:Tp为泵轮转矩,单位为N·m;γ为工作油液重度,单位为N/m3;D为变矩器有效直径,单位为m;np为泵轮转速,单位为r/min;λp为泵轮转矩系数,单位为min2/(m·r2),各数据从液力变矩器原始特性获得。
发动机和液力变矩器共同工作的必要条件是
Te=Tp;ne=np
由上述公式可计算出发动机与变矩器共同工作的一组参数点。对该组参数点按以下关系式求解可得发动机与变矩器共同工作的输出特性离散点。
T t i n t i = K i 0 0 i T p i n p i
通过使用最小二乘法,发动机与变矩器共同工作的输出特性数学模型为:
T t = a 0 + a 1 n t + a 2 n t 2 + ... + a k n t k
式中:Tt为涡轮轴输出转矩,单位为N·m,nt为涡轮轴转速,单位为r/min,a0、a1、a2…ak为多项式系数,由最小二乘法确定;拟合阶数k随特性曲线而异,一般取3、4、5。
建立的汽车行驶方程为:
Ft=Ff+Fw+Fi+Fj
式中:Ft,Ff,Fw,Fi,Fj分别为汽车驱动力,滚动阻力,空气阻力,坡度阻力,加速阻力,单位为N;ig,ib,i0分别为变速器速比,分动器速比,主减速器速比;ηT为传动系机械效率;r为车轮滚动半径,单位为m;m为汽车整备质量,单位为kg;f为滚动阻力系数,α为道路坡度,单位为度(°);CD为空气阻力系数;A为迎风面积,单位为m2;ua为车速,单位为km/h;δ为汽车旋转质量换算系数。上述参数均可从整车和部件固有参数中获得。
3.根据权利要求2所述的一种液力自动重型车动力传动一体化匹配方法,其特征在于:步骤2中,,这里分别以车辆最高车速计算值的最大值和0~60km/h加速时间计算值的最小值作为目标值。
最高车速指汽车在水平良好路面上所能达到的最高行驶速度,此时汽车的加速度和道路坡度均为0,其计算公式如下:
[ Σ 0 k a k ( i g i b i 0 u a m a x 0.377 r ) k ] i g i b i 0 η T r - m g f - C D A 21.15 u a m a x 2 = 0
加速时间通常用汽车在水平良好路面行驶时的加速时间t来表示,此时道路坡度为0,其计算公式为:
t = 1 3.6 ∫ u 1 u 2 δ m F t - F f - F w d u
在车辆最高车速计算值中选取最大的值作为第一个优化目标,0~60km/h加速时间的计算值中选取最短时间作为第二个优化目标,建立如下目标函数:
max f 1 ( X ) = u a max min f 2 ( X ) = t m i n
式中:X为优化设计向量,f1(X)、f2(X)分别为建立的两个目标函数,uamax为最高车速,单位为km/h,tmin为0~60km/h最短加速时间,单位为s。
4.根据权利要求3所述的一种液力自动重型车动力传动一体化匹配方法,其特征在于:步骤4中,结合步骤2、步骤3所述,建立优化模型如下:
F(X)={f1(X),f2(X)}
X=[Pemax,D,i0]
ua≥100km/h
t≤24s
imax≥60%
umin≤5km/h
式中:F(X)为目标函数向量。
5.根据权利要求1~4任一项所述的一种液力自动重型车动力传动一体化匹配方法,其特征在于:步骤5中,采用带精英策略的非支配排序遗传算法进行优化。
CN201611267219.3A 2016-12-31 2016-12-31 一种液力自动重型车动力传动一体化匹配方法 Pending CN106777761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611267219.3A CN106777761A (zh) 2016-12-31 2016-12-31 一种液力自动重型车动力传动一体化匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611267219.3A CN106777761A (zh) 2016-12-31 2016-12-31 一种液力自动重型车动力传动一体化匹配方法

Publications (1)

Publication Number Publication Date
CN106777761A true CN106777761A (zh) 2017-05-31

Family

ID=58953035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611267219.3A Pending CN106777761A (zh) 2016-12-31 2016-12-31 一种液力自动重型车动力传动一体化匹配方法

Country Status (1)

Country Link
CN (1) CN106777761A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271702A (zh) * 2018-09-11 2019-01-25 贵州大学 工程车发动机与液力变矩器逆向匹配的优化方法
CN109840343A (zh) * 2018-08-29 2019-06-04 南京金龙新能源汽车研究院有限公司 基于Visual Studio和Matlab混合编程的整车动力匹配及性能分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582616A (zh) * 2012-02-22 2012-07-18 清华大学 一种cvt混合动力汽车动力源转矩优化分配方法
CN102799743A (zh) * 2012-07-31 2012-11-28 奇瑞汽车股份有限公司 一种纯电动车动力系统匹配方法
CN105608299A (zh) * 2016-03-04 2016-05-25 安徽工程大学 基于多目标优化的纯电动车动力系统参数匹配方法
CN105782428A (zh) * 2016-04-11 2016-07-20 福建省汽车工业集团云度新能源汽车股份有限公司 一种汽车变速器传动比优化方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582616A (zh) * 2012-02-22 2012-07-18 清华大学 一种cvt混合动力汽车动力源转矩优化分配方法
CN102799743A (zh) * 2012-07-31 2012-11-28 奇瑞汽车股份有限公司 一种纯电动车动力系统匹配方法
CN105608299A (zh) * 2016-03-04 2016-05-25 安徽工程大学 基于多目标优化的纯电动车动力系统参数匹配方法
CN105782428A (zh) * 2016-04-11 2016-07-20 福建省汽车工业集团云度新能源汽车股份有限公司 一种汽车变速器传动比优化方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
仝鑫: "《自动变速器换档规律及仿真》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
崔功杰: "《工程车辆三参数最佳换挡规律及控制方法研究》", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
杜发荣 等: "《电动汽车动力传动系统评价体系参数》", 《辽宁工程技术大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840343A (zh) * 2018-08-29 2019-06-04 南京金龙新能源汽车研究院有限公司 基于Visual Studio和Matlab混合编程的整车动力匹配及性能分析方法
CN109840343B (zh) * 2018-08-29 2023-11-14 南京金龙新能源汽车研究院有限公司 基于Visual Studio和Matlab混合编程的整车动力匹配及性能分析方法
CN109271702A (zh) * 2018-09-11 2019-01-25 贵州大学 工程车发动机与液力变矩器逆向匹配的优化方法

Similar Documents

Publication Publication Date Title
CN111267638B (zh) 一种商用车山路工况驾驶的控制方法、系统、设备及介质
CN108333921B (zh) 基于动态规划算法的汽车换挡规律优化方法
CN105782428B (zh) 一种汽车变速器传动比优化方法及装置
CN110569527B (zh) 一种基于混合粒子群算法的汽车变速器传动比设计与优化方法
CN108223779B (zh) 变速器最高挡速比的确定方法和装置
Eckert et al. Multi-speed gearbox design and shifting control optimization to minimize fuel consumption, exhaust emissions and drivetrain mechanical losses
CN113565954B (zh) 一种基于工况的换挡优化方法和系统
CN105608299A (zh) 基于多目标优化的纯电动车动力系统参数匹配方法
JP2017512954A (ja) 自動車のトランスミッションのシフト挙動を評価するための方法
CN109555847B (zh) 一种基于动态规划的混合动力公交车amt换挡方法
Mashadi et al. Simulation of automobile fuel consumption and emissions for various driver’s manual shifting habits
CN104175980A (zh) 一种混合动力汽车能源匹配方法及系统
CN106777761A (zh) 一种液力自动重型车动力传动一体化匹配方法
Fu et al. Gear shift optimization for off-road construction vehicles
Eckert et al. Experimental validation for the employment of shifting strategies optimized via i-AWGA in a gear shift indicator system for manual transmission vehicles
CN105201663B (zh) 一种实现发动机最佳经济转速的控制方法
CN111783228A (zh) 一种面向节能的纯电动物流车三档变速系统参数匹配优化方法
EP2480440B1 (en) Method for forecasting the evolution of the magnitude of a data for a vehicle journey
CN115352442B (zh) 融合挡位优化的商用车预见性节能巡航分层控制方法
CN101441132B (zh) 一种减少汽车最小百公里加速时间的方法
Cheng et al. Modeling and simulation of plug-in hybrid electric powertrain system for different vehicular application
CN103144636B (zh) 一种非道路车辆自动变速器经济性换挡控制方法
Peng et al. Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine
Lei et al. Research on optimal gearshift strategy for stepped automatic transmission based on vehicle power demand
He et al. Dynamic modification of Two-parameter shift schedule for automatic mechanical transmission in electric bus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531