CN106775999A - 基于gpu的腔内扫描光声系统及数据处理方法 - Google Patents

基于gpu的腔内扫描光声系统及数据处理方法 Download PDF

Info

Publication number
CN106775999A
CN106775999A CN201611006877.7A CN201611006877A CN106775999A CN 106775999 A CN106775999 A CN 106775999A CN 201611006877 A CN201611006877 A CN 201611006877A CN 106775999 A CN106775999 A CN 106775999A
Authority
CN
China
Prior art keywords
gpu
data
signal
image
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611006877.7A
Other languages
English (en)
Inventor
杨思华
熊科迪
邢达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201611006877.7A priority Critical patent/CN106775999A/zh
Publication of CN106775999A publication Critical patent/CN106775999A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明公开了一种基于GPU的腔内扫描光声系统及数据处理方法,系统包括:激光光源、信号触发器、光纤耦合器、延时器、超声发射接收器、腔内扫描头、数据采集卡、计算机、图像处理器GPU、以及图像显示器。信号触发器发出同步信号触发激光光源和触发超声发射接收器产生光声信号和超声信号,并同步触发采集卡进行采集光声信号和超声信号,采集的信号经过A/D转换后存储在计算机内存中,计算机通过PCIE总线接口将采样数据拷贝至GPU显存,图像处理器GPU进行并行数据处理,计算机将处理后的数据进行图像显示。本发明提出的基于GPU的光声内窥成像系统极大的提高了光声数据投影的运算速度,能够达到临床2D实时成像的要求。

Description

基于GPU的腔内扫描光声系统及数据处理方法
技术领域
本发明涉及腔内图像处理领域,特别涉及一种用GPU实现实时成像的腔内扫描光声系统及数据处理方法。
背景技术
光声成像技术(Photoacoustic Imaging)是一种新型的无损成像技术,由于其具有高分率、高穿透深度、高对比度、无损实时活体成像等优点,在最近20年里得到迅速发展;光声成像技术是指受短脉冲光(脉宽<微秒)辐照的光吸收介质在吸收光能量后快速升温膨胀,由于辐照时间远小于受照介质内部的热传导时间,产生瞬时热膨胀导致应激出超声信号(称为光声信号)。利用超声传感器接收应介质应激出的光声信号,并通过一定的演算算法进行图像重建,可以反演出组织内部光吸收的分布情况,它是一种基于光学吸收差异特性反演组织生理病变的功能成像技术。
由于光声成像的数据量很大,特别是进行光声、超声双模B模式成像时,光声成像的投影数据和超声成像的投影数据需要同时进行算法处理,再将处理得到的数据进行成像。如果采用CPU运算,由于CPU的串行数据处理方式将大大消耗CPU的资源,占用系统通讯,降低光声系统的成像速度。
如果采用DSP、FPGA等硬件处理系统,由于数据采集卡采到的数据为浮点数据,FPGA等硬件处理系统并不适合浮点计算,因此降低了硬件系统的数据处理速度,并且在硬件设计上也会很复杂。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于GPU的腔内扫描光声系统。
本发明的另一目的在于,提供一种基于GPU的腔内扫描光声系统的数据处理方法。
为了达到上述第一目的,本发明采用以下技术方案:
本发明基于GPU的腔内扫描光声系统,包括激光光源、信号触发器、光纤耦合器、延时器、超声发射接收器、腔内扫描头、数据采集卡、计算机、图像处理器GPU、以及图像显示器,所述信号触发器、延时器、超声发射接收器以及腔内扫描头顺序连接,所述信号触发器、激光光源、光纤耦合器以及腔内扫描头顺序连接,所述数据采集卡分别与信号触发器、超声发射接收器以及计算机连接,所述图像处理器GPU和图像显示器均与计算机连接;
所述的信号触发器发出同步触发信号触发激光光源,激光光源发出的脉冲激光经过光纤耦合器进入光纤,经过腔内扫描头旋转扫描后输出光声信号;
所述的信号触发器发出的同步触发信号经过延时器延时一段时间后触发超声发射接收器发射激励电压,激励电压驱动腔内扫描头发射超声信号,腔内扫描头返回超声信号;
所述的数据采集卡接收信号触发器发出的同步触发信号,触发采集卡采集上述的光声信号和超声信号,并将A/D转换后的光声和超声信号作为投影光声图像和超声图像的采样数据存储在计算机内存中;
所述的计算机通过PCIE总线接口将采样数据拷贝至GPU显存,图像处理器GPU进行并行数据处理,并将处理好的结果数据传回计算机,计算机将数据进行图像显示。
作为优选的技术方案,所述图像处理器GPU进行并行数据处理的方法为:
启动GPU的CUDA内核时,CPU将图像像素分配信息传输到GPU,GPU启动并行计算时,GPU的任务分配单元将图像像素分配信息分配到GPU芯片上,并分配相应的二维线程数,每一个线程在宏观上同时读取显存数据进行并行计算。
为了达到上述第二目的,本发明采用以下技术方案:
本发明基于GPU的腔内扫描光声系统的数据处理方法,首先规定一幅图像代表一次B-scan,一次B-scan由θ个采样深度为ρ的A-line组成;采样数据f1n(ρ,θ)是由数据采集卡进行A/D转换后的光声投影数据,f2n(ρ,θ)是由数据采集卡进行A/D转换后的超声投影数据,其中横坐标ρ为采样深度,纵坐标为采样角度θ,n为采样角度θ的采样次数;该方法的具体步骤为:
S1、将采样数据f1n(ρ,θ)、f2n(ρ,θ)存储在计算机内存中,为f1n(ρ,θ)、f2n(ρ,θ)分配内存,内存空间大小为n*ρ*θ;其中f1n(ρ,θ)表示第θ角度第n次采集到的深度为ρ的光声信号,f2n(ρ,θ)表示第θ角度第n次采集到的深度为ρ的超声信号;
S2、为f1n(ρ,θ)、f2n(ρ,θ)分配GPU端显存空间,分配显存空间大小为n*ρ*θ,将f1n(ρ,θ)、f2n(ρ,θ)从主机端内存拷贝到GPU端显存;
S3、为图像显示数组矩阵F1(x,y)、F2(x,y)分配显存空间,分配空间大小为x*y,其x为图像像素点横坐标,y为图像像素点纵坐标;
S4、并行将ρ个f1n(ρ,θ)、f2n(ρ,θ)分别进行去噪运算,得到f1’(ρ,θ)、f2’(ρ,θ);其中f1’(ρ,θ)表示第θ角度的采集到的n次光声信号经过运算得到的一个光声信号,f2’(ρ,θ)表示第θ角度的采集到的n次超声信号经过运算得到的一个超声信号;
S5、根据图像矩阵F1(x,y)和F2(x,y),CPU将图像矩阵像素分配信息传输到GPU,GPU启动并行计算时,GPU的任务分配单元将图像像素分配信息分配到GPU芯片上,每个线程的坐标为(x,y);
S6、线程(x,y)对图像F1(x,y),F2(x,y)进行并行坐标转换,得到对应的f1’(ρ,θ)、f2’(ρ,θ)上的数据点;将f1’(ρ,θ)、f2’(ρ,θ)上的对应点数据值赋值到图像矩阵F1(x,y),F2(x,y)上,对未在f1’(ρ,θ)、f2’(ρ,θ)上的数据点进行双线性内插后赋值到F1(x,y),F2(x,y)上;
S7、为图像显示数组矩阵F1(x,y)、F2(x,y)分配内存空间,将F1(x,y)、F2(x,y)矩阵从GPU端显存拷贝到主机端进行显示,释放所有未释放的内存和显存空间。
作为优选的技术方案,步骤S4中所述的去噪运算是指将每个θ采样到的n个A-Line数据进行中值滤波运算,对应位置的n个值进行取中间值运算,然后取中间值作为滤波后的该位置的数据值。
作为优选的技术方案,步骤S6中所述的坐标转换公式为:
所述的双线性内插法为:ρ′=ρ+Δρ,θ′=θ+Δθ,其中ρ、θ为整数部分;Δρ,Δθ为小数部分,则
F1(x,y)=(1-Δρ)(1-Δθ)f1’(ρ,θ)+(1-Δρ)Δθf1’(ρ,θ+1)+Δρ(1-Δθ)f1’(ρ+1,θ)+ΔρΔθf1’(ρ+1,θ+1);
F2(x,y)=(1-Δρ)(1-Δθ)f2’(ρ,θ)+(1-Δρ)Δθf2’(ρ,θ+1)+Δρ(1-Δθ)f2’(ρ+1,θ)+ΔρΔθf2’(ρ+1,θ+1)。本发明的技术原理如下:
本发明的基于GPU平台的腔内扫描光声系统及数据处理方法是基于CUDA(ComputeUnified Device Architecture),CUDA是一种由NVIDIA公司推出的通用并行计算架构,在计算上已经超越了通用的CPU,该架构使GPU能够解决复杂的计算问题。在CUDA架构下,开发人员可以通过CUDA C语言(CUDA C语言是对标准C语言的一种简单扩展)对GPU编程运算。
在CUDA的架构中,一个系统分为两个部份:Host端和Device端。Host端是指在CPU上执行的系统部份,而Device端则是在显示芯片(GPU)上执行的系统部份。在同一个系统中可以有一个Host和多个Device。CPU主要负责进行逻辑事件的处理和串行计算,GPU负责执行高度线程化的并行数据处理任务。在CUDA程序中,将允许在GPU上的可以被并行执行的步骤称为Kernel(内核函数)。通过GPU并行计算,极大的提高了光声成像速度。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明的基于GPU平台的腔内扫描光声系统及数据处理方法,利用计算机通用显卡GPU,并将基于GPU的统一技术设备构架(CUDA)首次引入到光声系统成像中数据处理和投影,借助GPU多线程并行数据处理能力和浮点计算能力,将光声成像系统的成像速度较基于CPU平台处理的成像速度提高了数十倍,达到了临床2D实时成像的要求。
2、本发明由于采用CUDA并行数据处理方法,光声成像的数据处理速度远远大于CPU方式的数据处理速度,因此可以使用更加复杂的光声成像投影算法,在得到更加精确的光声图像的同时达到临床2D的实时成像要求。
3、本发明由于采用基于CUDA的GPU并行数据处理方法,省去了专用的图像处理系统,因此降低了系统的成本。
附图说明
图1是本发明的系统构成示意图;
图2是本发明的数据处理方法流程图;
图3是模拟样品B扫描成像效果图;其中:图a为投影算法在CPU模式下系统成像图像;图b为投影算法在GPU模式下系统成像图像;
附图标号说明:
1:激光光源;2:信号触发器;
3:光纤耦合器;4:延时器;
5:超声发射接收器;6:腔内扫描头;
7:数据采集卡;8:计算机;
9:图像处理器GPU;10:图像显示。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
如图1所示,本实施例基于GPU的腔内扫描光声系统,包括激光光源1、信号触发器2、光纤耦合器3、延时器4、超声发射接收器5、腔内扫描头6、数据采集卡7、计算机8、图像处理器GPU 9、以及图像显示器10,所述信号触发器2、延时器4、超声发射接收器5以及腔内扫描头6顺序连接,所述信号触发器2、激光光源1、光纤耦合器3以及腔内扫描头6顺序连接,所述数据采集4卡分别与信号触发器2、超声发射接收器5以及计算机8连接,所述图像处理器GPU 9和图像显示器10均与计算机8连接。
工作时,信号触发器2发出同步触发信号触发激光光源1,激光光源1发出的脉冲激光经过光纤耦合器3进入光纤,并通过光纤进入腔内扫描头6,腔内扫描头6经过360°旋转扫描后返回光声信号;信号触发器2发出的同步触发信号经过延时器4延时一段时间后触发超声发射接收器5发射激励电压,激励电压驱动腔内扫描头6发射超声,腔内扫描头6返回超声信号;信号触发器2发出的同步触发信号触发数据采集卡7采集光声信号和超声信号,并将A/D转换后的光声和超声信号作为投影光声图像和超声图像的采样数据存储在计算机8内存中;计算机通过PCIE总线接口将采样数据拷贝至GPU显存,图像处理器GPU9进行并行数据处理,并将处理好的结果数据传回计算机8,计算机将数据进行图像显示10。
本实施例基于GPU的腔内扫描光声系统的数据处理方法,如图2所示,包括下述步骤:
(a)将采样数据f1n(ρ,θ)、f2n(ρ,θ)存储在计算机内存中,为f1n(ρ,θ)、f2n(ρ,θ)分配内存,内存空间大小为n*ρ*θ;
(b)为f1n(ρ,θ)、f2n(ρ,θ)分配GPU端显存空间,分配显存空间大小为n*ρ*θ,将f1n(ρ,θ)、f2n(ρ,θ)从主机端内存拷贝到GPU端显存;
(c)为图像显示数组矩阵F1(x,y)、F2(x,y)分配显存空间,分配空间大小为x*y,其x为图像像素点横坐标,y为图像像素点纵坐标;
(d)并行将ρ个f1n(ρ,θ)、f2n(ρ,θ)分别进行去噪运算,得到f1’(ρ,θ)、f2’(ρ,θ);
(e)为图像矩阵F1(x,y),F2(x,y)分配x*y个并行线程,每个线程的坐标为(x,y);
(f)线程(x,y)对图像F1(x,y),F2(x,y)进行并行坐标转换,得到对应的f1’(ρ,θ)、f2’(ρ,θ)上的数据点;将f1’(ρ,θ)、f2’(ρ,θ)上的对应点数据值赋值到图像矩阵F1(x,y),F2(x,y)上,对未在f1’(ρ,θ)、f2’(ρ,θ)上的数据点进行双线性内插后赋值到F1(x,y),F2(x,y)上;
(g)为图像显示数组矩阵F1(x,y)、F2(x,y)分别内存空间,将F1(x,y)、F2(x,y)矩阵从GPU端显存拷贝到主机端进行显示,释放所有未释放的内存和显存空间。
步骤d中所述的去噪运算是指将每个θ采样到的n个A-Line数据进行中值滤波运算,对应位置的n个值进行取中间值运算,然后取中间值作为滤波后的该位置的数据值。
步骤f中所述的坐标转换公式为:
所述的双线性内插法为:ρ′=ρ+Δρ,θ′=θ+Δθ,其中ρ、θ为整数部分;Δρ,Δθ为小数部分。则
F1(x,y)=(1-Δρ)(1-Δθ)f1’(ρ,θ)+(1-Δρ)Δθf1’(ρ,θ+1)+Δρ(1-Δθ)f1’(ρ+1,θ)+ΔρΔθf1’(ρ+1,θ+1)。
F2(x,y)=(1-Δρ)(1-Δθ)f2’(ρ,θ)+(1-Δρ)Δθf2’(ρ,θ+1)+Δρ(1-Δθ)f2’(ρ+1,θ)+ΔρΔθf2’(ρ+1,θ+1)。
例如:计算100帧B-scan图像,像素大小为768*768。分别采用CPU端和GPU端计算图像投影算法,并用CUDA提供的计时函数进行计时,实验得到结果为CPU端执行100帧B-scan需要约121秒,GPU端需要3秒,基于GPU的投影速度提高了40倍。如图3(a)、图3(b)所示,图3(a)为采用双线性内插算法在CPU模式下的系统成像图,图3(b)为采用双线性内插算法在GPU模式下的系统成像图。
本发明提供的基于GPU的腔内扫描光声系统及数据处理方法,通过GPU并行计算,极大的提高了光声成像速度,同时也提供了一种低成本,高性能的光声成像系统。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.基于GPU的腔内扫描光声系统,其特征在于,包括激光光源、信号触发器、光纤耦合器、延时器、超声发射接收器、腔内扫描头、数据采集卡、计算机、图像处理器GPU、以及图像显示器,所述信号触发器、延时器、超声发射接收器以及腔内扫描头顺序连接,所述信号触发器、激光光源、光纤耦合器以及腔内扫描头顺序连接,所述数据采集卡分别与信号触发器、超声发射接收器以及计算机连接,所述图像处理器GPU和图像显示器均与计算机连接;
所述的信号触发器发出同步触发信号触发激光光源,激光光源发出的脉冲激光经过光纤耦合器进入光纤,经过腔内扫描头旋转扫描后输出光声信号;
所述的信号触发器发出的同步触发信号经过延时器延时一段时间后触发超声发射接收器发射激励电压,激励电压驱动腔内扫描头发射超声信号,腔内扫描头返回超声信号;
所述的数据采集卡接收信号触发器发出的同步触发信号,触发采集卡采集上述的光声信号和超声信号,并将A/D转换后的光声和超声信号作为投影光声图像和超声图像的采样数据存储在计算机内存中;
所述的计算机通过PCIE总线接口将采样数据拷贝至GPU显存,图像处理器GPU进行并行数据处理,并将处理好的结果数据传回计算机,计算机将数据进行图像显示。
2.根据权利要求1所述基于GPU的腔内扫描光声系统,其特征在于,所述图像处理器GPU进行并行数据处理的方法为:
启动GPU的CUDA内核时,CPU将图像像素分配信息传输到GPU,GPU启动并行计算时,GPU的任务分配单元将图像像素分配信息分配到GPU芯片上,并分配相应的二维线程数,每一个线程在宏观上同时读取显存数据进行并行计算。
3.根据权利要求1所述的基于GPU的腔内扫描光声系统的数据处理方法,其特征在于,首先规定一幅图像代表一次B-scan,一次B-scan由θ个采样深度为ρ的A-line组成;采样数据f1n(ρ,θ)是由数据采集卡进行A/D转换后的光声投影数据,f2n(ρ,θ)是由数据采集卡进行A/D转换后的超声投影数据,其中横坐标ρ为采样深度,纵坐标为采样角度θ,n为采样角度θ的采样次数;该方法的具体步骤为:
S1、将采样数据f1n(ρ,θ)、f2n(ρ,θ)存储在计算机内存中,为f1n(ρ,θ)、f2n(ρ,θ)分配内存,内存空间大小为n*ρ*θ;其中f1n(ρ,θ)表示第θ角度第n次采集到的深度为ρ的光声信号,f2n(ρ,θ)表示第θ角度第n次采集到的深度为ρ的超声信号;
S2、为f1n(ρ,θ)、f2n(ρ,θ)分配GPU端显存空间,分配显存空间大小为n*ρ*θ,将f1n(ρ,θ)、f2n(ρ,θ)从主机端内存拷贝到GPU端显存;
S3、为图像显示数组矩阵F1(x,y)、F2(x,y)分配显存空间,分配空间大小为x*y,其x为图像像素点横坐标,y为图像像素点纵坐标;
S4、并行将ρ个f1n(ρ,θ)、f2n(ρ,θ)分别进行去噪运算,得到f1’(ρ,θ)、f2’(ρ,θ);其中f1’(ρ,θ)表示第θ角度的采集到的n次光声信号经过运算得到的一个光声信号,f2’(ρ,θ)表示第θ角度的采集到的n次超声信号经过运算得到的一个超声信号;
S5、根据图像矩阵F1(x,y)和F2(x,y),CPU将图像矩阵像素分配信息传输到GPU,GPU启动并行计算时,GPU的任务分配单元将图像像素分配信息分配到GPU芯片上,每个线程的坐标为(x,y);
S6、线程(x,y)对图像F1(x,y),F2(x,y)进行并行坐标转换,得到对应的f1’(ρ,θ)、f2’(ρ,θ)上的数据点;将f1’(ρ,θ)、f2’(ρ,θ)上的对应点数据值赋值到图像矩阵F1(x,y),F2(x,y)上,对未在f1’(ρ,θ)、f2’(ρ,θ)上的数据点进行双线性内插后赋值到F1(x,y),F2(x,y)上;
S7、为图像显示数组矩阵F1(x,y)、F2(x,y)分配内存空间,将F1(x,y)、F2(x,y)矩阵从GPU端显存拷贝到主机端进行显示,释放所有未释放的内存和显存空间。
4.根据权利要求3所述的基于GPU的腔内扫描光声系统的数据处理方法,其特征在于,步骤S4中所述的去噪运算是指将每个θ采样到的n个A-Line数据进行中值滤波运算,对应位置的n个值进行取中间值运算,然后取中间值作为滤波后的该位置的数据值。
5.根据权利要求3所述的基于GPU的腔内扫描光声系统及数据处理方法,其特征在于,步骤S6中所述的坐标转换公式为:
所述的双线性内插法为:ρ′=ρ+Δρ,θ′=θ+Δθ,其中ρ、θ为整数部分;Δρ,Δθ为小数部分,则
F1(x,y)=(1-Δρ)(1-Δθ)f1’(ρ,θ)+(1-Δρ)Δθf1’(ρ,θ+1)+Δρ(1-Δθ)f1’(ρ+1,θ)+ΔρΔθf1’(ρ+1,θ+1);
F2(x,y)=(1-Δρ)(1-Δθ)f2’(ρ,θ)+(1-Δρ)Δθf2’(ρ,θ+1)+Δρ(1-Δθ)f2’(ρ+1,θ)+ΔρΔθf2’(ρ+1,θ+1)。
CN201611006877.7A 2016-11-16 2016-11-16 基于gpu的腔内扫描光声系统及数据处理方法 Pending CN106775999A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611006877.7A CN106775999A (zh) 2016-11-16 2016-11-16 基于gpu的腔内扫描光声系统及数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611006877.7A CN106775999A (zh) 2016-11-16 2016-11-16 基于gpu的腔内扫描光声系统及数据处理方法

Publications (1)

Publication Number Publication Date
CN106775999A true CN106775999A (zh) 2017-05-31

Family

ID=58969504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611006877.7A Pending CN106775999A (zh) 2016-11-16 2016-11-16 基于gpu的腔内扫描光声系统及数据处理方法

Country Status (1)

Country Link
CN (1) CN106775999A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108937853A (zh) * 2018-05-29 2018-12-07 华南师范大学 一种多端口并行处理的三维光声显微成像方法及成像系统
CN109276276A (zh) * 2018-08-24 2019-01-29 广东省医疗器械质量监督检验所 基于Labview平台的超声内窥成像装置及方法
CN111110193A (zh) * 2019-12-27 2020-05-08 华南师范大学 基于光声流速测量评估管径狭窄分数的装置及方法
CN111833264A (zh) * 2020-06-15 2020-10-27 武汉科技大学 一种基于cuda的图像快速去噪方法及系统
CN112515630A (zh) * 2020-10-09 2021-03-19 中国科学院深圳先进技术研究院 一种光声信号处理装置及处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073982A (zh) * 2011-01-10 2011-05-25 西安电子科技大学 用gpu实现超大sar图像各向异性扩散滤波加速方法
CN102934986A (zh) * 2012-12-04 2013-02-20 天津迈达医学科技股份有限公司 基于gpu平台的眼科频域oct系统和处理方法
CN103690141A (zh) * 2013-12-26 2014-04-02 广州佰奥廷电子科技有限公司 直肠内光学、光声、超声多模成像内窥镜及其成像方法
CN104545811A (zh) * 2014-12-26 2015-04-29 深圳先进技术研究院 一种血管内成像系统及方法
CN105395170A (zh) * 2015-12-15 2016-03-16 同济大学 一种光声超声双模态同步成像系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073982A (zh) * 2011-01-10 2011-05-25 西安电子科技大学 用gpu实现超大sar图像各向异性扩散滤波加速方法
CN102934986A (zh) * 2012-12-04 2013-02-20 天津迈达医学科技股份有限公司 基于gpu平台的眼科频域oct系统和处理方法
CN103690141A (zh) * 2013-12-26 2014-04-02 广州佰奥廷电子科技有限公司 直肠内光学、光声、超声多模成像内窥镜及其成像方法
CN104545811A (zh) * 2014-12-26 2015-04-29 深圳先进技术研究院 一种血管内成像系统及方法
CN105395170A (zh) * 2015-12-15 2016-03-16 同济大学 一种光声超声双模态同步成像系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙正 等: ""血管内超声/光声联合成像研究进展"", 《中国医学影像技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108937853A (zh) * 2018-05-29 2018-12-07 华南师范大学 一种多端口并行处理的三维光声显微成像方法及成像系统
CN108937853B (zh) * 2018-05-29 2022-06-24 华南师范大学 一种多端口并行处理的三维光声显微成像方法及成像系统
CN109276276A (zh) * 2018-08-24 2019-01-29 广东省医疗器械质量监督检验所 基于Labview平台的超声内窥成像装置及方法
CN111110193A (zh) * 2019-12-27 2020-05-08 华南师范大学 基于光声流速测量评估管径狭窄分数的装置及方法
CN111833264A (zh) * 2020-06-15 2020-10-27 武汉科技大学 一种基于cuda的图像快速去噪方法及系统
CN112515630A (zh) * 2020-10-09 2021-03-19 中国科学院深圳先进技术研究院 一种光声信号处理装置及处理方法

Similar Documents

Publication Publication Date Title
CN106775999A (zh) 基于gpu的腔内扫描光声系统及数据处理方法
CN105395170B (zh) 一种光声超声双模态同步成像系统
Borges-Neto et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies
So et al. Medical ultrasound imaging: To GPU or not to GPU?
CN106102584B (zh) 基于软件的超声波成像系统
Bu et al. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography
Bega et al. Application of three‐dimensional ultrasonography in the evaluation of the fetal heart.
US20060106307A1 (en) Three-dimensional ultrasound computed tomography imaging system
Ma et al. Multiple delay and sum with enveloping beamforming algorithm for photoacoustic imaging
Bergounioux et al. An optimal control problem in photoacoustic tomography
Peng et al. A GPU-accelerated 3-D coupled subsample estimation algorithm for volumetric breast strain elastography
Awasthi et al. Sinogram super-resolution and denoising convolutional neural network (SRCN) for limited data photoacoustic tomography
Romero-Laorden et al. Analysis of parallel computing strategies to accelerate ultrasound imaging processes
Khan et al. A real-time, GPU-based implementation of aperture domain model image reconstruction
Zhang et al. A photoacoustic image reconstruction method using total variation and nonconvex optimization
Walczak et al. Optimization of real-time ultrasound PCIe data streaming and OpenCL processing for SAFT imaging
CN112862924B (zh) 多模态成像中图像重建方法、装置和多模态成像技术系统
Flack et al. Model-based compensation of tissue deformation during data acquisition for interpolative ultrasound simulation
Duan et al. Validation of optical-flow for quantification of myocardial deformations on simulated RT3D ultrasound
Jetzfellner et al. Performance of blind deconvolution in optoacoustic tomography
Birk et al. Comparison of processing performance and architectural efficiency metrics for FPGAs and GPUs in 3D Ultrasound Computer Tomography
CN101268950B (zh) 基于cell宽频引擎的螺旋ct精确重建系统
CN113156431B (zh) 一种基于fpga的后向投影快速成像架构设计方法
Wang et al. Research on ADMM Reconstruction algorithm of Photoacoustic tomography with limited sampling data
CN108937853B (zh) 一种多端口并行处理的三维光声显微成像方法及成像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication