CN106772741A - 一种采用单一渐变材料光栅实现导模共振滤波的方法 - Google Patents

一种采用单一渐变材料光栅实现导模共振滤波的方法 Download PDF

Info

Publication number
CN106772741A
CN106772741A CN201611101092.8A CN201611101092A CN106772741A CN 106772741 A CN106772741 A CN 106772741A CN 201611101092 A CN201611101092 A CN 201611101092A CN 106772741 A CN106772741 A CN 106772741A
Authority
CN
China
Prior art keywords
mode resonance
graded
guide mode
gra
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611101092.8A
Other languages
English (en)
Other versions
CN106772741B (zh
Inventor
桑田
李俊浪
王睿
周健宇
王跃科
王继成
王本新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Yonggu Network Information Technology Co.,Ltd.
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201611101092.8A priority Critical patent/CN106772741B/zh
Publication of CN106772741A publication Critical patent/CN106772741A/zh
Application granted granted Critical
Publication of CN106772741B publication Critical patent/CN106772741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明公开了一种采用单一渐变材料光栅结构实现导模共振滤波的方法,属于光通信与微光机电系统领域。本发明提出在基底上镀制一层折射率随厚度递增的光学薄膜,通过刻蚀该渐变折射率薄膜得到导模共振光栅结构,进而实现导模共振滤波。在此基础上,通过选择不同的刻蚀深度,可以调整滤波器的通道位置;维持刻蚀深度不变,降低渐变系数可以实现多通道滤波。本发明提供的导模共振光栅结构的滤波性能对基底折射率大小变化高度不敏感,即便基底折射率高于渐变薄膜折射率的最大值,导模共振滤波性能保持优良,这摆脱了传统导模共振滤波器中波导层折射率需高于基底折射率的限制,在实际应用中将更有优势。

Description

一种采用单一渐变材料光栅实现导模共振滤波的方法
技术领域
本发明涉及一种采用单一渐变材料光栅实现导模共振滤波的方法,尤其是一种消除传统导模共振滤波受制于基底折射率大小的方法,属于光通信和微光机电领域。
背景技术
导模共振滤波器是一种利用导模共振效应实现共振滤波的光学元件,这类滤波器所需的膜层数少,滤波性能优越,在激光高反系统、偏振系统、光调制器以及生物传感等方面有着重要的应用价值。传统的导模共振光栅由多个离散膜层组成的,每个膜层之间的折射率是突变的,这给滤波器性能带来了很多负面影响:(1)由于高低折射率材料的机械性质不一样,例如热膨胀系数、杨氏弹性模量、泊松比的差异,在镀膜过程中,高低折射率膜层间会产生较大的应力,膜层之间的黏附性也不是很好,这弱化了整个膜系的机械和力学性能,使薄膜的抗划伤能力和抗磨性能变差。(2)由于高低折射率膜材料在微观结构上不匹配,膜层之间界面处的粗糙度会被复制放大,增加了散射损失。(3)膜层之间的突变界面处通常会产生很大的电场,减小了光学薄膜的抗激光损伤阈值。(4)传统多层膜结构导模共振滤波器要求结构中存在波导层,也就是结构中至少有一种膜层的折射率高于基底折射率,若基底折射率高于波导层折射率时,结构的导模共振滤效应将消失,这限制了导模共振滤波器对基底材料的选择。上述负面影响常常成为限制多层膜导模共振滤波器应用的主要因素。
发明内容
为了弥补传统多层膜结构膜导模共振滤波器存在的缺陷,本发明提供了一种采用单一渐变材料实现导模共振滤波的方法。
所述方法是在基底上镀制一层渐变折射率薄膜,通过刻蚀该渐变折射率薄膜得到导模共振光栅结构,进而得到采用单一渐变折射率薄膜的导模共振滤波器。所述方法通过选择不同的刻蚀深度和渐变系数,调整滤波器通道位置和通道数目,实现单通道和多通道反射滤波功能。
所述渐变折射率薄膜的渐变层沿厚度方向的折射率由式(1)表示,其中n0为常数,α为渐变系数,dgra为渐变层的厚度,ngra为渐变层折射率,y为坐标轴,指向为渐变层厚度增大方向。对于给定的渐变层厚度dgra,通过调节α可以调节渐变层的折射率取值范围;反之,对于给定的渐变系数α,通过调节dgra可以调节渐变层的折射率取值范围。
ngra(y)=n0+αy(0≤y≤dgra) 式(1)
在本发明中,对于所述的采用单一渐变折射率薄膜的导模共振滤波器,通过调节滤波器结构参数,比如调节光栅周期、渐变层厚度、刻蚀深度、光栅占空比、渐变系数等可以在任意波段实现TE和TM偏振的导模共振滤波。
在本发明的一种实施方式中,针对可见光波段,选取基底折射率ns=2.1,渐变层折射率ngra∈(1.5,2.1),n0=1.5,渐变层厚度dgra=1μm,光栅占空比f=0.5,刻蚀深度dg=0.1μm,光栅周期Λ=0.32μm,滤波器在通道位置590.4nm处得到一个反射率为100%的共振峰,反射光谱带宽为2.4nm,旁带反射率均低于3%,抗反射滤波性能优良。
在本发明的一种实施方式中,针对可见光波段,选取基底折射率ns=2.1,渐变层折射率ngra∈(1.5,2.1),n0=1.5,渐变层厚度dgra=1μm,光栅占空比f=0.5,光栅周期Λ=0.32μm,通过调节刻蚀深度在dg=50-150nm内变化,使滤波器的通道位置在581.8-598.7nm范围内变化,反射光谱带宽从1.1nm变化到2.8nm。
在本发明的一种实施方式中,保持其他结构参数不变,通过调节渐变系数α选择导模共振滤波的通道数目。
在本发明中,由于渐变层折射率沿厚度方向递增,也就是渐变层上方折射率高,导模的电磁场能量主要被局域在渐变层上方,因此导模共振滤波受基底折射率的影响几乎可以忽略。因而,保持其他结构参数不变,选取不同的基底材料,无论基底折射率低于或高于渐变层折射率的最大值,导模共振滤波器通道位置保持不变,旁带反射率低,滤波性能优良。这表明对于单一材料渐变折射率导模共振滤波器,在实际应用中可以忽略基底折射率大小对导模共振的影响,任意选择基底折射率,滤波器滤波通道位置不变,滤波器滤波性能优良。渐变折射率导模共振滤波器对基底折射率高度不敏感的特征,可以消除传统导模共振滤波器中波导层折射率需高于基底折射率的限制,这在实际应用中具有很大优势。
本发明提供的一种利用单一渐变材料光栅设计导模共振滤波器的方法,可以设计出具有优良抗反射特性的导模共振滤波器。通过选择不同的刻蚀深度dg,可以选择不同的通道位置;维持刻蚀深度dg不变,降低渐变系数α可以增加滤波器的通道数目,实现导模共振多通道滤波。在此基础上,通过优化结构参数,导模共振滤波性能还可以得到进一步提高。这类单一渐变材料光栅结构的导模共振效应不受基底折射率大小影响,导模共振抗反射滤波性能优良。在微光机电系统、光学仪器、光学测量、通讯滤波等领域具有一定的应用前景。
本发明采用的渐变折射率薄膜的机械性质和微观结构在纵向上是连续变化的,没有突变的界面,它其实就是一个复杂的单层膜。应力在整个膜层内是均匀分布的,这提高了薄膜材料之间以及薄膜与基片之间的附着力,改善了薄膜的机械性能、力学性能,相对减小了薄膜的散射损失,提高了薄膜的抗激光损伤阈值,基于渐变折射率薄膜设计的导模共振滤波器可以消除基底折射率大小对导模共振滤波的限制。
附图说明
图1为本发明一种实施方式中单一渐变材料导模共振滤波器结构示意图,Λ为光栅的周期,f为光栅的占空比,ngra为渐变层的折射率,dgra为渐变层厚度,dg为刻蚀深度,nc和ns分别为入射媒质和基底的折射率。
图2为本发明一种实施方式中单一渐变材料导模共振滤波器在dgra=1μm时实现的滤波光谱曲线。
图3为本发明一种实施方式中单一渐变材料导模共振滤波器在不同刻蚀深度下的滤波光谱曲线。
图4为本发明一种实施方式中单一渐变材料导模共振滤波器在不同渐变系数下的多通道滤波光谱曲线。
图5为本发明一种实施方式中单一渐变材料导模共振滤波器在不同折射率基底下的滤波光谱曲线。
具体实施方式
实施例1采用单一渐变材料光栅结构设计导模共振滤波器
在本实施例中,我们选取TM偏振光正入射,渐变层折射率ngra∈(1.5,2.1),也就是ngra的大小在1.5-2.1的范围内线性变化,n0=1.5,基底的折射率ns=2.1。当α=0.6,由式(1),可知渐变层厚度dgra=1μm,选取光栅周期Λ=0.32μm,刻蚀深度dg=0.1μm,光栅占空比f=0.5,采用光栅矢量衍射理论计算,可以在通道位置为590.4nm处实现导模共振滤波,峰值波长反射率达100%,光谱带宽为2.4nm,滤波器旁带反射率低于3%,滤波器滤波性能优越,如图2所示。
在实际应用中,滤波器的设计波长和材料可以根据实际需要来选取,可以选用TE或TM偏振光入射,在正入射或斜入射条件均可实现导模共振滤波。渐变折射率薄膜可以采用电子束共蒸,等离子体增强化学气象沉积(PECVD),单靶溅射和双靶共溅射方法等实现;渐变折射率层的刻蚀可以采用电子束刻蚀、离子束辅助刻蚀、或纳米压印等方法实现。
实施例2改变刻蚀深度选择单一渐变材料导模共振滤波器的通道位置
基于实施例1的结构参数,在维持其他参数不变的条件下,可以通过选择不同的刻蚀深度来实现通道位置的选择。
比如dg分别取50nm,75nm,100nm,125nm,150nm,采用矢量衍射理论计算,得到图3的光谱,可以看到,当dg不断增大时,滤波器通道位置向短波方向移动,峰值波长处反射率均达100%。当dg从50nm增大到150nm时,滤波器通道位置从598.7nm移动到581.8nm,反射光谱带宽由1.1nm增大至2.8nm,滤波器旁带反射率低,滤波器窄带抗反射滤波特性优良。因此,维持其他参数不变,通过选择不同的刻蚀深度可以选择滤波器的通道位置。
实施例3调节渐变系数α实现导模共振多通道滤波
在实施例1的参数下,维持其他参数不变,通过调节渐变系数α来实现对渐变层厚度的控制。当渐变层的厚度越大,由于导模共振的多模共振效应,结构中支持的导模模式数将越多,导模共振滤波器的通道数目也就越多。因此,通过控制渐变系数α,可以控制导模共振的通道数量。也就是,降低渐变系数α,渐变折射率膜层厚度增加,导模共振滤波器的通道数目将增多。
本例中我们分别选取α=0.75,α=0.5和α=0.4三个不同参数,采用矢量衍射理论计算滤波器的光谱曲线,得到图3,分别实现单通道、双通道和三通道导模共振滤波。
实施例4实现对基底折射率不敏感的导模共振滤波
在实施例1的参数下,维持其它参数不变,选取不同折射率基底,比如ns分别为1.5,1.8,2.1,2.4,采用矢量衍射理论计算导模共振滤波器光谱曲线,可以看到不同折射率基底对通道位置没有影响,即便基底折射率大于渐变层折射率的最大值2.1,导模共振的通道均出现在590.4nm处,滤波器峰值反射率高,旁带反射率整体偏低,导模共振滤波性能优良。因此,单一渐变材料导模共振滤波器摆脱了传统导模共振滤波器受基底折射率大小的制约,即便在高折射率基底上依然具有优越的滤波性能。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种采用单一渐变材料光栅实现导模共振滤波方法,其特征在于,在基底上镀制一层折射率沿厚度方向递增的光学薄膜,得到渐变折射率薄膜,刻蚀该渐变折射率薄膜,得到采用单一渐变折射率薄膜的导模共振滤波器。
2.根据权利要求1所述的方法,其特征在于,渐变层沿膜层厚度方向的折射率由式(1)表示,其中ngra为渐变层折射率,n0为常数,α为渐变系数,dgra为渐变层的厚度,0≤y≤dgra
ngra(y)=n0+αy(0≤y≤dgra) 式(1)。
3.根据权利要求2所述的方法,其特征在于,对于给定的渐变层厚度dgra,通过调节渐变系数α调节渐变层折射率ngra;对于给定的的渐变系数α,通过调节dgra调节渐变层折射率ngra
4.根据权利要求2或3所述的方法,其特征在于,在渐变层厚度dgra固定的情况下,通过调整刻蚀深度,选择滤波器通道位置;在渐变层厚度dgra不固定的情况下,通过降低渐变系数α来增大渐变层厚度dgra,以增加导模共振的通道数,实现导模共振多通道滤波。
5.根据权利要求1所述的方法,其特征在于,渐变折射率薄膜采用电子束共蒸、等离子体增强化学气象沉,或单靶溅射和双靶共溅射的方法实现。
6.根据权利要求1所述的方法,其特征在于,刻蚀采用电子束刻蚀、离子束辅助刻蚀、或纳米压印的方法。
7.根据权利要求1所述的方法,其特征在于,采用TE或TM偏振光波正入射或斜入射。
8.一种导模共振滤波器,其特征在于,在基底上镀制一层折射率沿厚度方向递增的光学薄膜,刻蚀该渐变折射率薄膜,得到采用单一渐变折射率薄膜的导模共振滤波器。
9.根据权利要求8所述的一种导模共振滤波器,其特征在于,在渐变层厚度dgra固定的情况下,通过调整刻蚀深度,来选择滤波器通道位置;在渐变层厚度dgra不固定的情况下,通过降低渐变系数α来增大渐变层厚度dgra,以增加导模共振的通道数,实现导模共振多通道滤波。
10.根据权利要求8所述的一种导模共振滤波器,其特征在于,通过调节滤波器结构参数,包括光栅周期、渐变层厚度、刻蚀深度、光栅占空比、渐变系数实现在任意波段的TE和TM偏振的导模共振滤波。
CN201611101092.8A 2016-12-05 2016-12-05 一种采用单一渐变材料光栅实现导模共振滤波的方法 Active CN106772741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611101092.8A CN106772741B (zh) 2016-12-05 2016-12-05 一种采用单一渐变材料光栅实现导模共振滤波的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611101092.8A CN106772741B (zh) 2016-12-05 2016-12-05 一种采用单一渐变材料光栅实现导模共振滤波的方法

Publications (2)

Publication Number Publication Date
CN106772741A true CN106772741A (zh) 2017-05-31
CN106772741B CN106772741B (zh) 2019-07-23

Family

ID=58884208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611101092.8A Active CN106772741B (zh) 2016-12-05 2016-12-05 一种采用单一渐变材料光栅实现导模共振滤波的方法

Country Status (1)

Country Link
CN (1) CN106772741B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728342A (zh) * 2017-09-29 2018-02-23 安徽大学 一种中红外窄带可调谐滤波器
CN107748455A (zh) * 2017-11-16 2018-03-02 安徽大学 一种中红外可调谐窄带带通滤波器
CN109270609A (zh) * 2018-10-17 2019-01-25 江南大学 一种利用双曲超材料光栅实现选择性吸波方法及吸波器
CN110333566A (zh) * 2019-07-12 2019-10-15 苏州大学 一种全介质滤波器
CN113363799A (zh) * 2021-05-27 2021-09-07 扬州大学 一种基于导模共振效应的染料激光器结构
CN113391388A (zh) * 2021-05-27 2021-09-14 扬州大学 基于pdms的峰值连续可变导模共振滤光片及制备方法
CN113768928A (zh) * 2021-09-27 2021-12-10 厦门金达威生物科技有限公司 一种速溶型纳米级生物素微胶囊及其制备方法和应用
CN114914652A (zh) * 2022-05-30 2022-08-16 西安工业大学 中心金属条溅射ITO薄膜均衡滤波SSPPs传输线及滤波器
CN117348125A (zh) * 2023-11-13 2024-01-05 长春理工大学 具有泄漏模共振效应的蛾眼增透结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217730A (zh) * 2013-04-18 2013-07-24 同济大学 一种渐变光学厚度窄带负滤光片膜系
CN103472514A (zh) * 2013-09-26 2013-12-25 沈阳仪表科学研究院有限公司 一种类皱褶膜系结构的陷波滤光片
CN103576224A (zh) * 2013-11-08 2014-02-12 无锡英普林纳米科技有限公司 多层膜填充型复合介质纳米周期光栅结构及其制备方法
CN103688195A (zh) * 2011-05-17 2014-03-26 佳能电子株式会社 光学滤波器和光学设备
CN104634453A (zh) * 2015-02-03 2015-05-20 上海理工大学 一种检测线偏振入射光偏振角的方法
CN204758857U (zh) * 2015-06-26 2015-11-11 上海理工大学 一种宽带宽导模共振滤光器
CN105759332A (zh) * 2016-05-18 2016-07-13 江南大学 一种动态调控导模共振滤波器反射光谱带宽大小的方法
CN105899983A (zh) * 2013-12-23 2016-08-24 瑞士Csem电子显微技术研发中心 导模共振设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688195A (zh) * 2011-05-17 2014-03-26 佳能电子株式会社 光学滤波器和光学设备
CN103217730A (zh) * 2013-04-18 2013-07-24 同济大学 一种渐变光学厚度窄带负滤光片膜系
CN103472514A (zh) * 2013-09-26 2013-12-25 沈阳仪表科学研究院有限公司 一种类皱褶膜系结构的陷波滤光片
CN103576224A (zh) * 2013-11-08 2014-02-12 无锡英普林纳米科技有限公司 多层膜填充型复合介质纳米周期光栅结构及其制备方法
CN105899983A (zh) * 2013-12-23 2016-08-24 瑞士Csem电子显微技术研发中心 导模共振设备
CN104634453A (zh) * 2015-02-03 2015-05-20 上海理工大学 一种检测线偏振入射光偏振角的方法
CN204758857U (zh) * 2015-06-26 2015-11-11 上海理工大学 一种宽带宽导模共振滤光器
CN105759332A (zh) * 2016-05-18 2016-07-13 江南大学 一种动态调控导模共振滤波器反射光谱带宽大小的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.RATS ET AL.: ""Mechanical properties of plasma-deposited silicon-based inhomogeneous optical coatings"", 《SURFACE AND COATINGS TECHNOLOGY》 *
GAIGE ZHENG ETC.: ""Angle-insensitive and narrow band grating filter with a gradient-index layer"", 《OPTICS LETTERS》 *
范正修: "《光学薄膜及其应用》", 28 February 2014, 上海交通大学出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728342A (zh) * 2017-09-29 2018-02-23 安徽大学 一种中红外窄带可调谐滤波器
CN107748455A (zh) * 2017-11-16 2018-03-02 安徽大学 一种中红外可调谐窄带带通滤波器
CN109270609A (zh) * 2018-10-17 2019-01-25 江南大学 一种利用双曲超材料光栅实现选择性吸波方法及吸波器
CN110333566A (zh) * 2019-07-12 2019-10-15 苏州大学 一种全介质滤波器
CN113363799A (zh) * 2021-05-27 2021-09-07 扬州大学 一种基于导模共振效应的染料激光器结构
CN113391388A (zh) * 2021-05-27 2021-09-14 扬州大学 基于pdms的峰值连续可变导模共振滤光片及制备方法
CN113768928A (zh) * 2021-09-27 2021-12-10 厦门金达威生物科技有限公司 一种速溶型纳米级生物素微胶囊及其制备方法和应用
CN114914652A (zh) * 2022-05-30 2022-08-16 西安工业大学 中心金属条溅射ITO薄膜均衡滤波SSPPs传输线及滤波器
CN114914652B (zh) * 2022-05-30 2024-03-29 西安工业大学 中心金属条溅射ITO薄膜均衡滤波SSPPs传输线及滤波器
CN117348125A (zh) * 2023-11-13 2024-01-05 长春理工大学 具有泄漏模共振效应的蛾眼增透结构
CN117348125B (zh) * 2023-11-13 2024-05-24 长春理工大学 具有泄漏模共振效应的蛾眼增透结构

Also Published As

Publication number Publication date
CN106772741B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN106772741B (zh) 一种采用单一渐变材料光栅实现导模共振滤波的方法
Grupp et al. Crucial role of metal surface in enhanced transmission through subwavelength apertures
Kikuta et al. Optical elements with subwavelength structured surfaces
US4128303A (en) Anti reflection coating with a composite middle layer
CN110196464B (zh) 一种实现超宽带光吸收的方法以及一种复合微结构
CN110133771B (zh) 一种利用结构对称性破缺实现超窄带吸收和传感的方法
US7554734B1 (en) Polarization independent grating
CN109270609B (zh) 一种利用双曲超材料光栅实现选择性吸波方法及吸波器
EP0932058A2 (en) Multilayer thin film bandpass filter
CN108761610A (zh) 基于折射率调控薄膜的偏振无关反射式介质光栅
CN103217730A (zh) 一种渐变光学厚度窄带负滤光片膜系
EP0967496A2 (en) Optical multilayered-film filter
CN109491001A (zh) 基于覆盖折射率匹配层的偏振无关光栅及其制备方法
CN111208591B (zh) 宽带高阈值组合介质低色散镜结构及其设计方法
JP3711446B2 (ja) 波長フィルタ
CN208672830U (zh) 基于折射率调控薄膜的偏振无关反射式介质光栅
CN113363799A (zh) 一种基于导模共振效应的染料激光器结构
CN105759332A (zh) 一种动态调控导模共振滤波器反射光谱带宽大小的方法
CN112649999A (zh) 一种基于相变材料的开关式的光波导器件及制作方法
CN114488357B (zh) 基于多层膜的各向异性光吸收装置及其制备方法
JP2005010377A (ja) 光学位相差素子
CN112130391B (zh) 基于电场操控下实时精准变色的多层膜
US6813080B2 (en) Metal-free gratings for wavelength-multiplexed optical communications
CN113031121B (zh) 红外线的抗反射透镜
Sakurai et al. Proposal of tunable hollow waveguide distributed Bragg reflectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240903

Address after: Room 201, Building 7A, West Yungu Phase II, Shangye Road, Fengxi New City, Xixian New Area, Xi'an City, Shaanxi Province 712046

Patentee after: Xi'an Yonggu Network Information Technology Co.,Ltd.

Country or region after: China

Address before: 1800 No. 214122 Jiangsu city of Wuxi Province Li Lake Avenue

Patentee before: Jiangnan University

Country or region before: China