CN106772587A - Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging - Google Patents
Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging Download PDFInfo
- Publication number
- CN106772587A CN106772587A CN201710098888.0A CN201710098888A CN106772587A CN 106772587 A CN106772587 A CN 106772587A CN 201710098888 A CN201710098888 A CN 201710098888A CN 106772587 A CN106772587 A CN 106772587A
- Authority
- CN
- China
- Prior art keywords
- parameter
- modeling
- seismic
- point
- estimated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 208000035126 Facies Diseases 0.000 title claims abstract description 44
- 238000004364 calculation method Methods 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 19
- 230000004927 fusion Effects 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims 3
- 238000013178 mathematical model Methods 0.000 claims 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 claims 1
- 230000010354 integration Effects 0.000 claims 1
- 230000002285 radioactive effect Effects 0.000 claims 1
- 229910052722 tritium Inorganic materials 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了基于同位多相协同克里金的地震弹性参数相控建模方法,包括步骤:在目标层内采用等比例网格剖分方法对建模网格进行剖分,形成若干个平面,作为弹性参数建模的目标位置;分别提取测井弹性参数、地震属性参数和沉积相信息作为建模数据,选择主变量,选择第一及第二协同变量;将所得主变量、第一协同变量及第二协同变量作为计算参数,利用同位多相协同克里金方法进行插值计算,获得平面上所有待估计点的参数值作为多源数据融合建模结果;使用各向异性扩散法进行概化处理,得到概化处理后的地震弹性参数建模结果。本发明能够消除计算异常点和边界噪点,提高了多信息参数综合建模的精度并融入了更多真实的地质信息,具有较好适用性。
The invention discloses a phase-controlled modeling method of seismic elastic parameters based on co-located multi-phase collaborative kriging, which comprises the steps of: using an equal-scale grid subdivision method to subdivide the modeling grid in the target layer to form several planes , as the target position of the elastic parameter modeling; respectively extract the logging elastic parameters, seismic attribute parameters and sedimentary facies information as the modeling data, select the main variable, select the first and second covariate variables; variables and the second covariate are used as calculation parameters, interpolation calculation is carried out by using the co-location multiphase co-kriging method, and the parameter values of all points to be estimated on the plane are obtained as the multi-source data fusion modeling results; the anisotropic diffusion method is used for generalization After generalized processing, the seismic elastic parameter modeling results after generalized processing are obtained. The invention can eliminate calculation abnormal points and boundary noise points, improve the precision of multi-information parameter comprehensive modeling and incorporate more real geological information, and has good applicability.
Description
技术领域technical field
本发明涉及一种基于同位多相协同克里金的地震弹性参数相控建模方法,属于地球物理中参数建模的技术领域。The invention relates to a phase-controlled modeling method of seismic elastic parameters based on co-located multi-phase collaborative kriging, which belongs to the technical field of parameter modeling in geophysics.
背景技术Background technique
地震弹性参数建模是一个多信息综合分析的过程,在复杂的地质环境下,保持波速建模的稳定性和高精度非常困难。由于整个地质系统的变化受到自然环境、层位埋深及土壤和岩层厚度的影响,同时地质构造的复杂性会导致速度模型呈现极大的非均质性和不确定性。因此需要一种能够综合多种地质情况的建模方法,来表现这种非均质性并降低不确定性。要得到精细的地震反演或深度偏移结果,同样依赖于地震波速建模构建的初始模型。尽管线性反演方法可以利用井位处的测井信息构建合适的边界条件,使其与地震信息相结合,但初始模型的准确性会在很大程度上影响反演的精度。地震波走时速度分析方法通过对初始模型的不断修改使其收敛,但对强横向变化的适应性较差,并且在计算过程中容易产生较大的累积误差。Seismic elastic parameter modeling is a multi-information comprehensive analysis process. In complex geological environments, it is very difficult to maintain the stability and high precision of wave velocity modeling. Because the change of the entire geological system is affected by the natural environment, the buried depth of layers, and the thickness of soil and rock formations, and the complexity of geological structures will lead to great heterogeneity and uncertainty in the velocity model. Therefore, a modeling method that can integrate multiple geological conditions is needed to represent this heterogeneity and reduce uncertainty. To obtain fine seismic inversion or depth migration results, it also depends on the initial model constructed by seismic wave velocity modeling. Although the linear inversion method can use the logging information at the well location to construct appropriate boundary conditions and combine it with seismic information, the accuracy of the initial model will greatly affect the accuracy of the inversion. The seismic wave travel time velocity analysis method converges through continuous modification of the initial model, but it is not adaptable to strong lateral changes and is prone to large cumulative errors in the calculation process.
海上碳酸盐岩区域地质条件复杂,非均质性强,作为主变量的测井数据又相对稀少,为了提高弹性参数建模精度和降低不确定性,需要在有限的观测数据中加入有效的约束条件。研究区域所能得到的约束条件往往是地震属性参数和沉积相信息,而这些信息都能在一定程度上反应主变量的变化特征,故需要选取合适的属性参数以约束建模过程。基于协同克里金的弹性参数建模方法除主变量外,同时使用了一个次级变量作为约束条件,有效表达了地质条件的先验信息,降低了建模的不确定性。由于使用协同克里金法所得到的估计值综合表达了周围样点的参数值,样点权重系数不仅与主变量空间协方差函数有关,还受到一种协同变量的约束控制,因此在一定程度上提高了建模的稳定性。显然,当继续增加约束时,带有多个次级变量的协同克里金法能够进一步提高建模的准确性,但约束条件的提取与使用仍有很多困难。The geological conditions in offshore carbonate rock areas are complex, with strong heterogeneity, and the logging data as the main variable is relatively scarce. In order to improve the modeling accuracy of elastic parameters and reduce uncertainty, it is necessary to add effective Restrictions. The constraints that can be obtained in the study area are often seismic attribute parameters and sedimentary facies information, and these information can reflect the variation characteristics of the main variables to a certain extent, so it is necessary to select appropriate attribute parameters to constrain the modeling process. In addition to the primary variable, the elastic parameter modeling method based on co-kriging also uses a secondary variable as a constraint condition, which effectively expresses the prior information of geological conditions and reduces the uncertainty of modeling. Since the estimated value obtained by using the co-kriging method comprehensively expresses the parameter values of the surrounding samples, the weight coefficient of the sample points is not only related to the main variable space covariance function, but also controlled by a covariate constraint, so to a certain extent It improves the stability of modeling. Obviously, when the constraints continue to be added, the co-kriging method with multiple secondary variables can further improve the accuracy of modeling, but there are still many difficulties in the extraction and use of constraints.
使用常规地震属性参数对不同主变量进行约束,基于协同克里金方法所得到的建模结果往往不具有清晰的边界且存在大量噪点,不能真实反应地下介质弹性参数的分布情况,特别是在介质属性横向连续性较差的区域,难以分辨真实的局部扰动和由于计算所产生的微小误差,对后续的反演及相关工作造成困难。Using conventional seismic attribute parameters to constrain different main variables, the modeling results obtained based on the co-kriging method often have no clear boundaries and a lot of noise, which cannot truly reflect the distribution of elastic parameters of the underground medium, especially in the medium In areas with poor lateral continuity of attributes, it is difficult to distinguish between real local disturbances and small errors caused by calculations, which will cause difficulties for subsequent inversion and related work.
发明内容Contents of the invention
本发明所要解决的技术问题在于克服现有技术的不足,提供一种基于同位多相协同克里金的地震弹性参数相控建模方法,解决基于协同克里金方法所得到的建模结果往往不具有清晰的边界且存在大量噪点,不能真实反应地下介质弹性参数的分布情况的问题,可以消除计算异常点和边界噪点,提高了多信息参数综合建模的精度并融入了更多真实的地质信息,具有较好适用性。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, provide a phase-controlled modeling method of seismic elastic parameters based on co-kriging, and solve the problem that the modeling results obtained based on the collaborative kriging method are often It does not have a clear boundary and there are a lot of noise points, which cannot truly reflect the distribution of the elastic parameters of the underground medium. It can eliminate calculation abnormal points and boundary noise points, improve the accuracy of multi-information parameter comprehensive modeling and incorporate more real geology. The information has good applicability.
本发明具体采用以下技术方案解决上述技术问题:The present invention specifically adopts the following technical solutions to solve the above technical problems:
基于同位多相协同克里金的地震弹性参数相控建模方法,包括以下步骤:The phase-controlled modeling method of seismic elastic parameters based on co-located multi-phase co-kriging includes the following steps:
步骤S1、在目标层内采用等比例网格剖分方法对建模网格进行剖分,在相同比例厚度的位置上形成若干个平面,作为弹性参数建模的目标位置;Step S1, subdividing the modeling grid by using an equal-scale grid subdivision method in the target layer, forming several planes at positions with the same ratio thickness, as target positions for elastic parameter modeling;
步骤S2、分别提取平面上已知点的测井弹性参数以及分布于整个区域的地震属性参数和沉积相信息作为建模数据,即选择测井参数的低频参数背景值作为作为主变量,选择地震属性参数作为第一协同变量,及利用各向异性扩散法对沉积相信息进行概化处理得到沉积相数字模型作为第二协同变量;Step S2, respectively extract the logging elastic parameters of known points on the plane and the seismic attribute parameters and sedimentary facies information distributed in the whole area as the modeling data, that is, select the low-frequency parameter background value of the logging parameters as the main variable, and select the seismic Attribute parameters are used as the first covariate, and the sedimentary facies digital model is obtained by generalizing the sedimentary facies information by using the anisotropic diffusion method as the second covariate;
步骤S3、将步骤S2所得主变量、第一协同变量及第二协同变量作为计算参数,利用同位多相协同克里金方法进行插值计算,获得平面上所有待估计点的参数值作为弹性参数的多源数据融合建模结果;Step S3, using the main variable, the first covariate and the second covariate obtained in step S2 as calculation parameters, using the co-location multiphase co-kriging method to perform interpolation calculations, and obtaining the parameter values of all points to be estimated on the plane as elastic parameters Multi-source data fusion modeling results;
步骤S4、使用各向异性扩散法对步骤S3所得多源数据融合建模结果进行概化处理,得到概化处理后的地震弹性参数建模结果。Step S4, using the anisotropic diffusion method to generalize the multi-source data fusion modeling result obtained in step S3, and obtain the generalized seismic elastic parameter modeling result.
进一步地,作为本发明的一种优选技术方案:所述步骤S2中选择测井参数的低频参数背景值作为作为主变量,具体包括:Further, as a preferred technical solution of the present invention: in the step S2, the low-frequency parameter background value of the logging parameter is selected as the main variable, specifically including:
使用多项式拟合方法对透气的测井弹性参数进行平滑处理,根据不同的多项式拟合次数得到若干组平滑后的低频参数背景值;Use the polynomial fitting method to smooth the gas-permeable logging elastic parameters, and obtain several groups of smoothed low-frequency parameter background values according to different polynomial fitting times;
选择大于预设低频参数背景值变化范围的一组低频参数背景值作为主变量。A group of background values of low-frequency parameters larger than the variation range of the preset low-frequency parameter background values are selected as the main variables.
进一步地,作为本发明的一种优选技术方案:所述步骤S2中,根据主变量与地震属性参数间的相关系数选择地震属性参数作为第一协同变量。Further, as a preferred technical solution of the present invention: in the step S2, the seismic attribute parameter is selected as the first collaborative variable according to the correlation coefficient between the main variable and the seismic attribute parameter.
进一步地,作为本发明的一种优选技术方案:所述步骤S2中利用各向异性扩散法对沉积相信息进行概化处理,采用公式:Further, as a preferred technical solution of the present invention: in the step S2, the anisotropic diffusion method is used to generalize the sedimentary facies information, using the formula:
其中,Z为待处理点参数值,为各方向临近点梯度值,A、B、C为各方向的权重系数。Among them, Z is the parameter value of the point to be processed, is the gradient value of adjacent points in each direction, and A, B, and C are weight coefficients in each direction.
进一步地,作为本发明的一种优选技术方案:所述步骤S3中利用同位多相协同克里金方法插值进行计算,具体包括:Further, as a preferred technical solution of the present invention: in the step S3, the calculation is performed by interpolation using the co-located polyphase co-kriging method, which specifically includes:
步骤S31、利用同位协同多相克里金方法,建立计算平面上待估计点的参数值模型;Step S31, using the co-location collaborative multiphase kriging method to establish a parameter value model of the point to be estimated on the calculation plane;
步骤S32、根据无偏最优条件得到克里金方程组,及将克里金方程组转换为矩阵;Step S32, obtaining the kriging equations according to the unbiased optimal condition, and converting the kriging equations into a matrix;
步骤S33、计算不同位置待估计点参数间的协方差和互协方差,以得到步骤S32所得矩阵中所有变量值;Step S33, calculating the covariance and cross-covariance between the parameters of the points to be estimated at different positions, so as to obtain all variable values in the matrix obtained in step S32;
步骤S34、通过求解步骤S32所得矩阵得到各变量的权重系数,将其代入步骤S31所建立待估计点的参数值模型计算得到待估计点的参数值。Step S34, obtain the weight coefficient of each variable by solving the matrix obtained in step S32, and substitute it into the parameter value model of the point to be estimated established in step S31 to calculate the parameter value of the point to be estimated.
进一步地,作为本发明的一种优选技术方案:所述步骤S3中获得弹性参数的多源数据融合建模结果为:Further, as a preferred technical solution of the present invention: the multi-source data fusion modeling result of elastic parameters obtained in the step S3 is:
其中,待估计点位置的参数估计值为Z*(u0),主变量的测井弹性参数为Z(ui),u为参数点位置,作为第一协同变量的地震属性参数为Y1,作为第二协同变量的沉积相数字模型为Y2,权重系数分别为αi、β1和β2。Among them, the estimated parameter value of the position of the point to be estimated is Z * (u 0 ), the logging elastic parameter of the main variable is Z(u i ), u is the position of the parameter point, and the seismic attribute parameter as the first covariate is Y 1 , the numerical model of sedimentary facies as the second covariate is Y 2 , and the weight coefficients are α i , β 1 and β 2 .
进一步地,作为本发明的一种优选技术方案:所述步骤S4中,使用各向异性扩散法概化处理具体包括:Further, as a preferred technical solution of the present invention: in the step S4, the generalization process using the anisotropic diffusion method specifically includes:
步骤S41、设定待估计点的参数变化阈值,将大于或小于设定的参数变化阈值的待估计点参数值视为异常点去除;Step S41, setting the parameter change threshold of the point to be estimated, and removing the parameter value of the point to be estimated that is larger or smaller than the set parameter change threshold as an abnormal point;
步骤S42、利用各向异性扩散法概化处理剩余待估计点参数值,通过反复迭代得到概化处理后的地震弹性参数建模结果。Step S42 , using the anisotropic diffusion method to generalize the parameter values of the remaining points to be estimated, and obtaining the generalized seismic elastic parameter modeling results through repeated iterations.
本发明采用上述技术方案,能产生如下技术效果:The present invention adopts above-mentioned technical scheme, can produce following technical effect:
本发明通过对多个变量参数值的提取和基于同位协同克里金方法对多参数进行的弹性参数融合建模,获得了建模过程中合理优化参数的方法,实现了利用沉积相数字模型作为协同变量的相控建模,提高了地球物理领域弹性参数的建模精度,使用各向异性扩散法去除计算噪点的同时保留了地质体所包含的局部信息。最终实现了多参数融合的相控建模,提高了基于常规资料的弹性参数建模的准确性和完整性。可以有效消除计算异常点和边界噪点,提高了多信息参数综合建模的精度并融入了更多真实的地质信息,是具有较好适用性的基于同位多相协同克里金的弹性参数相控建模方法。The present invention obtains a method for rationally optimizing parameters in the modeling process through the extraction of multiple variable parameter values and the elastic parameter fusion modeling of multiple parameters based on the co-kriging method, and realizes the use of sedimentary facies digital models as The phase-controlled modeling of collaborative variables improves the modeling accuracy of elastic parameters in the geophysical field, and uses the anisotropic diffusion method to remove calculation noise while retaining the local information contained in geological bodies. Finally, the phase-controlled modeling of multi-parameter fusion is realized, which improves the accuracy and completeness of elastic parameter modeling based on conventional data. It can effectively eliminate calculation abnormal points and boundary noise, improve the accuracy of multi-information parameter comprehensive modeling and incorporate more real geological information. modeling method.
附图说明Description of drawings
图1为本发明的基于同位多相协同克里金的弹性参数相控建模方法流程图。Fig. 1 is a flow chart of the phase-controlled modeling method of elastic parameters based on co-located multi-phase co-kriging of the present invention.
图2为本发明的等比例网格剖分示意图。Fig. 2 is a schematic diagram of equal-scale grid division in the present invention.
图3为本发明示例所使用的测井原始参数及平滑后的低频参数背景值示意图。Fig. 3 is a schematic diagram of original logging parameters and smoothed low-frequency parameter background values used in the example of the present invention.
图4为本发明示例所使用的沉积相数字模型示意图。Fig. 4 is a schematic diagram of a digital model of sedimentary facies used in examples of the present invention.
图5为本发明示例所使用的基于同位多相协同克里金的弹性参数相控建模方法对测井横波波速参数进行建模所得到的结果示意图。Fig. 5 is a schematic diagram of the results obtained by modeling the well logging shear wave velocity parameters using the co-located multiphase co-kriging-based elastic parameter phase-controlled modeling method used in the example of the present invention.
具体实施方式detailed description
下面结合说明书附图对本发明的实施方式进行描述。Embodiments of the present invention will be described below in conjunction with the accompanying drawings.
如图1所示,本发明提出的基于同位多相协同克里金的弹性参数相控建模方法,主要包含建模网格剖分、多源信息提取、基于同位多相克里金的插值计算和基于各向异性扩散法的概化处理四大部分,具体如下:As shown in Figure 1, the elastic parameter phase-controlled modeling method based on co-located multi-phase collaborative Kriging proposed by the present invention mainly includes modeling mesh division, multi-source information extraction, and interpolation calculation based on co-located multi-phase Kriging and generalization processing based on the anisotropic diffusion method, the details are as follows:
步骤S1、在目标层内采用等比例网格剖分方法对建模网格进行剖分,如图2所示,在相同比例厚度的位置上形成多个平面,作为弹性参数建模的目标位置;若目标位置没有数据点则使用竖直方向的最邻近点作为目标位置的值。其中,平面上存在若干个已知点和待估计点,所述已知点可以直接获得测井弹性参数。Step S1, use the equal-proportion grid subdivision method to subdivide the modeling grid in the target layer, as shown in Figure 2, form multiple planes at the position with the same ratio thickness, as the target position for elastic parameter modeling ; If there is no data point at the target position, use the nearest neighbor point in the vertical direction as the value of the target position. Wherein, there are several known points and points to be estimated on the plane, and the known points can directly obtain the logging elastic parameters.
步骤S2、多源信息提取,分别提取平面上所有已知点的测井弹性参数以及分布于整个区域的地震属性参数和沉积相信息作为建模数据,即选择测井参数的低频参数背景值作为作为主变量,选择地震属性参数作为第一协同变量,及利用各向异性扩散法对沉积相信息进行概化处理得到沉积相数字模型作为第二协同变量;分析数据体相关性并对所提取数据进行初步处理,实现多源数据融合建模流程,提高地球物理弹性参数建模精度。该过程包括以下步骤:Step S2, multi-source information extraction, respectively extract the logging elastic parameters of all known points on the plane and the seismic attribute parameters and sedimentary facies information distributed in the whole area as modeling data, that is, select the low-frequency parameter background value of the logging parameters as As the main variable, choose the seismic attribute parameter as the first covariate, and use the anisotropic diffusion method to generalize the sedimentary facies information to obtain the sedimentary facies digital model as the second covariate; analyze the correlation of the data volume and analyze the extracted data Preliminary processing is carried out to realize the multi-source data fusion modeling process and improve the modeling accuracy of geophysical elastic parameters. The process includes the following steps:
步骤S21、提取已知点的所有测井弹性参数低频背景值,尝试不同的拟合次数并结合建模要求与测井原始数据进行比对,获得能够满足建模精度要求的数据频率,如图3所示。Step S21, extract the low-frequency background values of all logging elastic parameters at known points, try different fitting times and compare the modeling requirements with the original logging data to obtain the data frequency that can meet the modeling accuracy requirements, as shown in the figure 3.
其具体为:It is specifically:
步骤S211、使用多项式拟合方法对已知点的所有测井弹性参数数据进行平滑处理,根据不同的多项式拟合次数得到多组平滑后的低频参数背景值。Step S211 , using a polynomial fitting method to perform smoothing on all logging elastic parameter data at known points, and obtaining multiple sets of smoothed low-frequency parameter background values according to different polynomial fitting times.
步骤S212、绘制低频参数背景值曲线图,并将预设低频参数背景值范围设置为40m范围变化,由于建模结果所需频率实际低于测井采集的原始数据,因此根据弹性参数变化特点选择能够反映大于40m范围变化的一组低频背景值作为主变量,在深度域数据体中使低频背景值能够反映出大段岩层并且在薄层区域反映出一定的变化趋势。Step S212, draw the low-frequency parameter background value curve, and set the preset low-frequency parameter background value range to 40m. Since the frequency required by the modeling result is actually lower than the original data collected by logging, it is selected according to the characteristics of elastic parameter changes. A group of low-frequency background values that can reflect changes in the range of more than 40m are used as the main variables, so that the low-frequency background values can reflect large sections of rock formations and reflect a certain change trend in thin-bed areas in the depth domain data volume.
步骤S22、提取地震属性参数,通过统计方法获得能够在侧面反映主变量变化的参数类型,计算整个区域不同地震属性数据体与测井低频背景值的相关系数,根据计算结果选择普遍适用的地震属性作为第一协同变量,实现建模参数的优化。其包括以下步骤:Step S22, extracting seismic attribute parameters, obtaining parameter types that can reflect changes in main variables laterally through statistical methods, calculating the correlation coefficient between different seismic attribute data volumes in the entire region and low-frequency background values of well logging, and selecting generally applicable seismic attributes according to the calculation results As the first covariate, the optimization of the modeling parameters is achieved. It includes the following steps:
步骤S221、绘制各地震属性不同井位处的曲线图,统计不同井位处地震属性的变化趋势,宏观上了解在不同沉积相带中地震属性参数的变化特征,将井位处地震属性特征与沉积相信息对比分析。Step S221, drawing curves at different well locations for each seismic attribute, counting the variation trends of seismic attributes at different well locations, macroscopically understanding the variation characteristics of seismic attribute parameters in different sedimentary facies belts, and comparing the seismic attribute characteristics at the well locations with the Comparative analysis of sedimentary facies information.
步骤S222、统计全部已知井位处由步骤S21所得到的主变量与各地震属性间的相关系数,结合步骤S221地震属性与沉积相信息的吻合程度,选择相关系数较大的地震属性参数作为第一协同变量。Step S222, count the correlation coefficients between the main variables obtained in step S21 and the seismic attributes at all known well locations, and combine the degree of agreement between the seismic attributes and sedimentary facies information in step S221, and select the seismic attribute parameters with larger correlation coefficients as first covariate.
步骤S23、将沉积相信息通过分类标号的方式转换为沉积相数字模型,使沉积相作为控制条件加入到建模计算过程中,实现真正的相控建模。具体过程如下:Step S23, transforming the sedimentary facies information into a digital model of sedimentary facies by means of classification and labeling, so that the sedimentary facies is added as a control condition into the modeling calculation process, and real facies-controlled modeling is realized. The specific process is as follows:
步骤S231、根据地质调查结果中的沉积相描述,使用数字表示沉积相变化,数字大小与远离陆地距离有关,具体的:1、2表示台内礁滩相;3表示台地潮坪相;4、5表示台缘斜坡相,利用定量的数字表示代替了常规的文字描述,如此得到的数字化沉积相信息就可以直接约束建模过程;使得平面上每一个点的沉积相数字表示可以将沉积相信息加入到建模的计算过程中。Step S231, according to the description of sedimentary facies in the geological survey results, use numbers to represent changes in sedimentary facies, and the size of the numbers is related to the distance away from the land, specifically: 1, 2 represent intra-platform reef-shoal facies; 3 represent platform tidal flat facies; 4, 5 represents the platform margin slope facies, and the conventional text description is replaced by quantitative digital representation, so that the digital sedimentary facies information obtained in this way can directly constrain the modeling process; so that the sedimentary facies digital representation of each point on the plane can integrate the sedimentary facies information Included in the modeling calculation process.
步骤S232、使用各向异性扩散法对所得到的数字化沉积相信息进行概化处理,得到沉积相数字模型作为第二协同变量;Step S232, using the anisotropic diffusion method to generalize the obtained digitized sedimentary facies information to obtain a digital sedimentary facies model as a second collaborative variable;
所述各向异性扩散法的计算公式如下:The calculation formula of the anisotropic diffusion method is as follows:
其中,Z为待处理点参数值,为各方向临近点梯度值,A、B、C为各方向的权重系数,i、j、k为所处理点的相对位置,m为点的迭代次数。通过求解公式(1)可以得到概化处理后的沉积相模型。Among them, Z is the parameter value of the point to be processed, is the gradient value of the adjacent points in each direction, A, B, and C are the weight coefficients in each direction, i, j, and k are the relative positions of the processed points, and m is the number of iterations of the points. The generalized sedimentary facies model can be obtained by solving formula (1).
其中,通过不断修改待处理点位置,对整个数字化沉积相信息数据体进行概化处理,最终得到所处理平面上的沉积相数字模型,如图4所示。Among them, by constantly modifying the position of the points to be processed, the entire digital sedimentary facies information data body is generalized, and finally the digital model of the sedimentary facies on the processed plane is obtained, as shown in Figure 4.
步骤S3、将步骤S2所得主变量、第一协同变量及第二协同变量作为计算参数,利用同位多相协同克里金方法进行插值计算,获得平面上所有待估计点的参数值作为弹性参数的多源数据融合建模结果。Step S3, using the main variable, the first covariate and the second covariate obtained in step S2 as calculation parameters, using the co-location multiphase co-kriging method to perform interpolation calculations, and obtaining the parameter values of all points to be estimated on the plane as elastic parameters Multi-source data fusion modeling results.
其中,平面上所有待估计点的参数值的获取过程如下:Among them, the process of obtaining parameter values of all points to be estimated on the plane is as follows:
步骤S31、以步骤S2中所述的主变量、第一协同变量和第二协同变量为计算参数,根据同位协同多相克里金方法进行插值计算,建立计算平面上待估计点的参数值模型:Step S31, using the main variable, the first covariate and the second covariate described in step S2 as calculation parameters, perform interpolation calculation according to the co-location collaborative multiphase Kriging method, and establish a parameter value model of the point to be estimated on the calculation plane:
其中,待估计点位置的参数估计值为Z*(u0),测井主变量参数为Z(ui),u为参数点位置,提取的作为第一协同变量的地震属性参数为Y1,作为第二协同变量的沉积相数字模型为Y2,权重系数分别为αi、β1和β2。Among them, the estimated parameter value of the position to be estimated is Z * (u 0 ), the main logging variable parameter is Z(u i ), u is the parameter point position, and the seismic attribute parameter extracted as the first covariate is Y 1 , the numerical model of sedimentary facies as the second covariate is Y 2 , and the weight coefficients are α i , β 1 and β 2 .
步骤S32、根据无偏最优条件,通过构建拉格朗日方程使估计克里金方差最小,可以得到克里金方程组:Step S32, according to the unbiased optimal condition, by constructing the Lagrangian equation to minimize the estimated Kriging variance, the Kriging equation system can be obtained:
其中C表示参数间的协方差或互协方差,为了更清楚的表示参数间的关系,将方程组转换为矩阵形式:Where C represents the covariance or cross-covariance between parameters. In order to express the relationship between parameters more clearly, the equation system is converted into a matrix form:
其中M表示协方差矩阵,Λ表示主变量权重系数向量,ε表示误差参数,M的表达式为:Among them, M represents the covariance matrix, Λ represents the weight coefficient vector of the main variable, ε represents the error parameter, and the expression of M is:
步骤S33、计算不同位置的待估计点测井参数、地震属性和沉积相之间的协方差和互协方差,可以得到矩阵M中所有变量值;Step S33, calculating the covariance and cross-covariance among the logging parameters, seismic attributes and sedimentary facies of the points to be estimated at different positions, and all variable values in the matrix M can be obtained;
步骤S34、通过求解公式(4)可以得到各变量的权重系数,将其代入公式(2)可以计算得到待估计点参数值。Step S34 , by solving the formula (4), the weight coefficient of each variable can be obtained, and substituting it into the formula (2) to calculate the parameter value of the point to be estimated.
上述步骤S31至S34可计算出平面上的一个待估计点参数值,为了获取全部平面上所有待估计点的参数值,则修改待估计点位置,将步骤S34中计算得到的参数值视为已知点,重复步骤S3,计算下一个待估计点参数值,当平面上所有点全部计算完成后结束。The above steps S31 to S34 can calculate a parameter value of a point to be estimated on the plane. In order to obtain the parameter values of all points to be estimated on the whole plane, the position of the point to be estimated is modified, and the parameter value calculated in step S34 is regarded as already Know the point, repeat step S3, calculate the parameter value of the next point to be estimated, and end when all the points on the plane are calculated.
步骤S4、使用各向异性扩散法对步骤3所得多源数据融合建模结果进行概化处理,得到概化处理后的地震弹性参数建模结果。具体包括:Step S4, using the anisotropic diffusion method to generalize the multi-source data fusion modeling result obtained in step 3, and obtain the generalized seismic elastic parameter modeling result. Specifically include:
步骤S41、设定待估计点的参数变化阈值,将大于或小于设定参数变化阈值的待估计点的参数值视为异常点去除,即统计参数变化范围将负值及超出最大值数量级范围内的参数值视为异常点,随后将步骤S3多源数据融合建模结果中的异常点去除。Step S41, set the parameter change threshold of the point to be estimated, and regard the parameter value of the point to be estimated that is greater or smaller than the set parameter change threshold as an abnormal point and remove it, that is, the statistical parameter change range will be within the negative value and the order of magnitude beyond the maximum value The parameter values of are regarded as outliers, and then the outliers in the multi-source data fusion modeling results in step S3 are removed.
步骤S42、利用各向异性扩散法概化处理对去除异常点的多元数据融合建模结果处理,即对剩余的待估计点参数值概化处理,通过公式(1)反复迭代可以得到概化处理后的地震弹性参数建模结果,如图5所示,所得结果保留了完整的参数变化边界和局部变化,并且在很大程度上消除了干扰建模清晰度的噪点,从图中可以看出采用本发明的方法可以获得更合理的弹性参数建模结果。Step S42, use the anisotropic diffusion method to generalize the multivariate data fusion modeling results to remove abnormal points, that is, to generalize the parameter values of the remaining points to be estimated, and to obtain generalized processing through repeated iterations of the formula (1) The final seismic elastic parameter modeling results are shown in Fig. 5. The obtained results retain the complete parameter change boundaries and local changes, and largely eliminate the noise that interferes with the modeling clarity. It can be seen from the figure that By adopting the method of the invention, more reasonable elastic parameter modeling results can be obtained.
因此,本发明的方法实现了利用沉积相数字模型作为协同变量的相控建模,提高了地球物理领域弹性参数的建模精度,使用各向异性扩散法去除计算噪点的同时保留了地质体所包含的局部信息,能够消除计算异常点和边界噪点,提高了多信息参数综合建模的精度并融入了更多真实的地质信息,具有较好适用性。Therefore, the method of the present invention realizes phase-controlled modeling using the digital model of sedimentary facies as a collaborative variable, improves the modeling accuracy of elastic parameters in the field of geophysics, and uses anisotropic diffusion method to remove calculation noise while retaining the properties of geological bodies. The local information included can eliminate calculation abnormal points and boundary noise points, improve the accuracy of multi-information parameter comprehensive modeling and incorporate more real geological information, which has good applicability.
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments, and can also be made without departing from the gist of the present invention within the scope of knowledge possessed by those of ordinary skill in the art. Variations.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710098888.0A CN106772587A (en) | 2017-02-23 | 2017-02-23 | Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710098888.0A CN106772587A (en) | 2017-02-23 | 2017-02-23 | Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106772587A true CN106772587A (en) | 2017-05-31 |
Family
ID=58959926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710098888.0A Pending CN106772587A (en) | 2017-02-23 | 2017-02-23 | Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106772587A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607996A (en) * | 2017-08-23 | 2018-01-19 | 电子科技大学 | Based on phased sequential co-simulation Geological Modeling |
CN107817521A (en) * | 2017-10-27 | 2018-03-20 | 河海大学 | It is a kind of based on improved into golden lithology distributions probability recognition methods in decigram |
CN109655894A (en) * | 2017-10-12 | 2019-04-19 | 中国石油化工股份有限公司 | Carbonate rock ancient stream channel seismic inversion low frequency model construction method and system |
CN109696704A (en) * | 2019-01-28 | 2019-04-30 | 中国海洋石油集团有限公司 | A kind of seismic aeolotropy δ modeling method based on p-wave impedance constraint |
CN110941014A (en) * | 2018-09-25 | 2020-03-31 | 中国石油化工股份有限公司 | Interpolation method of seismic local velocity data based on collaborative kriging method |
CN111475907A (en) * | 2019-01-23 | 2020-07-31 | 爱柏威股份有限公司 | Method for generating bonding wire data and bonding wire data generating system |
CN113176613A (en) * | 2021-04-21 | 2021-07-27 | 中国石油大学(华东) | Multi-information fusion low-frequency model building method based on three-level body control |
CN116522688A (en) * | 2023-06-29 | 2023-08-01 | 北京城建勘测设计研究院有限责任公司 | Well control multi-information fusion engineering geological modeling method and device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634718A (en) * | 2009-05-05 | 2010-01-27 | 中国石油集团西北地质研究所 | Method for predicting reservoir layer inverted by multi-well logging parameter under restriction condition of relative wave impedance |
EP2270548A1 (en) * | 2009-06-26 | 2011-01-05 | IFP Energies nouvelles | Method for modifying the proportions of facies when calibrating the history of a geological model |
CN102147479A (en) * | 2011-01-11 | 2011-08-10 | 中国海洋石油总公司 | Modelling method of reservoir space physical property parameters |
CN103543478A (en) * | 2012-07-11 | 2014-01-29 | 中国石油化工股份有限公司 | Geologic morphological interpolation KM (Kriging and Multiple-point geostatistics) method |
CN104749624A (en) * | 2015-03-03 | 2015-07-01 | 中国石油大学(北京) | Method for synchronously realizing seismic lithofacies identification and quantitative assessment of uncertainty of seismic lithofacies identification |
CN105353412A (en) * | 2015-12-14 | 2016-02-24 | 中国石油大学(华东) | Calculating method and system of well-to-seismic integration average speed field |
CN105701319A (en) * | 2016-03-08 | 2016-06-22 | 中国石油大学(华东) | Sedimentary microfacies modeling method under horizontal well rule development well net |
CN107607996A (en) * | 2017-08-23 | 2018-01-19 | 电子科技大学 | Based on phased sequential co-simulation Geological Modeling |
-
2017
- 2017-02-23 CN CN201710098888.0A patent/CN106772587A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634718A (en) * | 2009-05-05 | 2010-01-27 | 中国石油集团西北地质研究所 | Method for predicting reservoir layer inverted by multi-well logging parameter under restriction condition of relative wave impedance |
EP2270548A1 (en) * | 2009-06-26 | 2011-01-05 | IFP Energies nouvelles | Method for modifying the proportions of facies when calibrating the history of a geological model |
CN102147479A (en) * | 2011-01-11 | 2011-08-10 | 中国海洋石油总公司 | Modelling method of reservoir space physical property parameters |
CN103543478A (en) * | 2012-07-11 | 2014-01-29 | 中国石油化工股份有限公司 | Geologic morphological interpolation KM (Kriging and Multiple-point geostatistics) method |
CN104749624A (en) * | 2015-03-03 | 2015-07-01 | 中国石油大学(北京) | Method for synchronously realizing seismic lithofacies identification and quantitative assessment of uncertainty of seismic lithofacies identification |
CN105353412A (en) * | 2015-12-14 | 2016-02-24 | 中国石油大学(华东) | Calculating method and system of well-to-seismic integration average speed field |
CN105701319A (en) * | 2016-03-08 | 2016-06-22 | 中国石油大学(华东) | Sedimentary microfacies modeling method under horizontal well rule development well net |
CN107607996A (en) * | 2017-08-23 | 2018-01-19 | 电子科技大学 | Based on phased sequential co-simulation Geological Modeling |
Non-Patent Citations (5)
Title |
---|
HONGBING ZHANG 等: ""Adaptive reconstruction method of impedance model with absolute and relative constraints"", 《JOURNAL OF APPLIED GEOPHYSICS》 * |
刘文玲 等: ""同位协同克里金方法在储层横向预测中的应用"", 《勘探地球物理进展》 * |
吴胜和 编著: "《储层表征与建模》", 31 March 2010, 石油工业出版社 * |
张宏兵 等: ""基于构造约束的波阻抗边界刻画"", 《地球物理学进展》 * |
郭莉 等: ""同位协同随机建模在储层预测中的应用"", 《大庆石油地质与开发》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607996A (en) * | 2017-08-23 | 2018-01-19 | 电子科技大学 | Based on phased sequential co-simulation Geological Modeling |
CN109655894A (en) * | 2017-10-12 | 2019-04-19 | 中国石油化工股份有限公司 | Carbonate rock ancient stream channel seismic inversion low frequency model construction method and system |
CN107817521A (en) * | 2017-10-27 | 2018-03-20 | 河海大学 | It is a kind of based on improved into golden lithology distributions probability recognition methods in decigram |
CN107817521B (en) * | 2017-10-27 | 2019-07-12 | 河海大学 | A Probabilistic Identification Method of Lithology Distribution Based on Improved Compositional Kriging |
CN110941014A (en) * | 2018-09-25 | 2020-03-31 | 中国石油化工股份有限公司 | Interpolation method of seismic local velocity data based on collaborative kriging method |
CN111475907A (en) * | 2019-01-23 | 2020-07-31 | 爱柏威股份有限公司 | Method for generating bonding wire data and bonding wire data generating system |
CN111475907B (en) * | 2019-01-23 | 2023-03-24 | 爱柏威股份有限公司 | Method for generating bond wire data and bond wire data generating system |
CN109696704A (en) * | 2019-01-28 | 2019-04-30 | 中国海洋石油集团有限公司 | A kind of seismic aeolotropy δ modeling method based on p-wave impedance constraint |
CN113176613A (en) * | 2021-04-21 | 2021-07-27 | 中国石油大学(华东) | Multi-information fusion low-frequency model building method based on three-level body control |
CN113176613B (en) * | 2021-04-21 | 2022-11-01 | 中国石油大学(华东) | A low-frequency model building method based on multi-information fusion based on three-level body control |
CN116522688A (en) * | 2023-06-29 | 2023-08-01 | 北京城建勘测设计研究院有限责任公司 | Well control multi-information fusion engineering geological modeling method and device |
CN116522688B (en) * | 2023-06-29 | 2023-09-15 | 北京城建勘测设计研究院有限责任公司 | Well control multi-information fusion engineering geological modeling method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106772587A (en) | Seismic elastic parameter Facies Control Modeling method based on same position multiphase collocating kriging | |
Park et al. | History matching and uncertainty quantification of facies models with multiple geological interpretations | |
Rwechungura et al. | Advanced history matching techniques reviewed | |
CN109709607B (en) | Method and device for predicting thickness of thin sandstone reservoir | |
Hosseini et al. | Geostatistical modeling and spatial distribution analysis of porosity and permeability in the Shurijeh-B reservoir of Khangiran gas field in Iran | |
CN105353412A (en) | Calculating method and system of well-to-seismic integration average speed field | |
Kang et al. | Characterization of three-dimensional channel reservoirs using ensemble Kalman filter assisted by principal component analysis | |
CN108508489B (en) | Seismic inversion method based on waveform micro-variation matching | |
Comunian et al. | Training Images from Process-Imitating Methods: An Application to the Lower Namoi Aquifer, Murray-Darling Basin, Australia | |
CN107966732A (en) | The seismic properties change rate acquiring method being oriented to based on space structure | |
AU2013399193B2 (en) | Static earth model grid cell scaling and property re-sampling methods and systems | |
Pan et al. | Hierarchical machine learning workflow for conditional and multiscale deep-water reservoir modeling | |
Al-Mudhafar | How is multiple-point geostatistics of lithofacies modeling assisting for fast history matching? A case study from a sand-rich fluvial depositional environment of Zubair formation in South Rumaila oil field | |
Iltaf et al. | Facies and petrophysical modeling of Triassic Chang 6 tight sandstone reservoir, Heshui oil field, Ordos basin, China | |
Ochie et al. | Geostatistics–Kriging and co-kriging methods in reservoir characterization of hydrocarbon rock deposits | |
Chen et al. | Upscaled modeling of well singularity for simulating flow in heterogeneous formations | |
Yanshu et al. | A three-dimensional model of deep-water turbidity channel in Plutonio oilfield, Angola: From training image generation, optimization to multi-point geostatistical modelling | |
CN108073744B (en) | Turbidimetric fan propulsion distance prediction method based on geology statistics | |
Joshi et al. | Subsurface porosity estimation: A case study from the Krishna Godavari offshore basin, eastern Indian margin | |
CN115880455A (en) | Three-dimensional intelligent interpolation method based on deep learning | |
Timmer et al. | Visualizing a process ichnology dataset, Lower Cretaceous McMurray Formation, NE Alberta, Canada | |
Wei et al. | Methods for seismic sedimentology research on continental basins | |
Li et al. | A well conditioning method of object-based models | |
Irving et al. | Optimization of uncertain structural parameters with production and observation well data | |
Heidari et al. | History matching of reservoir models by ensemble Kalman filtering: The state of the art and a sensitivity study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |