CN106772164A - 具有自行温度补偿功能的核磁共振磁体 - Google Patents

具有自行温度补偿功能的核磁共振磁体 Download PDF

Info

Publication number
CN106772164A
CN106772164A CN201611183744.7A CN201611183744A CN106772164A CN 106772164 A CN106772164 A CN 106772164A CN 201611183744 A CN201611183744 A CN 201611183744A CN 106772164 A CN106772164 A CN 106772164A
Authority
CN
China
Prior art keywords
magnetic
compensation
main
field
magnetic patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611183744.7A
Other languages
English (en)
Inventor
李晓南
刘国强
李士强
夏正武
张超
李艳红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201611183744.7A priority Critical patent/CN106772164A/zh
Publication of CN106772164A publication Critical patent/CN106772164A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种具有自行温度补偿功能的核磁共振磁体,包括主磁场磁块阵列和补偿磁场磁块阵列,所述的主磁场磁块阵列由上主磁块(1)、右主磁块(3)、下主磁块(5)和左主磁块(7)构成,产生主磁场。所述的补偿磁场磁块阵列由右上补偿磁块(2)、右下补偿磁块(4)、左下补偿磁块(6)和左上补偿磁块(8)构成,产生补偿磁场。主磁场磁块阵列和补偿磁场磁块阵列交叉嵌套地构成一个环形结构,主磁场磁块阵列所产生磁场的磁通密度大于补偿磁场磁块阵列的磁场磁通密度。补偿磁场的方向和主磁场方向相反。

Description

具有自行温度补偿功能的核磁共振磁体
技术领域
本发明涉及一种核磁共振磁体。
背景技术
目前,公知的永磁体难以用于核磁共振化学位移谱的检测,主要原因是永磁体产生的磁场空间均匀度不能达到0.1ppm量级;而且,即便均匀度要求达到了,由于永磁体较强的温度敏感性,大约温度每变化1摄氏度,钕铁硼磁场变化-1100ppm,钐钴磁场变化-300ppm,给潜在的核磁共振波谱检测带来问题。
发明内容
为了克服现有的环形永磁体磁场随温度波动的问题,本发明提出一种核磁共振磁体,该磁体具有自行温度补偿功能,不仅能在某一特定温度点上匀场,而且考虑了磁材逆温度效应和材料热胀冷缩因素,当温度在一个范围内波动时,磁体磁场的均匀度基本保持不变。
本发明解决其技术问题所采用的技术方案是:在环形磁体的磁块阵列中,嵌入一个补偿磁场磁块阵列,用于补偿磁场的温度变化量。主磁场磁块阵列采用的磁材是钐钴,补偿磁场磁块阵列采用的是钕铁硼。主磁场磁块阵列产生的主磁场的表达式可以写成:
式中,BI是主磁场的磁通密度,感兴趣场点的位置,T是工作环境温度,RI是环形磁体的平均半径,kI是剩磁的逆温度系数,是与磁钢骨架热膨胀系数有关的由于磁块各向同性热膨胀导致的磁场热变化系数,σ是误差项,T0是整个磁体的设计工作温度,是T0温度条件下主磁体的平均半径,△T是实际工作温度与设计工作温度的差值。
补偿磁场磁块阵列产生的补偿磁场与主磁场方向相反,补偿磁场磁块阵列产生的磁场表达式与上式(1)相似。那么,当满足下式的比例关系时,
式中,是工作温度为T0时主磁场的磁通密度,是工作温度为T0时补偿磁场的磁通密度,kII是补偿磁块阵列的剩磁逆温度系数,是补偿磁块阵列的磁场热变化系数。
主磁场和补偿磁场相叠加的结果,在室温23摄氏度到33摄氏度的范围内,组合磁场不随温度变化。
本发明磁体包括主磁场磁块阵列和补偿磁场磁块阵列,主磁场磁块阵列和补偿磁场磁块阵列交叉嵌套,构成一个环形结构。主磁场磁块阵列所产生的主磁场的磁通密度大于补偿磁场磁块阵列所产生的补偿磁场的磁通密度,二者的磁通密度矢量在环形内部区域方向相反。
所述的主磁场磁块阵列由上主磁块、右主磁块、下主磁块和左主磁块构成;所述的补偿磁场磁块阵列由右上补偿磁块、右下补偿磁块、左下补偿磁块和左上补偿磁块构成。上主磁块的充磁方向向上,右主磁块的充磁方向向下,下主磁块的充磁方向向上,左主磁块的充磁方向向下。右上补偿磁块、右下补偿磁块、左下补偿磁块和左上补偿磁块也分别按照特定的磁极方向排列,即右上补偿磁块的充磁方向向左,右下补偿磁块的充磁方向右,左下补偿磁块的充磁方向向左,左上补偿磁块的充磁方向向右,使得补偿磁场的方向和主磁场方向相反。
本发明可以克服圆环形永磁体磁场随环境温度变化而波动的缺点。
本发明在工作过程中,当周围环境低于设定的磁体工作温度时,由于稀土永磁材料具有逆温度效应,即当温度升高时,磁体磁场磁通密度降低,而当温度降低时,磁体磁场磁通密度升高,特别地,这种效应是可恢复的,即当环境温度升高以后再降低、或者降低以后又升高,那么磁体磁场磁通密度会恢复温度变化以前的原值。
本发明的主磁场磁块阵列由钐钴磁材制成,补偿磁场磁块阵列由钕铁硼磁材制成。当环境温度升高时,主磁场磁块阵列和补偿磁场磁块阵列的磁场磁通密度同时减小,而且根据两种磁体材料的逆温度系数,即磁场变化率,根据公式(1)和公式(2),通过设计一个适宜的工作温度时的磁场磁通密度值,使得主磁场磁块阵列和补偿磁场磁块阵列的磁场磁通密度值的减小量相等,那么和磁场,即主磁体和补偿磁体的磁通密度矢量和,保持不变,达到了磁体磁场不随环境温度变化的目的。
本发明磁体的工作温度为30摄氏度,当环境温度、主磁场磁块阵列温度和补偿磁场磁块阵列温度分别低于和高于工作温度时,对应的磁体磁场变化值如下表所示。
通过本发明主磁场磁块阵列和补偿磁场磁块阵列结合的磁体设计方法,达到了磁体磁场不随环境温度变化的目的。
附图说明
图1是本发明的磁钢横剖面结构图,
图中:1上主磁块,2右上补偿磁块,3右主磁块,4右下补偿磁块,5下主磁块,6左下补偿磁块,7左主磁块,8左上补偿磁块。
具体实施方式
下面结合附图和具体实施方式对本发明进一步说明。
本发明磁体包括主磁场磁块阵列和补偿磁场磁块阵列,其中主磁场磁块阵列由上主磁块1、右主磁块3、下主磁块5和左主磁块7构成,补偿磁场磁块阵列由右上补偿磁块2、右下补偿磁块4、左下补偿磁块6和左上补偿磁块8构成。主磁场磁块阵列和补偿磁场磁块阵列交叉嵌套地构成一个环形结构,而且主磁场磁块阵列产生磁场的磁通密度大于补偿磁场磁块阵列,二者的磁通密度矢量在环形内部区域方向相反。如图1所示,上主磁块1、右主磁块3、下主磁块5和左主磁块7分别按照特定的磁极方向排列,即:上主磁块1的充磁方向向上,右主磁块3的充磁方向向下,下主磁块5的充磁方向向上,左主磁块7的充磁方向向下。右上补偿磁块2、右下补偿磁块4、左下补偿磁块6和左上补偿磁块8也分别按照特定的磁极方向排列,即右上补偿磁块2的充磁方向向左,右下补偿磁块4的充磁方向右,左下补偿磁块6的充磁方向向左,和左上补偿磁块8的充磁方向向右,使得补偿磁场的方向和主磁场方向相反。

Claims (4)

1.一种具有自行温度补偿功能的核磁共振磁体,其特征在于,所述的磁体包括主磁场磁块阵列和补偿磁场磁块阵列,所述的磁场磁块阵列由上主磁块(1)、右主磁块(3)、下主磁块(5)和左主磁块(7)构成,产生主磁场;所述的补偿磁场磁块阵列由右上补偿磁块(2)、右下补偿磁块(4)、左下补偿磁块(6)和左上补偿磁块(8)构成,产生补偿磁场;主磁场磁块阵列和补偿磁场磁块阵列交叉嵌套地构成一个环形结构,主磁场磁块阵列所产生磁场的磁通密度大于补偿磁场磁块阵列的磁场磁通密度,二者的磁通密度矢量在环形内部区域方向相反。
2.根据权利要求1所述的具有自行温度补偿功能的核磁共振磁体,其特征在于,所述的主磁场磁块阵列中,上主磁块(1)的充磁方向向上、右主磁块(3)的充磁方向向下、下主磁块(5)的充磁方向向上,左主磁块(7)的充磁方向向下;所述的补偿磁场磁块阵列中,右上补偿磁块(2)的充磁方向向左,右下补偿磁块(4)的充磁方向右,左下补偿磁块(6)的充磁方向向左,左上补偿磁块(8)的充磁方向向右,使得补偿磁场的方向和主磁场方向相反。
3.根据权利要求1所述的具有自行温度补偿功能的核磁共振磁体,其特征在于,所述的主磁场磁块阵列由钐钴磁材制成,补偿磁场磁块阵列由钕铁硼磁材制成;当环境温度升高时,所述的主磁场磁块阵列和补偿磁场磁块阵列的磁场磁通密度同时减小。
4.根据权利要求1所述的具有自行温度补偿功能的核磁共振磁体,其特征在于,根据所述的主磁场磁块阵列和补偿磁场磁块阵列的磁体材料的逆温度系数,即磁场变化率,设计适宜的工作温度时的磁场磁通密度值,使得主磁场磁块阵列和补偿磁场磁块阵列的磁场磁通密度值的减小量相等,主磁体和补偿磁体的磁通密度矢量和不变,达到了磁体磁场不随环境温度变化的目的。
CN201611183744.7A 2016-12-20 2016-12-20 具有自行温度补偿功能的核磁共振磁体 Pending CN106772164A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611183744.7A CN106772164A (zh) 2016-12-20 2016-12-20 具有自行温度补偿功能的核磁共振磁体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611183744.7A CN106772164A (zh) 2016-12-20 2016-12-20 具有自行温度补偿功能的核磁共振磁体

Publications (1)

Publication Number Publication Date
CN106772164A true CN106772164A (zh) 2017-05-31

Family

ID=58895814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611183744.7A Pending CN106772164A (zh) 2016-12-20 2016-12-20 具有自行温度补偿功能的核磁共振磁体

Country Status (1)

Country Link
CN (1) CN106772164A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948587A (zh) * 2020-08-13 2020-11-17 重庆大学 一种高温度稳定型磁共振传感器磁体结构及测量装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440040A (zh) * 2003-02-20 2003-09-03 沈阳工业大学 产生数倍于永磁材料剩磁磁密强磁场的永磁机构
EP2144076A1 (en) * 2008-07-07 2010-01-13 RWTH Aachen Segmented ring magnet arrangement for providing a magnetic field
CN104252944A (zh) * 2014-09-22 2014-12-31 苏州露宇电子科技有限公司 高磁场均匀度、高温度稳定性的单边环形磁体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440040A (zh) * 2003-02-20 2003-09-03 沈阳工业大学 产生数倍于永磁材料剩磁磁密强磁场的永磁机构
EP2144076A1 (en) * 2008-07-07 2010-01-13 RWTH Aachen Segmented ring magnet arrangement for providing a magnetic field
CN104252944A (zh) * 2014-09-22 2014-12-31 苏州露宇电子科技有限公司 高磁场均匀度、高温度稳定性的单边环形磁体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948587A (zh) * 2020-08-13 2020-11-17 重庆大学 一种高温度稳定型磁共振传感器磁体结构及测量装置

Similar Documents

Publication Publication Date Title
Baig et al. Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems
US8148988B2 (en) Magnet arrangement and method for providing a magnetic field in a sensitive volume
Gao et al. Dislocation-density-based modeling of the plastic behavior of 4H–SiC single crystals using the Alexander–Haasen model
Sutton et al. A magnet system for the MSL watt balance
US6940378B2 (en) Apparatus and method for magnetic resonance measurements in an interior volume
Gupta et al. A first-principles study of RuMn2Si: Magnetic, electronic and mechanical properties
Han et al. Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni–Mn–Sn alloys
Huang et al. Magnetostrictive behaviors of type-II superconducting cylinders and rings with finite thickness
Yamaguchi et al. Field-induced incommensurate phase in the strong-rung spin ladder with ferromagnetic legs
CN105280325A (zh) 一种用于核磁共振检测的多级无源匀场永磁磁体
Zhang et al. Magnetic lenses using different MgB2 bulk superconductors
CN204178846U (zh) 高磁场均匀度、高温度稳定性的单边环形磁体
Zheng et al. Modeling study on high-temperature superconducting bulk’s growth anisotropy effect on magnetization and levitation properties in applied magnetic fields
Caballero-Flores et al. Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50. 3Mn36. 5Sn13. 2 Heusler alloy ribbons
CN106772164A (zh) 具有自行温度补偿功能的核磁共振磁体
El Rhazouani et al. Antisite disorder study by Monte Carlo simulation of the double perovskite Sr2CrReO6
Li et al. Critical behavior in polycrystalline La0. 7Sr0. 3CoO3 from bulk magnetization study
Wang et al. Anomalous magnon Nernst effect of topological magnonic materials
Wu et al. Large Magnetocaloric Effect and Magnetoresistance in Fe and Co Co‐Doped Ni‐Mn‐Al Heusler Alloys
Yashchuk et al. Magnetic shielding
Elkoua et al. Theoretical study of the structural, electronic and magnetic properties of film surface and bulk based quaternary Heusler alloys Ni-Co-Mn-In
Li et al. The irony of the magnet system for Kibble balances—a review
CN102478647B (zh) Mri用超导磁体的调整方法
CN104252944A (zh) 高磁场均匀度、高温度稳定性的单边环形磁体
Mironov et al. Faraday isolator stably operating in a wide temperature range

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication