CN106771552B - 一种畸变功率计量方法 - Google Patents

一种畸变功率计量方法 Download PDF

Info

Publication number
CN106771552B
CN106771552B CN201611099789.6A CN201611099789A CN106771552B CN 106771552 B CN106771552 B CN 106771552B CN 201611099789 A CN201611099789 A CN 201611099789A CN 106771552 B CN106771552 B CN 106771552B
Authority
CN
China
Prior art keywords
voltage
thd
distortion
power
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611099789.6A
Other languages
English (en)
Other versions
CN106771552A (zh
Inventor
万忠兵
周一飞
王韬
谢智
汪佳
夏桦裕
刘晨
王竣平
张然
王家驹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201611099789.6A priority Critical patent/CN106771552B/zh
Publication of CN106771552A publication Critical patent/CN106771552A/zh
Application granted granted Critical
Publication of CN106771552B publication Critical patent/CN106771552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • G01R21/005Measuring apparent power

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种畸变功率计量方法,包括以下步骤:步骤一、获取基波视在功率S1、全波电压V及基波电压V1,计算电压畸变率THDV,并进一步计算无责任视在功率S′;步骤二、根据全波视在功率S、无责任视在功率S′,计算畸变功率DH。本发明基于IEEE 1459‑2010的功率定义,其应用能准确的量化负荷产生的谐波污染,提高电能计量的公平性。

Description

一种畸变功率计量方法
技术领域
本发明涉及电能计量技术,具体是一种畸变功率计量方法。
背景技术
电能计量是供电方与用电方进行结算的依据,电能计量的公平性和合理性直接关系到供用电双方利益。随着电力电子技术的发展,非线性负荷日益增多,导致电压、电流波形发生较严重的畸变,系统谐波污染越来越严重,对设计用于传统正弦基波的电能表的计量公平性和准确性造成了影响。
目前电能计量方式主要有全波计量、基波计量、以及基波和谐波分别计量三种计量模式,其中,前两者在波形畸变条件下计量公平性存在不足,基波和谐波分别计量的计量模式是一种较好的选择。现有基波和谐波分别计量的计量模式应用时,基波计量技术较为成熟,但是谐波计量主要针对谐波有功功率,无法准确判断负荷是否产生谐波,无法准确量化负荷产生的谐波。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种畸变功率计量方法,该方法基于IEEE 1459-2010的功率定义,其应用能准确的量化负荷产生的谐波污染,提高电能计量的公平性。
本发明解决上述问题主要通过以下技术方案实现:一种畸变功率计量方法,包括以下步骤:
步骤一、获取基波视在功率S1,全波电压V及基波电压V1,计算电压畸变率THDV,并进一步计算无责任视在功率S′;
步骤二、根据全波实在功率S、无责任视在功率S′,计算谐波畸变功率DH
进一步的,所述步骤一中电压畸变率THDV的计算公式如下:
其中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值。
进一步的,所述步骤一中无责任视在功率S′的计算公式如下:
S′=S1(1+THDV 2)。
进一步的,所述畸变功率DH的计算公式如下:
DH=S-S′=S-S1(1+THDV 2)。
进一步的,所述畸变功率DH计算公式的推导步骤如下:
在平稳条件下,波形畸变的电压v分解为工频电压分量v1和剩余电压分量vh,波形畸变的电流i分解为工频电流分量i1和剩余电压分量ih,则有
v=v1+vh
i=i1+ih
其中:
式中,t为时间,w为基波角频率,h为谐波次数,以基波电压为参考相量,θ1为基波电流相位角,αh为h次谐波电压相位角,βh为h次谐波电流相位角;
用有效值可表示为:
V2=V1 2+VH 2
I2=I1 2+IH 2
式中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值,I1为基波电流,IH为谐波电流,Ih为第h次谐波电流有效值;
因此,视在功率S可以分解如下:
S2=V2I2=(V1 2+VH 2)(I1 2+IH 2)
=(V1I1)2+(V1IH)2+(VHI1)2+(VHIH)2
=S1 2+DI 2+DV 2+SH 2
式中,根据IEEE 1459-2010定义,DI为电流畸变功率,DV为电压畸变功率,SH为谐波视在功率;
总谐波电压、电流波形畸变率定义为:
因此可得,
认为不会产生任何与电压谐波次数不一致的电流的负荷为无责任负荷,即该类负荷的各次电压、电流值满足线性,则其电压畸变率、电流畸变率一致,则此时无责任视在功率可以表示为:
S′2=S1 2+DI 2+DV 2+SH 2
=S1 2+S1 2(THDI)2+S1 2(THDV)2+S1 2(THDV)2(THDI)2
=S1 2+S1 2(THDV)2+S1 2(THDV)2+S1 2(THDV)2(THDV)2
=S1 2(1+THDV 2)2
即S′=S1(1+THDV 2)
定义畸变功率DH为视在功率S与无责任视在功率S′之差,则其表达式为:
DH=S-S′=S-S1(1+THDV 2)
综上所述,本发明具有以下有益效果:(1)本发明应用时结合标准定义,能有效量化负荷产生的谐波污染,采用本发明对智能电表畸变功率计量时,能提高电能计量的公平性。
(2)本发明在进行畸变功率计量时,仅需在现有电能计量芯片的基础上,计算电压畸变率、无责任视在功率,经过简单数学计算即可得到畸变功率,算法简单,计算量较小,采用现有智能电表即可实现,具有工程实用性和可行性。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明一个具体实施例的流程图;
图2为实施例1提供的同时存在线性负荷和非线性负荷的单向电路图;
图3为某钢厂精炼炉2h电压、电流畸变率变化趋势图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图1所示,一种畸变功率计量方法,包括以下步骤:步骤一、获取基波视在功率S1,全波电压V及基波电压V1,计算电压畸变率THDV,并进一步计算无责任视在功率S′;步骤二、根据全波实在功率S、无责任视在功率S′,计算谐波畸变功率DH
本实施例在具体实施时,步骤一中电压畸变率THDV的计算公式如下:
其中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值。
本实施例步骤一中无责任视在功率S′的计算公式如下:
S′=S1(1+THDV 2)。
本实施例畸变功率DH的计算公式如下:
DH=S-S′=S-S1(1+THDV 2)。
本实施例畸变功率DH计算公式的推导步骤如下:
在平稳条件下,波形畸变的电压v分解为工频电压分量v1和剩余电压分量vh,波形畸变的电流i分解为工频电流分量i1和剩余电压分量ih,则有
v=v1+vh
i=i1+ih
其中:
式中,t为时间,w为基波角频率,h为谐波次数,以基波电压为参考相量,θ1为基波电流相位角,αh为h次谐波电压相位角,βh为h次谐波电流相位角。
用有效值可表示为:
V2=V1 2+VH 2
I2=I1 2+IH 2
式中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值,I1为基波电流,IH为谐波电流,Ih为第h次谐波电流有效值;
因此,视在功率S可以分解如下:
S2=V2I2=(V1 2+VH 2)(I1 2+IH 2)
=(V1I1)2+(V1IH)2+(VHI1)2+(VHIH)2
=S1 2+DI 2+DV 2+SH 2
式中,根据IEEE 1459-2010定义,DI为电流畸变功率,DV为电压畸变功率,SH为谐波视在功率。
总谐波电压、电流波形畸变率定义为:
因此可得,
认为不会产生任何与电压谐波次数不一致的电流的负荷为无责任负荷,即该类负荷的各次电压、电流值满足线性,则其电压畸变率、电流畸变率一致,则此时无责任视在功率可以表示为:
S′2=S1 2+DI 2+DV 2+SH 2
=S1 2+S1 2(THDI)2+S1 2(THDV)2+S1 2(THDV)2(THDI)2
=S1 2+S1 2(THDV)2+S1 2(THDV)2+S1 2(THDV)2(THDV)2
=S1 2(1+THDV 2)2
即S′=S1(1+THDV 2)
定义畸变功率DH为视在功率S与无责任视在功率S′之差,则其表达式为:
DH=S-S′=S-S1(1+THDV 2)
进一步地,定义的畸变功率可以衡量负荷的谐波责任的原理与实例证明如下:
现有谐波计量主要针对谐波有功功率,其表达式为:
式中,h为谐波次数,θh为h次谐波电压与h次谐波电流的相位差。此时应用的参数:谐波电压、谐波电流可能由系统和用户共同产生,没有明确各自的责任。而所述的畸变功率DH为视在功率S与无责任视在功率之差,定义无责任负荷,与其他负荷的视在功率区分开以此量化谐波责任,下述根据实例证明。
利用Simulink建立同时存在线性负荷和非线性负荷的单相电路,具体电路结构如图2所示,设系统存在背景谐波电压,系统基波电压幅值为1kV,而3、5、7次谐波电压分别为基波电压的3%、1%和0.5%。系统阻抗Zu由50Ω的电阻组成。线性负载Zl由100Ω的电阻组成,此时Z1为无责任负荷。而非线性负载Z2由100Ω的电阻和二极管串联组成。仿真步长为50us,总时间为5s,仿真获得如表1所示的负荷Z1和负荷Z2在关注点处基波、全波电压、电流、视在功率。由表1数据可知,负荷Z1虽为线性负荷,但其谐波有功功率为36.04W,Z1并未发出谐波但谐波有功功率不为0;负荷Z2为非线性负荷,其谐波有功功率与基波功率方向相反,使得全波功率反而减小,因此谐波有功功率无法用于量化负荷谐波责任。
根据表1数据,计算电压畸变率,负荷Z1和负荷Z2的无责任视在功率,并进一步计算畸变功率。由表2数据可得到,负荷Z1的畸变功率近似为0,满足其不产生谐波污染的特性,而负荷Z2为非线性负荷,其畸变功率值为297.09VA,可以用于衡量谐波责任。
表1线性、非线性负荷电压、电流值
表2线性、非线性负荷畸变功率
实施例2:
本实施例以某钢厂精炼炉2h实测数据为例进行畸变功率计量,图3为电压、电流畸变率变化趋势图,表3为精炼炉的功率值。精炼炉为电弧性负荷,是钢厂的主要非线性负荷,在观测时间段THDV最高4.09%,THDI最高92%,波形畸变严重。
表3精炼炉功率值(VA)
最大值 最小值 平均值
S 10584.63 636.067 3455.364
S<sub>1</sub> 9377.49 553.0139 3584.671
D<sub>H</sub> 1091.45 83.04 330.74
谐波畸变功率DH在测试时段内的最大值为1091.45VA,平均值为330.74VA,如果精炼炉一年运行3000小时,按测试阶段的平均功率计算,每年精炼炉的畸变电量为496110度,如果对此不进行计量,必将造成计量不公平性和经济损失。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种畸变功率计量方法,其特征在于,包括以下步骤:
步骤一、获取基波视在功率S1、全波电压V及基波电压V1,计算电压畸变率THDV,并进一步计算无责任视在功率S′;
所述步骤一中电压畸变率THDV的计算公式如下:
其中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值;
所述步骤一中无责任视在功率S′的计算公式如下:
S′=S1(1+THDV 2);
步骤二、根据全波视在功率S、无责任视在功率S′,计算畸变功率DH
所述畸变功率DH计算公式的推导步骤如下:
在平稳条件下,波形畸变的电压v分解为工频电压分量v1和剩余电压分量vh,波形畸变的电流i分解为工频电流分量i1和剩余电压分量ih,则有
v=v1+vh
i=i1+ih
其中:
式中,t为时间,w为基波角频率,h为谐波次数,以基波电压为参考相量,θ1为基波电流相位角,αh为h次谐波电压相位角,βh为h次谐波电流相位角;
用有效值可表示为:
V2=V1 2+VH 2
I2=I1 2+IH 2
式中,V1为基波电压,VH为谐波电压,Vh为第h次谐波电压有效值,I1为基波电流,IH为谐波电流,Ih为第h次谐波电流有效值;
因此,视在功率S可以分解如下:
S2=V2I2=(V1 2+VH 2)(I1 2+IH 2)
=(V1I1)2+(V1IH)2+(VHI1)2+(VHIH)2
=S1 2+DI 2+DV 2+SH 2
式中,根据IEEE 1459-2010定义,DI为电流畸变功率,DV为电压畸变功率,SH为谐波视在功率;
总谐波电压、电流波形畸变率定义为:
因此可得,
不会产生任何与电压谐波次数不一致的电流的负荷为无责任负荷,即该类负荷的各次电压、电流值满足线性,则其电压畸变率、电流畸变率一致,认为无责任负荷不应额外计量谐波功率,此时的视在功率认为是无责任视在功率,可以表示为:
S′2=S1 2+DI 2+DV 2+SH 2
=S1 2+S1 2(THDI)2+S1 2(THDV)2+S1 2(THDV)2(THDI)2
=S1 2+S1 2(THDV)2+S1 2(THDV)2+S1 2(THDV)2(THDV)2
=S1 2(1+THDV 2)2
即S′=S1(1+THDV 2)
定义畸变功率DH为视在功率S与无责任视在功率S′之差,则其表达式为:
DH=S-S′=S-S1(1+THDV 2)。
CN201611099789.6A 2016-12-02 2016-12-02 一种畸变功率计量方法 Active CN106771552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611099789.6A CN106771552B (zh) 2016-12-02 2016-12-02 一种畸变功率计量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611099789.6A CN106771552B (zh) 2016-12-02 2016-12-02 一种畸变功率计量方法

Publications (2)

Publication Number Publication Date
CN106771552A CN106771552A (zh) 2017-05-31
CN106771552B true CN106771552B (zh) 2019-08-27

Family

ID=58884587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611099789.6A Active CN106771552B (zh) 2016-12-02 2016-12-02 一种畸变功率计量方法

Country Status (1)

Country Link
CN (1) CN106771552B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927491B (zh) * 2019-12-03 2021-07-20 南方电网科学研究院有限责任公司 基于无相位数据的多谐波源责任划分方法及装置
CN111753699B (zh) * 2020-06-17 2024-04-05 国网江西省电力有限公司电力科学研究院 一种直流充电桩数字计量准确度提升的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2044193A1 (en) * 1991-06-10 1992-12-11 Gerard Chevalier Energy meter
GB9814793D0 (en) * 1998-07-09 1998-09-09 Ghassemi Foroozan Power meter for ac electrical systems
CN103336265B (zh) * 2013-06-26 2015-08-19 武汉大学 一种谐波背景下电能表计量误差定量化分析方法
CN105866585B (zh) * 2016-04-20 2018-12-11 国网福建省电力有限公司 一种基于畸变功率的谐波源识别和责任分摊方法

Also Published As

Publication number Publication date
CN106771552A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106526312A (zh) 基于r‑v (ⅲ)窗fft双峰插值的电能计量方法
CN105842555B (zh) 一种基于实测数据的多谐波源责任划分方法
CN107359612A (zh) 一种电能质量对配电网能耗影响的综合评估方法
CN108318852B (zh) 一种智能电能表方波影响试验方法
CN106814230A (zh) 基于Kaiser窗FFT四峰插值的电能计量方法
CN106154040B (zh) 一种用于计算电网单点等值时等效谐波阻抗方法
CN105510864B (zh) 一种电能表误差计量的检测方法
CN105759117A (zh) 一种基于谐波分析综合等值电路的谐波责任量化方法
CN106814246A (zh) 基于Kaiser窗FFT单峰插值的电能计量方法
CN107390022A (zh) 基于离散频谱校正的电能计量方法
CN103105529A (zh) 一种基于参数分析的谐波电能计量系统及其控制方法
CN106771552B (zh) 一种畸变功率计量方法
CN104502775A (zh) 一种电能质量对变压器综合能耗影响的定量分析方法
CN105006820A (zh) 一种电能质量对输电线路综合能耗影响的定量分析方法
Chen et al. A modified harmonic pricing scheme for customers based on quantifying the harmonic comprehensive contribution
Jiang et al. Assessment method of harmonic emission level based on the improved weighted support vector machine regression
CN107797017B (zh) 一种电力变压器带电检测损耗特征参数的方法
Cho et al. A waveform distortion evaluation method based on a simple half-cycle RMS calculation
CN106772203B (zh) 谐波条件下电表综合误差分析方法
CN117613881A (zh) 一种基于主成分分析法的新能源场站谐波责任划分方法
CN106849792B (zh) 电机设备及集群系统的能耗计算和节能措施评估方法
CN104850751A (zh) 一种电流质量评估方法
CN104360198A (zh) 一种高性能电能质量分析仪
CN108646074A (zh) 一种基于合成矢量的moa阻性基波电流增长率的计算方法
CN104483570A (zh) 一种配电网谐波治理降损效果实证方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant